
Complexity Results for
Enhanced Qualitative Probabilistic Networks

Johan Kwisthout

Gerard Tel

Department of Information and Computing Sciences, Utrecht University

Technical Report UU-CS-2006-058

www.cs.uu.nl

ISSN: 0924-3275

Complexity Results for

Enhanced Qualitative Probabilistic Networks

Johan Kwisthout and Gerard Tel
Department of Information and Computer Sciences, University of Utrecht,

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.
email: johank@cs.uu.nl, gerard@cs.uu.nl

December 2006

Abstract

While quantitative probabilistic networks (QPNs) allow experts to state influences
between nodes in the network as influence signs, rather than conditional probabilities,
inference in these networks often leads to ambiguous results due to unresolved trade-offs
in the network. Various enhancements have been proposed that incorporate a notion
of strength of the influence, such as enhanced and rich enhanced operators. Although
inference in standard (i.e., not enhanced) QPNs can be done in time polynomial to the
length of the input, the computational complexity of inference in these enhanced networks
has not been determined yet. In this paper, we introduce relaxation schemes to relate
these enhancements to the more general case where continuous influence intervals are
used. We show that inference in networks with continuous influence intervals is NP -hard,
and remains NP -hard when the intervals are discretised and the interval [−1, 1] is divided
into blocks with length of 1

4 . We discuss membership of NP, and show how these general
complexity results may be used to determine the complexity of specific enhancements to
QPNs. Furthermore, this might give more insight in the particular properties of feasible
and infeasible approaches to enhance QPNs.

1 Introduction

While probabilistic networks [Pea88] are based on an intuitive notion of causality and uncer-
tainty of knowledge, elicitating the required probabilistic information from experts can be a
difficult task. Qualitative probabilistic networks [Wel90], or QPNs, have been proposed as
a qualitative abstraction of probabilistic networks to overcome this problem. These QPNs
summarise the conditional probabilities between the variables in the network by a sign, which
denotes the direction of the effect. In contrast to quantitative networks, where inference
has been shown to be NP -hard [Coo90], these networks have efficient (i.e., polynomial-time)
inference algorithms.

Other uses of QPNs include their use as an intermediate step in the construction of a
probabilistic network [RG02], a tool for verifying properties of such networks [GRG06], and
applications where the exact probability distribution is unknown or irrelevant [Wel90].

Unfortunately, reasoning in a qualitative abstraction fails to give a conclusive result when
influences with contrasting signs are combined. Enhanced QPNs have been proposed [RG99]
in order to allow for more flexibility in determining the influences (e.g., weakly or strongly

2

positive) and partially resolve conflicts when combining influences. Also, mixed networks
[RG02] have been proposed to facilitate stepwise quantification by allowing both qualitative
and quantitative influences to be modelled in the network.

Although inference in quantitative networks is NP -hard, and polynomial-time algorithms
are known for inference in standard qualitative networks, the computational complexity of
inference in enhanced networks has not been determined yet. In this paper we recall the
definition of QPNs in section 2, and we introduce a framework to relate various enhancements,
such as enhanced, rich enhanced, and interval-based operators in section 3. In section 4 we
show that inference in the general, interval-based case is NP -hard. In section 5 we show that
it remains NP -hard if we use discrete —rather than continuous— intervals. Furthermore,
we argue that, although hardness proofs might be nontrivial to obtain, it is unlikely that
there exist polynomial algorithms for less general variants of enhanced networks, such as
the enhanced and rich enhanced operators suggested by Renooij and Van der Gaag [RG99].
Finally, we conclude our paper in section 6.

2 Qualitative Probabilistic Networks

In qualitative probabilistic networks, a directed acyclic graph G = (V,A) is associated with
a set ∆ of qualitative influences and synergies [Wel90], where the influence of one node to
another is summarised by a sign1. For example, a positive influence of a node A on its
successor B, denoted with S+(A,B), expresses that higher values for A make higher values
for B more likely than lower values, regardless of influences of other nodes on B. In binary
cases, with a > ā and b > b̄, this can be summarised as Pr(b | ax) − Pr(b | āx) ≥ 0 for any
value of x of other predecessors of B. Negative influences, denoted by S−, and zero influences,
denoted by S0, are defined analogously.

