A column generation approach for examination
timetabling

Roel Wijgers

Han Hoogeveen

Department of Information and Computing Sciences,
Utrecht University

Technical Report UU-CS-2007-001

www.cs.uu.nl

ISSN: 0924-3275

A column generation approach for examination
timetabling

R. Wijgers J.A. Hoogeveen *
Department of Information and Computing Sciences
Utrecht University

P.O. Box 80089, 3508 TB Utrecht, The Netherlands.
rwijgers@cs.uu.nl, slam@cs.uu.nl

December 22, 2006

Abstract

In examination timetabling we have to assign the exams of a given set of courses to
time slots, such that conflicting exams are assigned to different time slots. We study
the problem that occurs at our department. The characteristics of this problem are
as follows. The exams have to take place in 5 days, and per day there are 2 time slots.
Teachers can express their preferences for the time slots. The exams preferably take
place in the small rooms, but there are some bigger rooms available as well; since
these big rooms are used by other departments as well, using these is not encouraged.
Finally, we try to avoid students having two exams on one day as much as possible.

Many authors have presented a number of approaches for solving a myriad of
variants of the examination timetabling problem, but remarkably enough column
generation seems to have been ignored. We apply column generation to solve several
variants of our problem. The pricing problem boils down to a complicated weighted
independent set problem, which we solve by a branch-and-bound algorithm. In this
way we find very good solutions in a matter of seconds. We further indicate situations
in which column generation is applicable.

1980 Mathematics Subject Classification (Revision 1991): 90B35.
Keywords and Phrases: examination timetabling, column generation.

*Supported by BSIK grant 03018 (BRICKS: Basic Research in Informatics for Creating the Knowledge
Society)

1 Introduction

In examination timetabling, we have to schedule a given set of exams, such that no student
has two exams at the same time. We assume that the set of available time slots is given,
but there are many applications in which the optimal set of time slots have to be found.
Some further (soft) constraints concern the availability of rooms, time slot preferences, and
student comfort.

Examination timetabling is an important problem in any educational institution. The
quality of a solution is of great importance to a number of parties including lecturers,
students, and administrators. Many variants of the problem have been studied since the
seventies; we refer to Qu, Burke, McCollum, Merlot, and Lee (2006) for a detailed survey
of the automated approaches for examination timetabling presented in the past decade.
Strangely enough, column generation has not been used, except for the variant of the
problem in which the number of time slots has to be minimized. This problem boils
down to a graph coloring problem, for which Mehrotra and Trick (1997) present a column
generation approach to find an optimal solution.

In this paper we look at the potential of column generation. We use it to find near-
optimal solutions for several variants of the examination timetabling problem that we
encountered at our department. We describe the problem in Section 2. In Section 3,
we look at the problem of minimizing the number of time slots that we need to allow
a feasible solution. We show how it can be solved by applying column generation. In
Section 4, we show how we can use the knowledge obtained in Section 3 to deal with the
problem of our department, in which the time slots are given and in which we face some
additional constraints. In Section 5, we present our results, and in Section 6 we present
our conclusions and point out directions for future research.

2 Problem description

We are given a set of exams E = {ey, g, ..., €, }, where we know for each exam the students
who have to follow it. Hence, we can compute for each pair of exams the overlap. There are
two major variants in exam timetabling, depending on whether the available time slots are
given. In our case, the time slots are given: the exams take place on five consecutive days,
and there are two time slots per day. Nonetheless, we first consider the variant in which
we minimize the number of time slots that are needed such that a conflict-free solution is
possible, since this gives us insight into the difficulty of the problem. As this minimum
turns out to be smaller than the number of available time slots, we require in the remainder
that no two conflicting exams are assigned to the same time slot. We then take the rooms
into account. Each exam has to take place in one room, but it is possible to have several
exams in the same room. For each time slot we have a given set of small rooms available,
which we can use as we wish. Furthermore, there are three big rooms available, which we
want to use as few times as possible. Hence, we put a term in the objective function to
minimize the number of times we use a big room; this term can be refined, for instance, to

model the effect that we prefer not to use all three big rooms at the same time. Next, there
are some lecturer’s preferences concerning the time slot. Since these can be met without a
large additional cost, we consider these as hard constraints. Finally, we want to avoid as
much as possible that students have two exams at one day. It follows from the outcome
of the problem of minimizing the number of time slots that there is no solution possible in
which no student has two exams per day. Hence, we treat it as a soft constraint, and we
include the number of students with two exams on one day in the objective function.

