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Abstract Exercises in mathematics are often solved using a standard
procedure, such as for example solving a system of linear equations by
subtracting equations from top to bottom, and then substituting vari-
ables from bottom to top. Students have to practice such procedural
skills: they have to learn how to apply a particular strategy to an exer-
cise. E-learning systems offer excellent possibilities for practicing proce-
dural skills. The first explanations and motivation for a procedure that
solves a particular kind of problems are probably best taught in a class
room, or studied in a book, but the subsequent practice can often be
done behind a computer. There exist many e-learning systems or intel-
ligent tutoring systems that support practicing procedural skills. The
tools vary widely in breadth, depth, user-interface, etc, but, unfortu-
nately, almost all of them lack sophisticated techniques for providing
immediate feedback. If feedback mechanisms are present, they are hard
coded in the tools, often even with the exercises. This situation ham-
pers the usage of e-learning systems for practicing mathematical skills.
This paper introduces a formalism for specifying strategies for solving
exercises. It shows how a strategy can be viewed as a language in which
sentences consist of transformation steps. Furthermore, it discusses how
we can use advanced techniques from computer science, such as term
rewriting, strategies, error-correcting parsers, and parser combinators to
provide feedback at each intermediate step from the start towards the
solution of an exercise. Our goal is to obtain e-learning systems that give
immediate and useful feedback.

1 Introduction

Many mathematical exercises are solved using a strategy. For example, to answer
the question: ‘What is the value of (4 + 8 ∗ 2)/5’ we apply rules for evaluating
operators, until no such rule can be applied anymore.

(4 + 8 ∗ 2)/5
⇒ (4 + 16)/5
⇒ 20/5
⇒ 4



Here a ⇒ b means: a is rewritten into b. Other examples of strategies are:

– reducing a logical expression to disjunctive normal form by first pushing ¬’s
over ∨’s and ∧’s using de Morgan’s rules, until they are in front of literals,
and then distributing ∧ over ∨, and

– solving a system of linear equations by subtracting equations from top to
bottom, and then substituting variables from bottom to top.

For almost all mathematical exercises, at any educational level, students have
to learn to apply a strategy to solve a particular class of exercises. Learning a
strategy is sometimes also called practicing procedural skills, but since the term
procedural skills is sometimes also used to refer to the capability to apply indi-
vidual rewrite rules, we will use learning to apply a strategy instead of practicing
procedural skills in the technical part of this paper.

E-learning systems offer excellent possibilities for practicing procedural skills.
The first explanations and motivation for a procedure that solves a particular
kind of problems are probably best taught in a class room, or studied in a book,
but the subsequent practice can often be done behind a computer.

There exist many e-learning systems or intelligent tutoring systems that sup-
port practicing procedural skills. The tools vary widely in breadth, depth, user-
interface, etc, but, unfortunately, almost all of them lack sophisticated techniques
for providing immediate feedback. If feedback mechanisms are present, they are
hard coded in the tools, often even with the exercises. This situation hampers
the usage of e-learning systems for practicing procedural skills. This paper in-
vestigates techniques for providing flexible and immediate feedback in tools that
support practicing procedural skills. The tools we envisage are interactive tools,
in which a student gets an exercise, which consists of an expression (a struc-
tured object) from a certain domain. To solve the exercise, the student applies
transformations to the expression, until a solution is reached. At each step, we
want to be able to give feedback if the student does not follow the prescribed
strategy correctly. For example, in the example of reducing a logical expression
to disjunctive normal form, first all ¬’s not in front of a variable have to be
eliminated before we want to remove all ∨’s below top level. If a student starts
with removing ∨’s below top level, while there are still ¬’s to be eliminated, we
want to tell the student that (s)he should first eliminate the ¬’s, before starting
to remove ∨’s below top level.

We show how we can automatically construct feedback at each intermediate
step from the following components:

– A domain description (for example logical expressions, or systems of linear
equations). For a domain we need both the abstract syntax (what is the
structure of expressions, for example frac (int 1) (int 2)), and the con-
crete syntax (how are the expressions visually presented to the student, for
example 1

2 ). We will assume a domain consists of trees.
– Rules for the domain (multiplication distributes over addition, zero is the

unit of addition). This also includes basic evaluation rules, such as 3 + 5
equals 8.



– ‘Buggy rules’ for the domain. Buggy rules represent common misconceptions
(addition distributes over multiplication might be such a rule).

– A strategy for solving an exercise in the domain (subtract equations from
top to bottom, substitute from bottom to top).

We can construct feedback by viewing each strategy as a language, where the
alphabet consists of the transformation steps a student can apply. A sentence of
a language for a particular strategy is a sequence of transformation steps, which
transform a given problem into its solution. Our feedback engine checks that at
each intermediate step, the sequence of transformation steps submitted until then
by the student is a prefix of a sentence in the language of the strategy. Using
techniques from the field of parser generators, parser combinators, and error-
correcting parsers, we can automatically construct feedback if a step submitted
by the student is not valid according to the strategy.