If an influence is not positive, negative, or zero, it is ambiguous, denoted by S?. In addition,
the sign ? may occur during inference in cases where the actual influence is unknown (cannot
be determined precisely). If this happens, the sign represents our lack of knowledge about
the situation in the network, rather than the actual situation, and it is therefore desirable to
generate as few of these signs as possible.

Influences can be direct (causal influence) or induced (inter-causal influence or product
synergy). In the latter case, the value of one node influences the probabilities of values of
another node, given a third node [DH93b].

Various properties hold for these qualitative influences, namely symmetry, transitivity,
composition, associativity and distribution [Wel90, RG99]. If we define Ŝδ(A,B, ti) as the
influence Sδ, with δ ∈ {+,−, 0, ?}, from a node A on a node B along trail ti, we can for-
malise these properties as shown in Figure 1. The ⊗- and ⊕-operators that follow from the
transitivity and composition properties are defined in Figure 2.

Using these properties, an efficient (polynomial time) inference algorithm can be con-
structed [DH93a] that propagates observed node values to other neighbouring nodes. The
basic idea of the algorithm, given in pseudo-code in Figure 3, is as follows. When entering
the procedure, a node I is instantiated with a ‘+’ or a ‘−’ (i.e., trail = ∅, from = to = I
and msign = ‘+’ or ‘−’). Then, this node sign is propagated through the network, following
active trails and updating nodes when needed. Observe from Figure 2 that a node can change

1Note that the network Q = (G, ∆) represents infinitely many quantitative probabilistic networks that
respect the restrictions on the conditional probabilities denoted by the signs of all arcs.

3

Symmetry: Ŝδ(A,B, ti) ∈ ∆ ⇔ Ŝδ(B,A, t−1
i) ∈ ∆

Transitivity: Ŝδ(A,B, ti) ∧ Ŝδ′
(B,C, tj) ⇒ Ŝδ⊗δ′

(A,C, ti ◦ tj)
Composition: Ŝδ(A,B, ti) ∧ Sδ′

(A,B, tj) ⇒ Sδ⊕δ′
(A,B, ti ◦ tj)

⊕-Associativity: S(δ⊕δ′)⊕δ′′
= Sδ⊕(δ′⊕δ′′)

⊗-Associativity: S(δ⊗δ′)⊗δ′′
= Sδ⊗(δ′⊗δ′′)

Distribution: S(δ⊕δ′)⊗δ′′
= S(δ⊗δ′′)⊕(δ′⊗δ′′)

Figure 1: Properties of qualitative influences

⊗ + − 0 ? ⊕ + − 0 ?
+ + − 0 ? + + ? + ?
− − + 0 ? − ? − − ?
0 0 0 0 0 0 + − 0 ?
? ? ? 0 ? ? ? ? ? ?

Figure 2: The ⊗- and ⊕-operator for combining signs

at most two times: from ‘0’ to ‘+’, ‘−’, or ‘?’, and then only to ‘?’. This algorithm visits each
node at most two times, and therefore halts after a polynomial amount of time.

3 Enhanced QPNs

These qualitative influences and synergies can of course be extended to preserve a larger
amount of information in the abstraction [RG99]. For example, given a certain cut-off
value α, an influence can be strongly positive (Pr(b | ax)− Pr(b | āx) ≥ α) or weakly neg-
ative (−α ≤ Pr(b | ax)− Pr(b | āx) ≤ 0). The basic ‘+’ and ‘−’ signs are enhanced with signs
for strong influences (‘++’ and ‘−−’) and augmented with multiplication indices to handle
complex dependencies on α as a result of transitive and compositional combinations. In
addition, signs such as ‘+?’ and ‘−?’ are used to denote positive or negative influences of
unknown strength. Using this notion of strength, trade-offs in the network can be modelled
by compositions of weak and strong opposite signs.

