
Software product release planning through
optimization and what-if analysis

Marjan van den Akker
Sjaak Brinkkemper
Guido Diepen
Johan Versendaal

Department of Information and Computing Sciences, Utrecht University

Technical Report UU-CS-2006-63

www.cs.uu.nl

ISSN: 0924-3275

Software product release planning through

optimization and what-if analysis

Marjan van den Akker 1 Sjaak Brinkkemper Guido Diepen 1

Johan Versendaal

Department for Information and Computing Sciences,
Utrecht University, P.O. Box 80089, 3508 TB Utrecht, The Netherlands

Abstract

We present a mathematical formalization of release planning with a correspond-
ing optimization tool that supports product and project managers during release
planning. The tool is based on integer linear programming and assumes that an
optimal set of requirements is the set with maximal projected revenue against avail-
able resources. The input for the optimization is twofold. The first type of input
data concerns the list of candidate requirements, estimated revenues, and resources
needed. Secondly, managerial steering mechanisms enable what-if analysis in the
optimization environment. Experiments based on real-life data made a sound case
for the applicability of our approach.

Key words: Integer Linear Programming, Release Planning, Requirements
Management, Optimization

1 Requirements selection for release planning

Determining requirements for upcoming releases is a complex process (see
e.g. Potts (1995); Regnell and Brinkkemper (2005)). Often there are more re-
quirements than can be implemented, the capacity of available resources is
limited, requirements are unclear, important customers of the software prod-
ucts may put more pressure to include certain requirements, etc. Moreover,

Email addresses: j.m.vandenakker@cs.uu.nl (Marjan van den Akker),
s.brinkkemper@cs.uu.nl (Sjaak Brinkkemper), g.diepen@cs.uu.nl (Guido
Diepen), j.versendaal@cs.uu.nl (Johan Versendaal).
1 Supported by BSIK grant 03018 (BRICKS: Basic Research in Informatics for
Creating the Knowledge Society)

Preprint submitted to Elsevier Science 22 December 2006

requirements need to be collected from different sources. Typically, a product
manager obtains functional, technical and usability requirement through the
sales department, service and maintenance departments, ad hoc or organized
customer contacts, user groups, the development department, and more (cf.
Natt och Dag et al. (2005)).

In van den Akker et al. (2005) we discuss the basics of a solution for release
planning using Integer Linear Programming techniques. As described many
aspects influence the definition of a set of requirements for a next release. Sev-
eral scholars have presented lists of such aspects including: importance or busi-
ness value, personal preference of certain customers and other stakeholders,
penalty if not developed, cost of development in man days, development lead-
time, requirement volatility, requirement dependencies, ability to reuse, and
requirements quality (e.g. Berander and Andrews (2005); Firesmith (2004);
Ruhe, Eberlein, and Pfahl (2003); Natt och Dag et al. (2004); Natt och Dag
et al. (2005)).

In order to deal with the multi-aspect optimization problem in literature dif-
ferent techniques and procedures have been applied. The analytical hierarchy
process (AHP; Saaty (1980); Karlsson and Ryan (1997); Regnell et al. (2001))
assesses requirements according to certain criteria by taking all possible re-
quirement pairs, relatively valuing each pair, and subsequently using matrix
calculations to determine a weighted list of requirements. Jung (1998) ex-
tended the work of Karlsson and Ryan (1997) by reducing the complexity of
the application of the analytical hierarchy process to large amounts of require-
ments using linear programming techniques. Ruhe and Saliu (2005) describe
a method for release planning including stakeholders opinions on requirement
importance, and use linear programming techniques. Carlshamre (2002) too
used linear programming techniques on which a release planning tool was built
and they added requirement interdependencies as an important aspect in re-
lease planning. Through cumulative voting (Leffingwell and Widrig (2000))
different stakeholders are asked to distribute a fixed amount of units (e.g. eu-
ros) between all requirements, from where an average weighted requirement
list is constructed. With discrete event simulation the effect of development of
requirements is modeled, allowing what-if analysis (Höst et al. (2001); Ruhe,
Eberlein, and Pfahl (2003)). For more techniques, see for example Berander
and Andrews (2005), who provide an extensive list of requirements prioritiza-
tion techniques.

In this paper we develop and demonstrate an optimization technique, based on
integer linear programming, to support software vendors in determining the
next release of a software product. As with the approach of Jung (1998) and
Carlshamre (2002), our technique is based on the assumption that a release’s
best set of requirements is the set that results in maximum projected revenue
against available resources in a given time period. We take into account dif-

2

Requirement Revenues Total Team A Team B Team C

Authorization on order cancellation and removal 24 50 5 45

Authorization on archiving service orders 12 12 2 5 5

Performance improvements order processing 20 15 15

Inclusion graphical plan board 100 70 10 10 50

Link with Acrobat reader for PDF files 10 33 33

Optimizing interface with international Postal
code system

10 15 15

Adaptations in rental and systems 35 40 20 20

Symbol import 5 10 10

Comparison of services per department 10 34 9 25

Totals 226 279 42 77 160

Table 1
Example requirements sheet with estimated team workload and revenues

ferent aspects, including the total list of requirements, possible dependency
between requirements, a requirement’s projected revenue including additional
revenues for complete realization of requirement packages (bundles), and a
requirement’s resource claim per development team. To further increase its
practical applicability, we enhance our technique with managerial steering
mechanisms, i.c. enabling of team transfers, conceding release deadline ex-
tension, and allowing extra resources. Both the listed aspects, and the list of
managerial steering mechanisms are not complete. Others can be identified.
The mentioned aspects and steering mechanisms however are recognizable
from a product management (e.g. Nelson (2005)) and project management
(e.g. CCTA (2001)) perspective. By introducing the aspects and managerial
steering mechanisms into integer linear programming models for the release
planning process we extend the work of Jung (1998) and Carlshamre (2002).