Summarizing, our final problem is that we are looking for a conflict-free solution in
which all lecturers’ requests are met and in which a weigthed combination of the usage of
the big rooms and the number of students with two exams per day is minimized.

3 Minimizing the number of time slots

In this section, we assume that we have to find a conflict-free solution that uses as few time
slots as possible; there are no constraints concerning the rooms and lecturers’ availability.
The problem boils down to partitioning the exams in a minimum number of subsets, where
each subset contains non-conflicting exams only. From now on, we call such a subset a
time slot schedule. Suppose that the set S containing all conflict-free time slot schedules
is known. We use decision variables z; € {0,1} (j € S) to indicate whether time slot
schedule s; is used (x; = 1) or not (z; = 0). To describe time slot schedule s;, we use

1 ifexame; (i =1,...,n) is contained in sj,
aij = .
0 otherwise

We can then formulate our problem as an ILP as follows

s
min Y _ z; subject to (1)
=1
s
Zaijxj > 1 izl,...,n (2)
=1
z; € {0,1} j=1,..,8 (3)

We use a > in constraint (2) instead of an = sign for computational reasons; an exam that
occurs twice in a solution can be assigned to one of the time slot schedules arbitrarily. As
it is impossible to enumerate all feasible time slot schedules, we use a column generation
approach to generate a subset of S that hopefully contains the ones that are needed to find
an optimal solution.

3.1 Column generation

We solve the LP-relaxation by column generation and store the columns that are generated.
The LP-relaxation is obtained by relaxing constraint (3) to x; > 0 (5 € S); we do not need
to enforce x; < 1, since a solution with z; > 1 is clearly non-optimal.

3

Figure 1: Student constraint graph

As a start, we need to find a valid solution. This is easy: simply generate a time slot
schedule for each exam. After we have solved the LP-relaxation for a given set of columns,
we find a dual multiplier 7; for the constraint (2) corresponding to exam i. Therefore, the
reduced cost for a time slot schedule j is equal to

n
1-— Z Q5 T0; -
=1

It is well-known from the theory of linear programming that we have solved the LP-
relaxation to optimality if the reduced cost of each time slot schedule is greater than or
equal to zero. Hence, we must solve the pricing problem, which in this case boils down to
computing a feasible time slot schedule with minimum reduced cost. If this reduced cost
is non-negative, then we are done, and we add the time slot schedule to the LP-relaxation,
otherwise. Hence, we have to maximize >;"; a;;m; over all time slot schedules j € S.

3.2 Solving the pricing problem

Since a time slot schedule is feasible if there is no overlap between any pair of the included
exams, we can solve this problem as the problem of finding an independent set of maximum
weight. Hereto, we construct the graph G = (V, E), which we call the student constraint
graph. We have a node v; for each exam e; (i = 1,...,n), and we put an edge between two
nodes v; and v; whenever exams e; and e; have students in common. If we include vertex v;
in the independent set, then we get a reward of m; (i = 1,...,n). An example is depicted
in Figure 1. Here the weights m; are put inside the vertices. The maximum weighted
independent set is marked in gray. The maximal weighted independent set problem is N'P-
hard in the strong sense, and therefore, we solve it through a branch-and-bound algorithm.
We build the branch-and-bound tree by branching on the decision of including an exam in

4

the current independent set or leaving it out. In each node in the branch-and-bound tree
we maintain the following information:

e A partial column containing the exams included so far.
e The current weight of the partial column.
e A list of possible exams to add.