Furthermore, an interval network can be constructed [RG02], where each arc has an as-
sociated influence interval rather than a sign. Such an influence is denoted as F [p,q](A,B),
meaning that Pr(b | ax)− Pr(b | āx) ∈ [p, q]. Note that, given this definition, S+(A,B) ⇐⇒
F [0,1](A,B), and similar observations hold for S−, S0 and S?. We will denote the intervals
[−1, 0], [0, 1], [0, 0] and [−1, 1] as unit intervals, being special cases that correspond to the
traditional qualitative networks. The ⊗- and ⊕-operator, denoting transitivity and compo-
sition in interval networks are defined in Figure 4. Note that it is possible that a result of
a combination of two trails leads to an empty set, for example when combining [12 , 1] with
[34 , 1], which would denote that the total influence of a node on another node, along multiple
trails, would be greater than one, which is impossible. Since the individual intervals might
be estimated by experts, this situation is not unthinkable, especially in large networks. This
property can be used to detect design errors in the network.

4

procedure PropagateSign(trail, from, to, msign):
sign[to] ← sign[to] ⊕ msign;
trail ← trail ∪ { to };
for each active neighbour Vi of to
do lsign ← sign of influence between to and Vi;

msign ← sign[to] ⊗ lsign;
if Vi 6∈ trail and sign[Vi] 6= sign[Vi] ⊕ msign
then PropagateSign(trail, to, Vi, msign).

Figure 3: The sign-propagation algorithm

⊗i [r, s]
[p, q] [minX, max X],

where X = {p · r, p · s, q · r, q · s}

⊕i [r, s]
[p, q] [p + r, q + s] ∩ [−1, 1]

Figure 4: The ⊗i- and ⊕i-operators for interval multiplication and addition

Note, that the symmetry, associativity, and distribution property of qualitative networks
do no longer apply in these enhancements. For example, although a positive influence from
a node A to B along the direction of the arc also has a positive influence in the opposite
direction, the strength of this influence is unknown. Also, the outcome of the combination
of a strongly positive, weakly positive and weakly negative sign depends on the evaluation
order.

3.1 Relaxation schemes

If we take a closer look at the ⊕e, ⊕r, and ⊗e operators defined in [RG99] and compare them
with the interval operators ⊕i and ⊗i, we can see that the interval results are sometimes
somehow ’relaxed’. We see that symbols representing influences correspond to intervals, but
after the application of any operation on these intervals, the result is extended to an interval
that can be represented by one of the available symbols. For example, in the interval model we
have [α, 1]⊕i [−1, 1] = [α−1, 1], but, while [α, 1] corresponds to ++ in the enhanced model and
[−1, 1] corresponds to ?, ++⊕e? =? ≡ [−1, 1]. The lower limit α−1 is relaxed to −1, because
the actually resulting interval [α − 1, 1] does not correspond to any symbol. Therefore, to
connect the (enhanced) qualitative and interval models, we will introduce relaxation schemes
that map the result of each operation to the minimal interval that can be represented by one
of the available symbols:

Definition 1. (Relaxation scheme) Rx will be defined as a relaxation scheme, denoted as
Rx([a, b]) = [c, d], if Rx maps the outcome [a, b] of an ⊕ or ⊗ operation to an interval [c, d],
where [a, b] ⊆ [c, d].

In standard QPNs, the relaxation scheme (which we will denote RI or the unit scheme)
is defined as:

5

RI(a, b) =


[0, 1] if a ≥ 0 ∧ b > 0
[−1, 0] if a < 0 ∧ b ≤ 0
[0, 0] if a = b = 0
[−1, 1] otherwise

Similarly, the ⊕e, ⊕r, and ⊗e operators can be denoted with the following relaxation
schemes, in which m equals min(i, j) and α is an arbitrary cut-off value. To improve readabil-
ity, in the remainder of this paper the ⊕- and ⊗-operators, when used without index, denote
operators on intervals as defined in Figure 4.