Table 1 depicts a simplified example representation of the problem domain.
For nine requirements with given input (revenue in euros and required man
days per team) the best set of requirements for a next release needs to be
defined. Suppose for instance that the total amount of available man days in
the three teams is 60, then we note that team A has room for additional work,
where team B and C have too much work. Then the set of requirements that
brings the maximum revenue has to be determined, given the fact that there
are several management options: extending the deadline so that each team has
more than 60 days, transferring employees from team A to team B or C, and/or
hiring external capacity. Each option has its pros and cons, and therefore
a solution approach is required that comprises all options into one model.
Note that in reality it is not uncommon to include tens to even hundreds of
requirements, making release planning without tooling an extremely difficult
task.

As described above, several authors have already discussed and presented as-

3

pects, techniques, and tooling for release planning. The novelty of our research,
however, is threefold. Firstly, we take into account a unique set of aspects,
among others needed team capacity per requirement and requirement depen-
dencies. Secondly, we use unique yet practical managerial steering mechanisms
that can aid product managers and project managers in release planning, no-
tably enabling of team transfers, deadlines and extra resources. In the third
place we show how to define and process aspects and managerial steering
mechanisms using integer linear programming. The outcomes of our optimiza-
tion tool are values for decision variables that maximize the estimated revenue
and include the list of requirements for the next release, needed team transfers
(if enabled), needed additional team resources to include other requirements,
and the needed deadline extension (if enabled).

In Section 2 our paper discusses integer linear programming models as applied
in the optimization tool and in our domain. For the reader’s convenience, we
include a discussion on solving integer linear programming problems in Ap-
pendix A. In Section 3 we describe the software tool, called ReqMan, through
which we demonstrate the practical applicability of our optimization approach.
In closing, we conclude and provide areas for future research in Section 4.

2 Formalization of release planning

In this section we formulate requirements management in product software
companies as a combinatorial optimization problem. In such a problem we
have to find the best from a finite but very large number of solutions. These
type of problems occur in many areas within production planning, logistics,
transportation, personnel planning and telecommunication. The most famous
example is the traveling salesman problem. An example related to require-
ments management is the problem of a person or company being assigned a
number of tasks each with a specific duration and deadline. It receives more
tasks than it can handle in time. However, the customer only pays if the work
is completed in time. This means that a selection of tasks to be executed has
to be made such that the selected tasks are completed on time and the revenue
is maximized. In scheduling theory, this problem is known as minimizing the
(weighted) number of tardy jobs. A survey on solution methods for these type
of problems with a single resource, i.e. person or company, is given in van den
Akker and Hoogeveen (2004A) and van den Akker and Hoogeveen (2004B)
consider the case with a single resource and uncertainty in the processing
times of the jobs.

Integer linear programming is a well-known technique for solving combinato-
rial optimization problems. In general, integer linear programming problems
are NP-hard. However, using advanced algorithms and specialized software,

4

an (near-)optimal solution of the integer linear program can often be found
within a reasonable amount of time. For a general introduction to integer
linear programming we refer to Wolsey (1998). For examples in the area of
scheduling we refer to van den Akker, van Hoesel, and Savelsbergh (1999),
and van den Akker, Hoogeveen, and van de Velde (1999).

We will discuss different variants of the problem of release definition, i.e., se-
lecting requirements for the next release of the software product. We are given
a set of n requirements {R1, R2, . . . , Rn}. Suppose that for each requirement
Rj we can estimate its revenue vj. The implementation of each requirement
needs a given amount of resources in the form of labor hours from the devel-
opment teams. We assume that the date of the next release is given; hence
we have to deal with a fixed planning period. Clearly, the available amount
of resources is limited. Therefore, we have to make a selection of the require-
ments to be included in the next release, preferably, such that the revenue is
maximal. This can be viewed as the following optimization problem: find the
subset of requirements for the next release such that the revenue is maximal
and the available capacity is not exceeded.

We present different models taking into account different aspects and man-
agerial steering mechanisms within a product software company. We consider:

• one pool of developers (i.e. no different development teams)
• different teams without team transfers, each with its own capacity constraint
• different teams with team transfers allowed
• hiring external team capacity
• extension of the development project deadline
• requirement dependency (functional, revenue and cost related)

In the following sub-sections we discuss the above aspects and managerial
steering mechanisms. For presentational reasons, each of these issues will be
included separately. However, depending on the relations between the require-
ments and the used managerial steering mechanisms, a combination of the
presented models can be applied.

2.1 Development by one pool of developers

In the first variant we only deal with the total amount of man days available
in the company. We denote our planning period by T and define d(T) as the
number of working days in the planning period. Moreover, let Q be the number
of persons working in the development teams of the company. The available
capacity then equals d(T)Q man days.

Moreover, we have an estimate aj of the amount of man days needed for the

5

implementation of requirement Rj. Such estimates could come from project
managers (top-down) as well as developers (bottom-up). We model the re-
quirements selection problem in terms of binary variables xj (j = 1, . . . , n),
where

xj =

 1 if requirement Rj is selected;

0 otherwise.