Whenever an exam is included, the information in a node is updated. When the list of
possible exams is empty, the weight of the column is compared to the currently best found
time slot schedule and kept if it is better. The currently best solution gives a lower bound
LB to the optimal solution. In each node we calculate an upper bound U B by summing the
current weight and the m; values of the list of possible exams to add. Whenever UB < LB
we fathom the node.

To improve the efficiency, we add the exams to the branch-and-bound tree in the order
of non-increasing m; values. Moreover, we use a depth first search in our branch-and-bound
tree. As a result, we obtain a good lower bound very fast. Since the first (few) complete
column(s) will contain mostly exams with relative large m; values, the cost of this column(s)
probably will not differ much from the optimal column.

After we have solved the LP-relaxation, we solve the ILP-formulation for this set of
columns. In this way, we found a solution with 6 time slots, whereas the LP-relaxation
needed more than 5 time slots. Therefore, we could conclude that

e finding a conflict-free solution for 10 time slots with the additional constraints was
likely to exist;

e no conflict-free solution could exist in which all students have at most one exam per
day.

Therefore, from now on we consider the constraint of having a conflict-free solution as
a hard constraint. Finally, remark that we do not need to solve the pricing problem to
optimality each time, as finding a column with negative reduced cost is sufficient in each
iteration. Since the instance that we considered was quite small, solving it to optimality
each iteration did not make the problem computationally infeasible.

4 Solving the actual problem

In this section we look at the actual problem faced by our department. From now on, we
look for a conflict-free solution in which all exams are assigned to the 10 given time slots.
We add the remaining complications one by one and indicate how we should adjust the ILP
formulation and the column generation approach that we use to solve the LP-relaxation.
In each subsection, we build on on the model of the previous subsection.

4.1 Only a fixed number of rooms is available

In practical applications of examination timetabling there are only a number of rooms
available. In our department, there are a number of smaller rooms at our disposal. More-
over, there are three big rooms available, which we should use as little as possible. We
model this by using as our objective function that we should minimize the number of times
that we use the big rooms. Given a time slot schedule s;, we compute its cost coefficient
c; as the number of big rooms that are needed in s;. Hence, the ILP model then becomes
that we should find binary values x; that minimize ;g ¢;x;, such that each exam is part
of at least one selected column.

We again solve the LP-relaxation using column generation. The reduced cost of s; is
now equal to

n
¢j = D aimi.
i=1

We solve the pricing problem by determining an independent set that maximizes the op-
posite of the reduced cost. We have to adjust the column generation procedure slightly
to deal with the rooms constraint. Before an exam is included in a partial column, we
will have to check whether there is a room available. We will maintain a list of rooms in
each node which represents the rooms that are assigned to exams from the partial column.
Whenever an exam is included, the cost of the partial column is updated by adding the cost
of the assigned room. It is allowed to schedule multiple exams in the same room whenever
the capacity of the involved room is sufficient, but we are not allowed to split an exam over
two or more rooms. When an exam is scheduled in a room which was used before in the
partial column, no cost is added, since this cost was already taken into account earlier.

4.2 Availability of lecturers

In many cases, the lecturer needs to be present at the exam. Hence, the exam can only be
planned in the time slots during which the lecturer is available. To deal with this constraint
we need to adjust the ILP model. We work now with time slot schedules that are feasible
for a specific time slot k; we use Sy to denote the set of feasible time slot schedules for

time slot k& (k = 1,...,t), where ¢ denotes the number of time slots (in our application
t = 10). A solution to the examination timetabling problem will contain one time slot
schedule from each subset Sy (k = 1,...,t¢). For each time slot, we add a constraint that
at most one time slot schedule can be selected. The ILP model then becomes
t
min Y > ¢z subject to (4)
k=1 jES),
t
Z Z Q35T 5 Z 1 1= 1, . n (5)
k=1 jESy,
oy <1 k=1,..t (6)
JESk

yoe {01} jeUs (7)

The column generation approach changes slightly. Instead of generating one column after
optimizing the current LP-model, we generate one column for each time slot. A column
will be added to the LP, whenever its reduced cost is negative, where the reduced cost of
time slot schedule s; for time slot £ is defined as

n
¢j = D aimi — A,
=1

where)y, is the dual multiplier for the constraint (6) corresponding to time slot k. We can
apply the branch-and-bound algorithm of the previous subsection, where we only include
exams that can be taken in time slot k.