R⊗e
(a, b) =

{
[−1, 1] if a < 0 ∧ b > 0
[a, b] otherwise

R⊕e
(a, b) =



[αm, 1] if a = αi + αj ≤ b

[−1,−αm] if b = −(αi + αj) ≥ a

[0, 1] if a ≤ b = αi + αj

[−1, 0] if a = −(αi + αj) ≤ b

[0, 1] if a = (αi − αj) and b ≥ 0 and i < j

[−1, 0] if a = −(αi − αj) and b ≤ 0 and i < j

[−1, 1] if a ≤ 0 and b ≥ 0
[a, b] otherwise

R⊕r (a, b) =

{
[−1, 1] if a < 0 ∧ b > 0
[a, b] otherwise

The notion of a relaxation scheme allows us to relate various operators in a uniform way.
A common property of most of these schemes is that the ⊕-operator is no longer associative.
The result of inference now depends on the order in which various influences are propagated
through the network.

3.2 Problem definition

To decide on the complexity of inference of this general, interval-based enhancements of QPNs,
a decision problem needs to be formulated. We state this problem, denoted as iPieqnetd2,
as follows.

iPieqnetd
Instance: Qualitative Probabilistic Network Q = (G, ∆) with an instantiation for
A ∈ V (G) and a node B ∈ V \ {A}.
Question: Is there an ordering on the combination of influences such that the com-
puted influence of A on B is a strict subset of [−1, 1]?

To avoid problems associated to representing and manipulating real numbers, we assume
that the probabilities in the network are fractions, denoted by integer pairs, rather than by
reals. This has the advantage, that the length of the result of addition and multiplication
of fractions is polynomial in the length of the original numbers. We can efficiently code the
fractions in the network by rewriting them, using their least common denominator. Adding
or multiplying these fractions will not affect their denominators, whose length will not change
during the inference process.

2An acronym for Interval-based Probabilistic Inference in Enhanced Qualitative Networks

6

I

A

[1
2
, 1] [−1,− 1

2
]

B

D

C[− 1
2
, 1

2
]

Vg

Figure 5: ”Variable gadget” Vg

4 Complexity of the problems

We will prove the hardness of the inference problem iPieqnetd by a transformation from
3sat. A 3sat instance is a logical formula in conjunctive normal form, that is, a conjunction
over clauses, where each clause is a disjunction over literals (variables or their negation).
In a 3sat instance, each clause has exactly three literals. The associated decision problem
is, whether there exists an assignment to the variables that makes the formula true. The
problem is known to be NP-Complete [GJ79].

We construct a network Q, with designated nodes I and Y , from a 3sat instance, con-
sisting of ternary clauses C on boolean variables U . We prove that, upon instantiation I to
[1, 1], an ordering on the combination of influences resulting in an influence on Y that is a
true subset of [−1, 1] exists, if and only if the corresponding 3sat instance is satisfiable.

In the network, the influence of a node A on a node B along the arc (A,B) is given as an
interval; when the interval equals [1, 1] (i.e., Pr(b | a) = 1 and Pr(b | ā) = 0) then the interval
is omitted for readability. Note, that the influence of B on A, against the direction of the arc
(A,B), equals the unit interval of the influence associated with (A,B).

As a running example, we will construct a network for the following 3sat instance, intro-
duced in [Coo90]:

Example 2. (3satex) U = {u1, u2, u3, u4}, and C = {(u1 ∨ u2 ∨ u3), (¬u1 ∨ ¬u2 ∨ u3),
(u2 ∨ ¬u3 ∨ u4)}.

This instance is satisfiable, for example with the truth assignment u1 = T , u2 = F ,
u3 = F , and u4 = T .