The problem can be modeled as an integer linear programming problem in the
following way:

max
n∑

j=1

vjxj

subject to

n∑
j=1

ajxj ≤ d(T)Q, (1)

xj ∈ {0, 1}, for j = 1, . . . , n.

This problem is known as the binary knapsack problem (see in general Martello
and Toth (1990), and specifically Jung (1998) for its requirements analysis
application). If the company decides that some of the requirements have to
be included in the new release in any case, this can be achieved by fixing the
corresponding variables xj at 1, i.e. adding the equation xj = 1 to the above
model. If the number of working days in the planning period is different for
different persons the total capacity is given by

∑
dp(T), where dp(T) is the

number of working days of person p in period T and the sum is over all persons
in the company.

We realize that the determination of values for revenues of requirements can
be hard. Various factors may influence these values. A revenue value can be
tangible (like estimated return on investment) or even intangible (like user
satisfaction; see for example Murphy and Simon (2001), regarding a discus-
sion on intangible benefits for ERP implementation). We recognize two main
categories of revenue value calculation: absolute value determination, and rela-
tive value determination. In absolute revenue value calculation e.g. the product
manager of a company developing standard software products could determine
an estimated value for the absolute revenue. In the former position of product
manager, one of the authors of this paper wrote a business case for trigger-
ing the development of a new product software release, taking into account
estimated sales of the new release, and drilling down to determine estimated
values for each of the new to build requirements. Note that intangible values
(like user satisfaction) were not made explicit. As for relative revenue value cal-
culation, Karlsson and Ryan (1997) provide a useful approach: through AHP
a relative value for the revenue per candidate requirement can be determined.
Using AHP, each requirement can be assigned a value between for example
0-100. Ruhe and Saliu (2005) use stakeholders’ opinions to determine the rel-

6

ative importance of requirements. In further finetuning they assign different
levels of importance to stakeholders, and consequently their opinions of values
for importance. The overall relative revenue for a particular requirement is
subsequently calculated taking into account the assigned importance values
(by the stakeholders) and the relative importance of each of the stakeholders
individually.

Like with determining the revenue values, also the determination of values
for costs can be difficult to calculate. At the software vendor two of the au-
thors worked for in the past, the process was as follows. The product manager
inserted the requirement in the requirements database, and determined the
software modules for which the requirement had consequences (which mod-
ules needed to be updated for this requirement). The product architect(s)
determined the workload per module using input from product/module con-
sultants and software engineers. In many cases, to make the resource need
more clear, conceptual solutions were written, detailing the requirement in a
business context, and showing relations to other modules. In general top down
resource calculation and bottom up resource calculation may provide a useful
estimation for the costs in many software companies.

2.2 Development teams

In the previous model, there was only one pool software developers. Usually
there are different development teams within a software company, each having
their own specialization. So the above model may be too optimistic, since it
did not take the individual team capacities into account.

Let m be the number of teams and suppose team Gi (i = 1, . . . ,m) consists
of Qi persons. We assume that the implementation of requirement Rj needs
a given amount aij of man days from team Gi (i = 1, . . . ,m). Now the team
capacities can be included by replacing constraint (1) by:

n∑
j=1

aijxj ≤ d(T)Qi, for i = 1, . . . ,m. (2)

Note that for m = 1, this coincides with the model for one pool of developers.
This problem is known as the binary m-dimensional knapsack problem (see
Crescenzi and Kann). Clearly, the model can be adapted to the situation with
different amounts of man hours per person.

7

2.3 Team transfers

By allowing people to work in a different team, there is more flexibility which
can increase revenue. We call this transfers. For an individual person a transfer
will probably result in a decrease of efficiency because the person has less
experience with working in another team. We assume that if a person from
team Gi works in another team Gk his contribution in terms of man days is
multiplied by αik , i.e. if the person works one day this contributes only αik day
to the work delivered by team Gk. Sometimes, transfers are not possible for
all combinations of teams. For example a company with development teams
in different locations may only transfer people within a location. We can use
the factor αik to reflect the feasibility of a transfer as follows:

• αik = 0 if a transfer from Gi to Gk is infeasible, for example because the
specializations of the teams differ too much or because of the traveling
distance between the locations of the teams.

• αik = 1 if a person from team Gi can do the work from team Gk without
any additional effort e.g. if the work in Gi and Gk is very similar

• 0 < αik < 1 otherwise.

Note that αik may be different from αki, for example if the work in teams Gi

and Gk is in similar areas, but the work in Gi is more complicated than that
in Gk. Then αik is considerably larger than αki.

We assume that the amount of time for which a person can be transferred is
a multiple of the so-called capacity unit which is denoted by Ucap. If people
can be transferred per day then Ucap will just be 1. The other extreme is that
only full-time transfers are allowed. Then Ucap corresponds to the complete
planning period, i.e., Ucap = d(T). If people can only be transferred for (a
number of) complete weeks then Ucap will be equal to 5.

Besides the variables xj, we now define the variables yik as the number of
capacity units from team Gi deployed in team Gk. Let mi be the number of
capacity units in team Gi. Then

mi =
d(T)

Ucap

Qi.

Including transfers results in the following model:

max
n∑

j=1

vjxj

8

subject to

n∑
j=1

aijxj ≤ Ucap[yii +
∑

k:k 6=i

αkiyki] for , i = 1, . . . ,m, (3)

m∑
k=1

yik = mi, for i = 1, . . . ,m, (4)

xj ∈ {0, 1}, for j = 1, . . . , n,

yik nonnegative and integral, for j = 1, . . . , n.