The decision to consider the lecturers’ preferences as hard constraints simplifies the
problem tremendously, as it reduces the size of the pricing problem per time slot. If these
preferences were soft constraints, then we can use the same ILP-formulation. When we
solve the pricing problem for time slot &k, then we need all exams in the student constraint
graph, and we include a penalty for adding an exam that is not preferred in this time slot.

Working with designated time slot schedules gives us the opportunity to refine the cost
structure for the usage of the big rooms as well. We can easily incorporate issues like

e limited availability of big rooms in specific time slots
e non-linear cost functions for using the big rooms

in our model to avoid using too many big rooms at once.

4.3 Avoiding two exams per day

To improve the student examination results, it helps if students only have to take one exam
per day. Since there is no conflict-free solution that uses only 5 time slots for the situation
that we relax all other constraints, there does not exist a conflict-free solution in which no
student has two exams per day. Therefore, we consider it a soft constraint and include the
number of violations in the objective function.

Again, we have to adapt the ILP model. We cannot work with time slot schedules
anymore, because of the relation between the selected time slot schedules per day. There-
fore, we now work with examination day schedules. We denote the number of examination
days by d, which is 5 in our case. Note that we have only two time slots per day, but our
approach can be easily extended to deal with more than two time slots per day. The ILP
model then becomes

d
min Y > ¢z, subject to (8)
k=1jEDy
d
Z Z Qi T g > 1 1= 1,...,77, (9)
k=1 j€Dy

Figure 2: Two optimal independent sets

oz <1 k=1,..d (10)

JE€Dg
z; € {0,1} jeul_ Dy (11)

Here d; denotes examination day schedule j, and its cost is denoted by c¢;; D}, denotes the
subset of feasible examination day schedules for day k; and a,; indicates whether exam ¢ is
included in examination day schedule j. The cost coefficient ¢; consists of a term measuring
the number of students with two exams per day in this examination day schedule and of a
term measuring the number of big rooms used.

We again select good columns by solving the LP-relaxation through column generation.
To solve the pricing problem, we no longer have to find an optimal independent set, but
we have to find two independent sets that together minimize the reduced cost, which is
equal to

n
Cj — Zaijm —)\k
=1

We maximize the opposite, where we ignore the constant term A;. We solve this using
the student constraint graph. The edges in the student constraint graph get a weight
denoting the number of students that have to take both exams. We use a branch and
bound algorithm to solve the pricing problem for each day to optimality. We have to
adjust the branching rule slightly, since we now have three instead of two options for an
exam: An exam is scheduled in the first time slot, in the second time slot, or it does not
get scheduled at all. We administrate in each node the current independent sets, the lists
of the available exams per time slot, and the lists of the used rooms. An example student
constraint graph with two maximal independent sets with as little overlap as possible can
be found in Figure 2. The dual multipliers are depicted in the vertices.

5 Results

All tests have been performed on a Pentium(4) 2.8 (Ghz) computer with 512 MB RAM.
The used programming language is Java, where CPLEX 9.120 was used as a subroutine to
solve the various linear programming problems.

All of the explained techniques have been tested on a real life problem instance from the
department of Computing Science, Utrecht University. This real-life problem instance
only contains 31 exams, so the search space of possible examination rosters is not very
huge. The examination rosters that need to be generated in this department consider a
five day examination week with two time slots per day. It turned out that there exists a
conflict-free solution that needs only 6 time slots. Then we took the rooms into account.
The examination scheduler of the department indicated that the huge examination rooms
were a scarce resource and should be used as few as possible. Other, smaller rooms were
considered to be available anytime. This real life situation was reflected in the room cost
by giving a cost of one to the huge examination rooms and a cost of 0 to the smaller rooms.
The optimal solution that was found contained 11 uses of the huge examination rooms, a
little more than one per time slot. Including the lecturers’ preferences did not yield any
difficulty. Finally, we included the objective of minimizing the number of students with
more than one exam per day. Here we considered the usage of a big room to be five or
ten times more important than a student with two exams per day. In both cases the same
solution was found, in which 5 students had two exams on one day and in which 11 times
one of the big rooms was used. All of the above problems were solved within a few seconds
computation time.