4.1 Construct for our proofs

For each variable ui in the 3sat instance, the network contains a ”variable gadget” as shown
in Figure 5. After the instantiation of node I with [1, 1], the influence at node D equals
[12 , 1] ⊕ [−1

2 , 1
2] ⊕ [−1,−1

2], which is either [−1, 1
2], [−1

2 , 1] or [−1, 1], depending on the order
of evaluation. We will use the non-associativity of the ⊕-operator in this network as a non-
deterministic choice of assignment of truth values to variables. As we will see later, an

7

I

Vg1

u1 u2 u3 u4

[0, 1]
[0, 1]

Cl1 Cl2 Cl3

[−1, 0]

[−1, 0]

Vg2 Vg3 Vg4

[0, 1]
[0, 1]

[−1, 0]

[0, 1][0, 1]

Figure 6: The literal-clause construction

evaluation order that leads to [−1, 1] can be safely dismissed (it will act as a ’falsum’ in all
the clauses, making both ui and ¬ui false), so we will concentrate on [−1

2 , 1] (which will be
our T assignment) and [−1, 1

2] (F assignment) as the two possible choices.
We construct literals ui from our 3sat instance, each with a variable gadget Vg as input.

Therefore, each variable can have a value of [−1, 1
2] or [−1

2 , 1] as influence, non-deterministicly.
For each clause Cj , we add a clause-network Clj and connect the variable gadget of

ui to Clj if ui occurs in Cj . The influence associated with this arc (ui, Clj) is defined as
F [p,q](ui, Clj), where [p, q] equals [−1, 0] if ¬ui is in Cj , and [0, 1] if ui is in Cj (Figure 6).
Note that an ⊗-operation with [−1, 0] will transform a value of [−1, 1

2] in [−1
2 , 1] and vice

versa, and [0, 1] will not change them. We can therefore regard an influence F [−1,0] as a
negation of the truth assignment for that influence. Note, that the outcome [−1, 1], not
representing T or F , will stay the same in both cases.

The clause-network is in Figure 7. The three ‘incoming’ variables in a clause (which
have a value of either [−1, 1

2], [−1
2 , 1], or [−1, 1]) are multiplied with the arc influence Fi,j ,

and then combined with the instantiation node (with a value of [1, 1]), forming literal nodes
wi. Note that for a false literal, the value is [−1, 1

2] ⊕ [1, 1] = [0, 1]. For a true literal, the
value is [−1

2 , 1] ⊕ [1, 1] = [12 , 1]. Since the [−1, 1] outcome of the variable gadget does not
change by multiplication with the Fi,j influence, the influence of the literal wi would become
[−1, 1] ⊕ [1, 1] = [0, 1], which is the same value as an F literal. In such an assignment to
variable ui, both the literal ui and ¬ui will contribute the value F to any clause, and fail
to satisfy it. If such an assignment can satisfy the 3sat instance, the instance will also be
satisfied with the assignment that gives ui an arbitrary T or F value; hence the occurrence
of these values can further be ignored.

The influences associated with these nodes wi are multiplied by [12 , 1] and added together
in the clause intermediate result node Oj . At this point, Oj has a value of [k

4 , 1], where k
equals the number of literals which are true in this clause. The consecutive addition of [−1

4 , 1],

8

u1 u2 u3 I

[12 , 1][12 , 1] [12 , 1]

[− 1
4 , 1]

F1,j F2,j
F3,j

w1

w2

w3

Oj

O′
j

Cj

[0, 1]

Clj

Figure 7: The clause construction

CnC2C1

[12 , 1]

Y

[12 , 1] [12 , 1]

D1

Ci

Di

[12 , 1]

[12 , 1]

[12 , 1]

Figure 8: Connecting the clauses

multiplication with [0, 1] and addition of [1, 1] has the function of a logical or -operator. It
results in a value for the result node Cj of [34 , 1] if no literal in the clause was true, and [1, 1]
if one or more were true.

We then combine the separate clauses Cj into a variable Y , by adding edges from each
clause to Y using intermediate variables D1 to Dn−1. (The use of these intermediate variables
allows us later to generalise these results to more restricted cases.) The interval of these edges
is [12 , 1], leading to a value of [1, 1] in Y if and only if all clauses Cj have a value of [1, 1] (see
Figure 8). If one or more clause result nodes had a value of [0, 1], the influence interval in Y

has a value between [34 , 1] and [2
k+1−1
2k+1 , 1] (where k is the number of clauses). Note that we

can easily transform the interval in Y to a subset of [−1, 1] in Y ′ by consecutively adding it

9

to [−1, 1] and [−1 + 1
2k+1 , 1]. This would result in a true subset of [−1, 1] if and only Y was

equal to [1, 1].