Inequality (3) states that the work of team Gi on the selected requirements is
at most the capacity delivered by people working in their own team plus the
capacity obtained from people outside the team. Equation (4) ensures that the
number of persons from team Gi working in the different teams exactly equals
the team size Qi, i.e. nobody gets lost. The above model is a modification and
extension of the model from Section 2.2. Clearly, transfers are not applicable
with one pool of developers so we must have m > 1.

Note that if only full-time transfers are allowed, then yik is just the number
of persons from team Gi working in team Gk. By deleting the integrality
constraints on the variables yik persons can get any fractional division over
teams. Observe that in the above model it is possible that for example 2
persons are transferred from team A to team B and 1 person from team B to
team C, i.e. team B is extended by transfers and sends persons to other teams
simultaneously. Since each transfer decreases total capacity, this situation is
inefficient and will not occur very often. However, we can prevent this by an
extension of the model which includes binary variables indicating whether a
team is extended by transfers or sends transfers to others. This extension is
omitted for reasons of brevity.

2.4 External resources or deadline extensions

To increase the capacity for the development of the next release, the company
may consider to hire external personnel in some of the development teams.
Clearly, this brings a certain cost. In our model, this can be included by adding
the external capacity to the right-hand side of constraints (2) and including
the cost in the revenue function. For simplicity, we assume that the cost of
external capacity are linear in the number of man days. We define qi as the
unit cost of hiring external capacity in team Gi, i.e., if ui is the amount of
additional man days hired in team Gi, then the cost are qiui. The value of
qi depends on the team specialization. Similar to the case of transfers, we
assume that the contribution of ui external man days is given by αeiui, where
0 < αei < 1. Finally, we assume that there is a maximum available budget for
external capacity; this budget is denoted by E. This results in the following

9

model which is an extension of the model from Section 2.2:

max
n∑

j=1

vjxj −
m∑

i=1

qiui

subject to

n∑
j=1

aijxj ≤ d(T)Qi + αeiui, for i = 1, . . . ,m, (5)

m∑
i=1

qiui ≤ E (6)

ui nonnegative and integral, for i = 1, . . . ,m,

xj ∈ {0, 1}, for j = 1, . . . , n.

Clearly, this extension also applies to the case with one pool of developers.

Another possibility is postponing the delivery date for the new release. Sup-
pose the delivery date is postponed by δT working days, and that the estimated
cost are C per day. This can be included in a similar way. Now, δT is a (integer)
variable in the integer linear program, the revenue function is

∑n
j=1 vjxj−CδT

and the right-hand side of inequality (5) is changed into (d(T) + δT)Qi.

2.5 Requirement dependencies

Until now we assumed that all requirements can be implemented indepen-
dently. One of the few papers that addresses mutual dependency of require-
ments in release planning is from Carlshamre (2002). Based on the referred
paper we identified five types of requirement dependencies: 1) Implication, 2)
Combination, 3) Exclusion, 4) Revenue-based, and 5) Cost-based. The first
three deal with functional dependencies: requirement Rj can only be imple-
mented if requirement Rk is also implemented, requirement Rj only makes
sense together with requirement Rk, and requirement Rj cannot be imple-
mented in combination with requirement Rk, respectively. Revenue-based de-
pendencies occur when combinations of requirements increase or decrease the
revenue value. Finally, cost-based dependencies apply in case combinations of
requirements increase or decrease the needed amount of resources. We will
model the five types subsequently.

1) Implication
If we select requirement Rj we also have to select Rk. In the model, we have
to ensure that

xj = 1 ⇒ xk = 1.

10

This can be done by extending our model with the linear inequality

xj ≤ xk. (7)

2) Combination
If two requirements Rj and Rk are dependent in the sense that they cannot
be implemented separately from each other, this can be dealt with by consid-
ering them as one requirement. However, if the company wants to treat the
requirements separately we include this type of dependency by extending our
model with the equation

xj = xk. (8)

3) Exclusion
This type of dependency excludes a combination of requirements. If Rj and
Rk cannot both be selected this can be modelled by the inequality

xj + xk ≤ 1. (9)

4) Revenue-based
A typical example is when two requirements together provide a ‘package’ in
some area within the software product such as procurement within an ERP
package. For instance: the ability to purchase order non-production goods
(requirement 1), and a workflow approval engine for purchase ordering (re-
quirement 2); the first has especially value when there is workflow supporting
the non-production goods ordering.

Let Rj and Rk be a pair of complementing requirements. Since it is possible the
Rj influences the revenue of Rk and vice versa, we choose to model these effects
by one number wjk denoting the additional revenue if both requirements are
selected. We can include this type of revenue in the model by using a binary
variable xjk, which equals 1 if the Rj and Rk are both selected and 0 otherwise.
The revenue that we want to maximize is then equal to

n∑
j=1

vjxj +
∑

(j,k)∈C

wjkxjk,

where C is the set of pairs of complementing requirements. To ensure that the
variable xjk will only be equal to 1 if both the variables xj and xk are equal
to 1 we have to add the following constraint:

2xjk ≤ xj + xk. (10)

The above can be generalized to the situation with larger sets of requirements
that form a package, in case the additional revenue is only obtained if the

11

complete package is selected. If part of the additional revenue is already ob-
tained when a subset of the package is implemented, the model becomes much
more complex a.o. because we would have to define variables for all subsets.
If the packages are not disjoint, the additional revenue might be reduced if
two ‘overlapping’ packages are selected, which again complicates the model.
We consider this is outside the scope of the paper and assume that the set C
defined above consists if disjoint pairs.