The examination scheduler of the department of Computing Science of Utrecht Uni-
versity is now using our algorithm to full satisfaction. Before this it was already hard to
construct a feasible schedule without taking additional criteria into account. Now, he can
generate feasible examination rosters within a few seconds that are optimal with respect
to the usage of the scarce rooms and the number of students with more than one exam per
day.

5.1 Performance on a benchmark dataset

We have applied our algorithm on some benchmark problems for examination timetabling
that have appeared in the literature. Unfortunately, there are no data available stating the
room availability and stating the amount of overlap. Therefore, we could only apply our
approach on the problem of minimizing the number of time slots. We have tested it on
the well-known and well-studied University of Toronto benchmark dataset for examination
timetabling. The results have appeared in the table below. The density resembles the
average number of edges for one exam, where a density of 1 means that all exams are
conflicting with each other.

Instance | Number of | Density | Best known | Our solution | Runtime
exams solution in mins
UTE92 184 0.08 10 12 267
EARS3 190 0.27 22 25 371
LSE91 381 0.06 17 20 442
KFU93 461 0.06 19 23 460

At first (and second) sight, our column generation approach does not work very well.
The major problem was the size of the problem instance. Therefore the pricing problem
could not be solved to optimality each time. Since solving it to optimality each time is
not necessary until the column generation converges to the optimum, we just stopped the
branch-and-bound as soon as we had found a column that was ‘improving enough’. A
disadvantage is that this does not give a lower bound, since the LP-relaxation is not solved
to optimality. To counter this, we could compute a lower bound as

Z?:l U

— 2
where ¢ is equal to 1 minus the minimum reduced cost, which is equal to the outcome of our
pricing problem (see for example Van den Akker, Hoogeveen, and Van Kempen (2006)).
Once-in-a-while, we need to solve the pricing problem to optimality then.

Another problem is that presumably we need more columns when solving the ILP then

just the ones that were generated in the solution process of the LP-relaxation.

6 Further research

We have shown that column generation is able to solve our practical problem easily and
that the additional constraints pose no problem at all. Solving the basic problems from the
University of Toronto benchmark dataset was still a bridge-too-far, but we want to stress
that our application was merely intended to solve the problem of our university, and many
features can be added. In this way, the smaller instances of the dataset should be solvable.

A well known criterion in examination timetabling is maximizing the so called paper
spread. This criterion means you want the exams of individual students to be as far
away from each other as possible. This criterion can not be taken into account in a
linear programming approach. The main problem is the fact that the cost of a column
is influenced by the other columns in a solution and therefore is not a constant. Column
generation might be useful here in a two-phase approach, in which in the first phase good
time slot or day schedules are generated, which are then assigned to time slots or days to
maximize the paper spread.

References

[1] J.M. VAN DEN AKKER, J.A. HOOGEVEEN, AND J.W. VAN KEMPEN (2006). Paral-
lel machine scheduling through column generation: minimax objective functions (ex-

10

tended abstract). Y. Azar and T. Erlebach (Eds.) ESA 2006. LNCS 4168, Springer,
648-659.

A. MEHROTRA AND M.A. TRICK (1997). A column generation approach for graph
coloring. INFORMS Journal on Computing 8, 344-354.

R. Qu, E.K. BUrkEg, B. McCoLLuM, L.T.G. MERLOT, AND S.Y. LEE (2006). A
survey of search methodologies and automated approaches for examination timetabling,
Technical Report NOTT-CSTR-2006-04, School of Computer Science & I'T, University
of Nottingham.

11