4.2 NP-hardness proof

Using the construct presented in the previous section, the computational complexity of the
iPieqnetd can be established as follows.

Theorem 3. The iPieqnetd problem is NP-hard.

Proof. To prove NP -hardness, we construct a transformation from the 3sat problem. Let
(U,C) be an instance of this problem, and let Q(U,C) be the interval-based qualitative prob-
abilistic network constructed from this instance, as described in the previous section. When
the node I ∈ Q is instantiated with [1, 1], then I has an influence of [1, 1] on Y (and there-
fore an influence on Y ′ which is a true subset of [−1, 1]) if and only if all nodes Cj have a
value of [1, 1], i.e., there exists an ordering of the operators in the ’variable-gadget’ such that
at least one literal in C is true. We conclude that (U,C) has a solution with at least one
true literal in each clause, if and only if the iPieqnetd problem has a solution for network
Q(U,C), instantiation I = [1, 1] and node Y ′. Since Q(U,C) can be computed from (U,C) in
polynomial time, we have a polynomial-time transformation from 3sat to iPieqnetd, which
proves NP -hardness of iPieqnetd.

4.3 On the possible membership of NP

Although iPieqnetd has been shown to be NP -hard, membership of the NP -class (and, as a
consequence, NP -completeness) is not trivial to prove. To prove membership of NP, one has to
prove that if the instance is solvable, then there exists a certificate, polynomial in length with
respect to the input of the problem, that can be used to verify this claim. A trivial certificate
could be a formula, using the ⊕- and ⊗-operators, influences, and parentheses, describing
how the influence of the a certain node can be calculated from the instantiated node and the
characteristics of the network. Unfortunately, such a certificate can grow exponentially large.

In special cases, this certificate might also be described by an ordering of the nodes
in the network and for each node an ordering of the inputs, which would be a polynomial
certificate. For example, the variable gadget from Figure 5 can be described with the ordering
I, A,B,C,D plus an ordering on the incoming trails in D. All possible outcomes of the
propagation algorithm can be calculated using this description. Note, however, that there
are other propagation sequences possible that cannot be described in this way. For example,
the algorithm might first explore the trail A → B → D → C, and after that the trail
A → C → D → B. Then, the influence in D is dependent on the information in C, but C
is visited by D following the first trail, and D is visited by C if the second trail is explored.
Nevertheless, this cannot lead to other outcomes than [−1, 1

2], [−1
2 , 1], or [−1, 1].

However, it is doubtful that such a description exists for all possible networks. For ex-
ample, even if we can make a topological sort of a certain network, starting with a certain
instantiation node X and ending with another node Y , it is still not the case that a propa-
gation sequence that follows only the direction of the arcs until all incoming trails of Y have
been calculated always yields better results than a propagation sequence that doesn’t have
this property. This makes it plausible that there exist networks where an optimal solution
(i.e., a propagation sequence that leads to the smallest possible subset of [−1, 1] at the node
we are interested in) cannot be described using such a polynomial certificate.

10

5 Operator variants

In order to be able to represent every possible 3sat instance, a relaxation scheme must be
able to generate a variable gadget, and retain enough information to discriminate between
the cases where zero, or more literals in each clause are true. Furthermore, the relaxation
scheme must be able to represent the instantiations [1, 1] (or >) and [−1,−1] (or ⊥), and
the uninstantiated case [0, 0]. With a relaxation scheme that effectively divides the interval
[−1, 1] in discrete blocks with size of a multitude of 1

4 , (such as R 1
4
(a, b) = [b4ac

4 , d4be
4]) the

proof construction is essentially the same as in the general case discussed in section 3. This
relaxation scheme does not have any effect on the intervals we used in the variable gadget
and the clause construction of Q(U,C). The network constructed in the NP -hardness proof
of the general case used only intervals (a, b) for which R 1

4
(a, b) = (a, b). Furthermore, when

connecting the clauses, the possible influences in Y are relaxed to [0, 1], [14 , 1], [12 , 1], [34 , 1],
and [1, 1], so we can construct Y ′ by consecutively adding the interval in Y to [−1, 1] and
[−3

4 , 1]. Thus, the problem - which we will denote as relaxed-Pieqnetd - remains NP -hard
for relaxation scheme R 1

4
.