The revenue effect of combinations of requirements can also be negative. This
is the case when two requirements have some overlap such as for example a
paper user manual and an on-line help functionality. Let Rj and Rk be a pair
of overlapping requirements. We again use the number wjk, but it now has a
negative value. Similar to the previous case, xjk indicates if Rj and Rk are
both selected and the term

wjkxjk

has to be added to the revenue function. Observe that in case of additional
revenues the revenue function drives xjk to 1 if possible. Therefore, we posed
an upper bound on xjk to make sure that it only gets equal to 1 when Rj and
Rk are both selected. When we are dealing with additional cost, the revenue
function drives xjk to 0 if possible. Now we use a lower bound on xjk to force
it to be 1 when Rj and Rk are selected. We add the constraint:

xjk ≥ xj + xk − 1. (11)

5) Cost-based
The last type of dependency concerns the fact the requirements can influence
each others cost. For example, if all the output has to fit a 800*600-pixels
screen, this may have a strong impact on a number of requirements. We model
this by defining the number ai,j→k as the amount of additional work in team
Gi on requirement Rk and induced by requirement Rj. Unlike the previous
case, we explicitly model which requirement influences the workload of which
other requirement, since this information is very useful for the planning of the
work in the teams. We again define a binary variable xjk indicating if Rj and
Rk are both selected. We now can include the additional work by changing
constraint (2) into

n∑
j=1

aijxj +
∑

(j,k)∈A

ai,j→kxjk ≤ d(T)Qi, for i = 1, . . . ,m, (12)

where A is the set of pairs of requirements (j, k) such that Rj influences the
amount of work to implement Rk. To make sure that xjk gets equals to 1 if
Rj and Rk are selected we have to add constraint (11).

Clearly, implementing some requirement Rj may also make the implemen-
tation of Rk less time-consuming. This can also be modelled by the numbers

12

ai,j→k but these numbers now take a negative value. However, since setting xjk

to 1 is now favorable for the capacity constraints, we now have to use constraint
(10) to make xjk behave correctly. Suppose that two different requirements R1

and R2 both increase the amount of work of R3. If in the implementation of R3

we have to deal with issues induced by R1 and by R2, the additional work may
be less than the sum of the amounts of work induced by R1 and R2 separately.
Since such combination effects strongly complicate the model, we assume that
the pairs in A are disjoint. The only possible exception is that if (j, k) ∈ A
then (k, j) may also be in A.

3 Experimentation

To obtain a proof-of-concept we implemented a prototype of a requirements
selection system. Besides the computation of a requirement selection for a
given optimization model, the prototype allows the user to generate alternative
selections by fixing certain requirements beforehand. For testing the models we
used two different ILP software packages. The first package we used to solve the
models is the Solver included in Microsoft Excel (professional version). This
solver suffices for problems of small size, but as soon as the problems become
bigger in the number of variables (for example by means of introducing transfer
variables) Solver will notify that it is not able to solve the problem because the
number of variables is just too big. To be able to also solve the larger problems
a Java program was implemented. This prototype has a graphical interface
and makes use of the callable library of ILOG CPLEX (see Cplex (2005))
for solving the ILP problems. CPLEX is one of the best known packages for
integer linear programming.

3.1 One pool, different teams, and team transfers

For testing the program different types of data sets were used. The different
types were:

• small: 9 requirements and 3 development teams.
• AA, BB, and CC: 24 requirements and 17 teams. Ratio of available and

total required capacity approximately 50, 60 and 70 percent, respectively.
• master: 99 requirements and 17 teams.

All of the used data sets are available online 2 for research purposes.

2 http://www.cs.uu.nl/˜diepen/ReqMan

13

Data Pool Teams Ucap = 10 Ucap = 5 Ucap = 1

small 182 147 177 182 182

AA 700 510 620 685 685

BB 810 570 765 785 790

CC 835 670 765 805 810

master 46220 42730 44760∗ 44800 44810∗

Table 2
Solution values for the three types of data sets

The Small data set consists of fictitious data already provided in Table 1. The
AA, BB, CC and Master data sets were generated from larger real life data
sets. All team values were kept the same, but team capacities and revenues
were randomly generated and afterwards some were edited to create more
interesting problems. For confidentiality reasons it is not possible to expose
the real data to the general public.

While no transfers between the teams were allowed all of the above problems
(associated with the three types of data sets) were still solvable by the Solver
in Microsoft Excel. As soon as team transfers were allowed, the number of
variables in each of the problems, except for the small problem, became too
big for this solver and we had to use CPLEX to solve these problems.

For the largest problem even CPLEX has some difficulties, because of the large
number of variables it takes CPLEX too much time to solve the problem to
full optimality. However, in these cases the solution that the CPLEX solver
has found, has a maximum error with regards to the optimal solution that is
very small.

Table 2 presents the solution values, i.e., revenues for the computed require-
ments selection, for the different problems that were tested. The second column
corresponds to the model introduced in Section 2.1 where there is just one big
pool of resources. The third column corresponds to the model with teams
but without transfers between the teams, introduced in Section 2.2. The last
three columns correspond to the model introduced in Section 2.3 and each of
the three columns corresponds to a different transfer unit. For the last three
columns αik = 0.7 for all i 6= k was used.

The problems marked with a ∗ are the problems where the solving process was
stopped after a certain time because CPLEX needed too much time to solve
the problem to full optimality. The maximum error of the solution returned
by CPLEX after being stopped with regards to the optimum was somewhere
in the range between 0.01% and 0.04% for our problems, which indicates that

14

Data Ratio rule ILP optimum pool

small 182 182

AA 655 700

BB 805 810

CC 835 835

master 45290 46220

Table 3
Comparison between the ratio rule and optimal solution

the solutions are near-optimal.

Without mathematical optimization the product manager might use an intu-
itive rule for selecting requirements. A well-known approach for the problem
with one pool of developers is to select the requirements in decreasing order
of the ratio of the revenue vj and the workload aj. To get an idea of the differ-
ence between solutions obtained by such an intuitive approach and optimizing
by integer linear programming, we compared the total revenue from both ap-
proaches for the different data sets. Table 3 shows that especially for larger
data sets, the possible gain can be significant. If more teams are involved
and possibly some steering mechanisms are included it is harder to have a
good overview of the problem data, and hence intuitive optimization by hand
becomes very difficult.

3.2 Perturbations and what-if analysis

To test the stability of a solution found by the ILP-solver we added random
perturbation to the revenue input of some of the requirements. We choose
to add the perturbation to the revenue since this is the component that is
often the most difficult to determine. From the original master -problem with
Ucap = 10 we created 1000 instances each having on average 10% of the
requirements with perturbations of maximally +/−10, +/−20, and +/−30.
When we look at the solutions found for these perturbated instances we see
that only in 5 cases the set of selected requirements differ from the original set
of selected requirements. When looking at the difference, this is very little: the
majority of the selected requirements in the original solution is also selected
in the solution for the perturbated problem.

Furthermore, we also looked at the effect of extending the deadline or hiring
external resources to the total revenue of the selected requirements for the
master -problem with Ucap = 10. The pattern we see when extending the

15

deadline is that at first the extension only increases the cost since it does
not provide enough capacity to implement a better set of requirements. Only
after the deadline is extended sufficiently, enough of capacity is available to
implement a better set of requirements, and thus the objective value will
increase. After that, extending the deadline even further will also first decrease
the objective until there is enough of capacity available to implement an even
better set of requirements.

In this way we obtain so-called jump points which are in fact the only in-
teresting options. In Figure 1 we plotted the the total revenue against the

 44200

 44400

 44600

 44800

 45000

 45200

 45400

 45600

 0 5 10 15 20 25 30

Relative low cost for deadline extension
Relative high cost for deadline extension

Fig. 1. Total revenue plotted against the number of days deadline is extended

number of days the deadline is extended for two different extension costs. The
upper line shows that if the cost of extending the deadline is relatively low,
the consecutive jump points have increasing revenues. One may expect that
after some time the jump points will start to decrease and will not provide any
interesting options anymore. The lower line shows that if the cost of extend-
ing the deadline are relatively high, the jump points will be decreasing from
the beginning, which indicates that a deadline extension is not interesting.
This implies that there is a certain threshold (maximum extensions costs) for
applying deadline extension in order to be reasonable.

We also tested the effect of adding the possibility of hiring external resources
at various costs per unit of hiring. Since in this situation extra resources are
only hired if they are really used for implementing requirements we expect
the results to differ from the results of extending the deadline because no
extra resources will be hired as long as the gained capacity does not allow
for selecting another requirement. This means that in theory the objective
function is non-decreasing. In practice however, the resulting ILP’s turned

16

out to be quite difficult to solve to optimality, which means that we had to
deal with gaps up to 0.23% from the optimal solutions. This explains the small
decreases found in Figure 2. As we may expect, Figure 2 indicates that the
increase in revenue becomes smaller as more budget for external resources is
available and eventually becomes 0.

 44760

 44780

 44800

 44820

 44840

 44860

 44880

 44900

 44920

 44940

 0 20 40 60 80 100 120

Total revenue

Fig. 2. Total revenue plotted against budget for external resources

3.3 Prototype tool

Screenshots of the Java-prototype based on CPLEX showing a specific run
(based on a ’small’ type of data set) can be seen in Figure 3 and Figure 4.

Fig. 3. Screenshot of prototype before solving

Figure 3 shows the program just after it has started while the user has fixed
the fifth requirement which means that this requirement must be selected

17

Fig. 4. Screenshot of prototype after solving

in the solution. The user can change the first column to select requirements
that must be in the solution and in this way generate alternative solutions.
The other columns are either data or results of the computation. Note that,
although not indicated in Figure 3, also the team transfer steering mechanism
is enabled.

Figure 4 shows the program after the situation of the first figure is solved. The
program shows the requirements that are selected in the solution by showing a
check in the third column and in this figure it can be seen that the fixed fifth
requirement is indeed selected in the solution. The fourth and fifth column
show what the revenue of each requirement is and how many total man days
are required to implement each requirement. The remainder of the columns
show for each of the requirements the total amount of work per team that is
needed to implement it, and how much additional work would still be needed
besides the already available (unused) capacity from each of the teams to still
implement this requirement in case a requirement is not selected in the current
solution.

In the text-area the user is presented with additional information about the to-
tal revenue, the total amount of available man days, the total needed available
man days and the capacity per team that is still left. Furthermore information
is given about the αik parameters and how much capacity is lost because of
transferring people between the teams.