The non-associativity of the ⊕e- and ⊕r-operators defined in [RG99] suggest hardness of
the inference problem as well. Although ⊕e and ⊕r are not associative, they cannot produce
results that can be regarded as opposites. For example, the expression (+ +⊕e +⊕e−) can
lead to a positive influence of unknown strength (‘+?’) when evaluated as ((+ +⊕e+)⊕e −)
or an unknown influence (‘?’) when evaluated as (+ +⊕e(+⊕e −)), but never to a negative
influence. A transformation from a 3sat variant might not succeed because of this reason.
However, it might be possible to construct a transformation from relaxed-Pieqnetd, which
is subject of ongoing research.

6 Conclusion

In this paper, we addressed the computational complexity of inference in enhanced Qual-
itative Probabilistic Networks. As a first step, we have ”embedded” both standard and
enhanced QPNs in the interval-model using relaxation schemes, and we showed that infer-
ence in this general interval-model is NP -hard and remains NP -hard for relaxation scheme
R 1

4
(a, b). We believe, that the hardness of inference is due to the fact that reasoning in QPNs

is under-defined: The outcome of the inference process depends on choices during evaluation.
Nevertheless, further research needs to be conducted in order to determine where exactly
the NP/P border lies, in other words: which enhancements to the standard qualitative model
allow for polynomial-time inference, and which enhancements lead to intractable results. Fur-
thermore, a definition of transitive and compositional combinations of qualitative influences in
which the outcome is independent of the order of the influence propagation might reduce the
computational complexity of inference and facilitate the use of qualitative models to design,
validate, analyse, and simulate probabilistic networks.

Acknowledgements

This research has been (partly) supported by the Netherlands Organisation for Scientific
Research (NWO). The authors wish to thank Hans Bodlaender and Silja Renooij for their
insightful comments on this subject.

11

References

[Coo90] Cooper, G. The Computational Complexity of Probabilistic Inference using
Bayesian Belief Networks. Artificial Intelligence 42, 2 (1990), 393–405.

[DH93a] Druzdzel, M. and Henrion, M. Belief Propagation in Qualitative Probabilis-
tic Networks. In proc. Qualitative Reasoning and Decision Technologies (CIMNE:
Barcelona, 1993), N. P. Carrete and M. Singh (eds.).

[DH93b] Druzdzel, M. and Henrion, M. Intercausal reasoning with uninstantiated ances-
tor nodes. In proc. Proceedings of the Ninth Conference on Uncertainty in Artificial
Intelligence (1993), pp. 317–325.

[GJ79] Garey, M. and Johnson, D. Computers and Intractability. A Guide to the
Theory of NP-Completeness. W.H. Freeman and Co., San Francisco, 1979.

[GRG06] Gaag, L. C. van der, Renooij, S., and Geenen, P. L. Lattices for verifying
monotonicity of Bayesian networks. In proc. Proceedings of the Third European
Workshop on Probabilistic Graphical Models (to appear) (2006).

[Pea88] Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, Palo Alto, 1988.

[RG99] Renooij, S. and Gaag, L. C. van der. Enhancing QPNs for trade-off resolu-
tion. In proc. Proceedings of the Fifteenth Conference on Uncertainy in Artificial
Intelligence (1999), pp. 559–566.

[RG02] Renooij, S. and Gaag, L. C. van der. From Qualitative to Quantitative Proba-
bilistic Networks. In proc. Proceedings of the Eighteenth Conference in Uncertainty
in Artificial Intelligence (2002), pp. 422–429.

[Wel90] Wellman, M. Fundamental Concepts of Qualitative Probabilistic Networks. Ar-
tificial Intelligence 44, 3 (1990), 257–303.

12