4 Conclusion and Future Research

In this paper, we have presented a mathematical formalization of flexible re-
lease planning, using integer linear programming models and methods. We
defined unique aspects and managerial steering mechanisms as input for our
framework, modelling one pool of developers as well as different development

18

teams, allowing team transfers, considering dependent requirements including
additional revenues for packages of requirements, hiring external capacity, and
extending the deadline. A large body of knowledge available for formalizing
and solving ILP models can now be used to reason about release planning,
and offers possibility to extend even further with additional aspects or mecha-
nisms. With the results of experiments on real-life data we are confident that
our tool is of practical value for product managers and development project
managers. However, obviously more experimentation is needed.

We found that, despite (controlled and limited) revenue estimation perturba-
tions, for large sets of requirements the resulting output does not differ too
much. This encourages us that the model is useful even when (revenue) input
is not fully correct. More research needs to further confirm this.

We assume that all team members start at the same date, and that all de-
velopers have the same productivity. A next step is to extend the model with
issues regarding different team members, by adapting the team capacities in
the right way. Furthermore, the combination of steering mechanisms needs to
be worked out further and tested in the tool. Moreover, we intend to consider
more detailed models for requirements selection which results in more flexi-
bility for the product manager. One extension is to make a planning for each
person as part of a planning of complete teams. Another important extension
is to schedule activities explicitly in time. This allows for example to take
planning periods for different teams and persons into account, such as holiday
season or temporal unavailability due to other projects.

Note that our approach supports the release planning for a fixed given time pe-
riod. In practice the revenue value of requirements may evolve over time, as the
release is being developed in a changing market; during release development
the dynamics of the project workload turns out to be either overestimated or
underestimated. When activities are scheduled in time replanning can be used
to deal with these changes. This is a further extension of our current approach.

We further plan to test the validity of our model through multiple business
cases. In such cases an appropriate approach is to use our model for release
planning on the one hand, and compare its outcome with the company’s pro-
prietary way of release planning.

Acknowledgements

The authors wish to thank the organizers of the workshop REFSQ’05 and
anonymous reviewers for their valuable comments on an earlier version of this
paper.

19

References

van den Akker, J.M., Brinkkemper S., Diepen G. and Versendaal, J. (2005).
Determination of the Next Release of a Software Product: an Approach
using Integer Linear Programming. Proceeding of the 11th International
Workshop on Requirements Engineering: Foundation for Software Quality
REFSQ’05, eds. Erik Kamsties, Vincenzo Gervasi, and Pete Sawyer, Band
10, pp 247-262.

van den Akker, J.M., C.P.M. van Hoesel, and M.W.P. Savelsbergh (1999). A
polyhedral approach to single-machine scheduling problems. Mathematical
Programming 85, 541-572.

van den Akker, J.M., J.A. Hoogeveen, and S.L. van de Velde (1999). Parallel
machine scheduling by column generation. Operations Research, Vol. 47, No.
6, 862-872.

van den Akker, J.M. and J.A. Hoogeveen (2004A). Minimizing the number
of tardy jobs. In J. Y.-T Leung (ed.), Handbook of Scheduling: Algorithms,
Models and Performance Analysis, pp. 227-243, CRC Press, Inc. Boca Ra-
ton, Fl, USA.

van den Akker, J.M. and J.A. Hoogeveen (2004B). Minimizing the number
of late jobs in case of stochastic processing times with minimum success
probabilities. To appear in Journal of Scheduling.

Berander, P. and Andrews, A. (2005), Requirements Prioritization. In: En-
gineering and Managing Software Requirements, A. Aurum and C. Wohlin
(eds.), Berlin, Germany, Springer Verlag (Forthcoming).

Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag, J.,
(2001), An Industrial Survey of Requirements Interdependencies in Software
Product Release Planning, Proceedings of the Fifth International Sympo-
sium on Requirements Engineering (RE’01).

Carlshamre, P. (2002), Release Planning in Market-Driven Software Prod-
uct Development: Provoking an Understanding, Requirements Engineering,
Volume 7, Issue 3, Sep 2002, Pages 139 - 151

Central Computer and Telecommunication Agency (CCTA) (2001), Managing
Successful Projects with PRINCE2 , Eleventh impression.

ILOG CPLEX, http://www.ilog.com/products/cplex.
Crescenzi P. and V. Kann, eds. A compendium of NP optimization problem.

http://www.nada.kth.se/ viggo/wwwcompendium/wwwcompendium.html
Firesmith, D. (2004), Prioritizing Requirements, Journal of Object Technology,

vol 3, no 8, September-October 2004, pp 35-47.
Höst, M., Regnell, B., Natt och Dag, J., Nedstam, J., Nyberg, C. (2001), Ex-

ploring Bottlenecks in Market-Driven Requirements Management Processes
with Discrete Event Simulation, Journal of Systems and Software, vol 59,
pp 323-332.

Jung, H.-W. (1998), Optimizing Value and Cost in Requirements Analysis,
IEEE Software, July/August 1998 pp 74-78.

Karlsson, J. and Ryan, K. (1997), A Cost-Value Approach for Prioritizing

20

Requirements, IEEE Software, September/October 1997 pp 67-74.
Leffingwell, D., and Widrig, D. (2000), Managing Software Requirements - A

Unified Approach, Addison-Wesley, Upper Saddle River, NJ.
S. Martello and P. Toth. (1990) Knapsack Problems: Algorithms and Com-

puter Implementations Wiley-Interscience Series In Discrete Mathematics
and Optimization.

Murphy, K.E., and Simon, S.J., (2001), Using cost benefit analysis for enter-
prise resource planning project evaluation: A case for including intangibles,
Proceedings of the 34th Hawaii International Conference on System Sci-
ences.

Natt och Dag, J., Gervasi, V., Brinkkemper, S. and Regnell, B. (2005), A Lin-
guistic Engineering Approach to Large-Scale Requirements Management,
IEEE Software, Special Issue on Requirements Engineering, vol 22, no 1, pp
32-39, January/February 2005.

Natt och Dag, J., Gervasi, V., Brinkkemper, S. and Regnell, B. (2004), Speed-
ing up Requirements Management in a Product Software Company: Linking
Customer Wishes to Product Requirements through Linguistic Engineering.
In: Proceedings of the 12th International Requirements Engineering Confer-
ence, N.A.M. Maiden (Ed.), IEEE Computer Science Press, pp 283-294,
September 2004.

Nelson, B. (2005), Who Needs Product Management?
www.productmarketing.com, vol 3, no 2, pp 12-15, March/April 2005.

Potts, C. (1995), Invented Requirements and Imagined Customers: Require-
ments Engineering for Off-the-Shelf Software, Proceedings of the Second
IEEE International Symposium on Requirements Engineering (RE’95), pp.
128-30.

Regnell, B., Karlsson, L. and Höst, M. (2003), An Analytical Model for Re-
quirements Selection Quality Evaluation Evaluation in Product Software
Development, Proceedings of the 11th International Requirements Engineer-
ing Conference, IEEE Computer Science Press, pp 254-263.

Regnell, B. and Brinkkemper, S. (2005), Market-Driven Requirements En-
gineering for Software Products. In: Engineering and Managing Software
Requirements, A. Aurum and C. Wohlin (eds.), Berlin, Germany, Springer
Verlag pp. 287-308.

Regnell, B., Höst, M., Natt och Dag, J., Beremark, P., Hjelm, T. (2001), An
Industrial Case Study on Distributed Prioritization in Market-Driven Re-
quirements Engineering for Packaged Software, Requirements Engineering,
vol 6, no 1, pp 51-62.

Ruhe, G., Saliu, M.O. (2005), The Art and Science of Software Release Plan-
ning, IEEE Software, vol 22, no 6, November/December 2005, pp. 47-53.

Ruhe, G., Eberlein, A., Pfahl, D. (2003), Trade-off Analysis for Requirements
Selection, International Journal of Software Engineering and Knowledge
Engineering, vol 13, no 4, pp 345-366.

Saaty, T.L. (1980), The Analytic Hierarchy Process, McGraw-Hill, New York,
NY.

21

Wolsey L.A. (1998) Integer programming Wiley-Interscience Series In Discrete
Mathematics and Optimization.

A Solving integer linear programming problems

For the sake of completeness, we elaborate in this appendix on the general
solution method of integer linear programming problems and the fact that even
if the problem is not fully solved to optimality a near-optimal solution may be
available. The described method is used in most integer linear programming
(ILP) software packages. For more background information, the interested
reader is referred to Wolsey (1998).

All the problems formulated in this paper are NP-hard. In general, integer
linear programming problems are NP-hard. This implies that it is very unlikely
that there exists an algorithm that is guaranteed to find the optimal solution
in a time that is polynomial in the input size. Finding the optimal solution
requires an amount of time which in the worst case grows exponentially with
the problem size.

If in a given ILP we relax the integrality conditions, i.e., ‘x integral’ is replaced
by x ≥ 0 and x ∈ {0, 1} by 0 ≤ x ≤ 1, we obtain a linear program which is
called the LP-relaxation. This problem can easily be solved by e.g. the simplex
method. In case of a maximization problem, the LP-relaxation provides an
upper bound on the optimal value of the ILP.

The first step to solve an ILP is always to solve the LP-relaxation. If the
solution of the LP-relaxation is integral, we are done. Otherwise, we start
with a branch-and-bound tree. The ILP is split into two or more subproblems
corresponding to two or more nodes of a tree, for example by fixing a variable
xj to 0 in one node, i.e. omit requirement Rj in the release, and to 1 in
the other node, i.e. select requirement Rj in the new release. (This is the
branching part). The algorithm starts evaluating one of the nodes. First the
LP-relaxation in the node is solved. If the solution is integral, the node is
finished and the best-known integral solution is updated, if necessary. If the
LP-relaxation is infeasible, clearly the node is finished as well. If the values
of the LP-relaxation is lower than the best known integral solution, the node
can be skipped from further consideration since we have no hope of finding
the optimal solution there. (This is the bounding part). Otherwise, new nodes
are generated by branching, i.e. by selecting or omitting another requirement.

Since we maintain the best known integral solution and we have an upper
bound from the LP-relaxation, we have a solution with a quality guarantee
from the moment at which an integral solution is found. This allows us to stop

22

if the solution is guaranteed to be within a certain margin from the optimum.
This can be beneficial, because it occurs quite often that the optimal solution
is found quickly and it takes a lot of time to prove that the solution is indeed
optimal.

We are aware that with the application of ILP in the domain of release plan-
ning one of the key issues in finding a best set of requirements for development
is the determination of revenues and costs.

23