This paper has the following contributions:

– It claims that if e-learning tools are going to provide good feedback, it is
necessary to explicitly specify the strategy for solving an exercise.

– It shows how any particular strategy can be viewed as the specification of a
language, the sentences of which consist of sequences of transformation steps
which turn a particular problem into its solution.

– It shows how we can give feedback to a student based on the strategy de-
scription and the transformation steps the student has taken.

– It introduces a formalism for specifying strategies for solving mathematical
exercises. This formalism is similar to context-free grammars, but it contains
constructs specific to strategies for solving exercises.

As far as we are aware, this approach to strategy specification for mathematical
exercises is original. The approach may lead to considerably better feedback in
e-learning tools.

This paper is organized as follows. Section 2 introduces the problem in more
detail, and discusses related work. Section 3 shows an example domain with rules
and a strategy in detail: namely logical expressions together with rules like de
Morgan, a strategy for rewriting logical expressions to disjunctive normal form.
Section 4 introduces a language for specifying strategies. Section 5 shows how
we can construct feedback for a student given an exercise that should be solved
according to a particular strategy. Section 6 concludes.

2 Feedback and e-learning

Procedural skills. When studying mathematics, students have to acquire, amongst
others, procedural skills. Problems are often solved using a standard procedure,
such as for example solving a system of linear equations by subtracting equa-
tions from top to bottom, and then substituting variables from bottom to top.
Procedural skills appear at any educational level. For example, at the primary
school level, pupils have to learn how to calculate the value of an expression such



as 3 ∗ (4 + 5), or 6+7
2+3 + 8

5−2 ; at secondary school level, students have to solve
sets of linear equations; and at university level, students have to simplify logical
expressions.

What are procedural skills? In this paper, we consider a procedural skill to be
the ability to apply a number of manipulations to a structured object following
a prescribed procedure. This includes the typical skills, such as manipulating
mathematical objects, practiced at schools and universities. But not, for exam-
ple, skills needed for flying [17]. A single manipulation of an object might be a
rewrite step (‘distribute multiplication over addition’), or it might be an evalua-
tion step (‘replace a+ b by its sum’, which might also be considered as a rewrite
step). A procedure describes how basic steps may be combined to solve a partic-
ular problem. A procedure is often called a strategy (or ‘meta-level reasoning’,
‘meta-level inference’ [8], ‘procedural nets’ [6], ‘plans’, ‘tactics’, etc.), and we will
use this term in the rest of this paper. Strategies range from very simple, for
example describing that a simple arithmetic expression with constants, + and
− has to be simplified, to very complicated, describing a complicated procedure
for solving an exercise from linear algebra.

Learning strategies. Strategies are usually taught in class. A teacher gives sev-
eral examples of how to use a strategy on an example, and then lets students
practice on examples. Students learn to apply a strategy both by the examples
and explanation given by the teacher, as well as the individual practice on ex-
ample problems. A student practices with exercises, makes errors, gets feedback,
and possibly a renewed explanation, and uses the feedback to make progress.
Feedback plays a very important rôle in learning [22,28]. It is physically impos-
sible to give each student immediate feedback when practicing, so feedback on
errors in applying a strategy is usually only given long after an error is made.
It is quite common that a teacher provides feedback on worked out exercises on
paper, often many days after the exercise has been solved.

E-learning systems and strategies. E-learning systems offer excellent possibilities
for practicing with applying strategies. The first explanations and motivation for
a strategy that solves a particular kind of problems are probably best taught
in a class room, or studied in a book, but the subsequent practice can often be
done behind a computer. The big advantage of using an e-learning system for
practicing strategies is that such a system can provide immediate feedback [27].
Furthermore, it can use information it gathers about a student to select ap-
propriate exercises for the student, it can analyze the behavior of the student
to report possible sources of misconception, and it can inform a teacher about
misconceptions that appear often in a group of students.

Existing e-learning systems for practicing strategies. Many e-learning systems or
intelligent tutoring systems support practicing strategies. We have investigated
two domains in some depth: tools for practicing different mathematical domains,
such as calculus and algebra (many tools), and tools for teaching logic [11]. The



tools vary widely in breadth, depth, user-interface, etc, but, unfortunately, al-
most all of them lack sophisticated techniques for providing immediate feedback.
Among the tools that provide feedback, we have encountered several classes.

First, there are many tools that only look at the final answer of a student.
Most of these tools only return correct or incorrect. Some of these tools derive
feedback from analyzing the answer [5,18,31,26]. For example, when the question
is: ‘Suppose you have 125 euros. You give 25 euros to a friend, and keep the
remaining 100 euros. What percentage of the original 125 euros do you have
left?’ If the answer given is 75%, the feedback tries to say something about
the possible misconception. Some multiple-choice tools specify the feedback per
question with each answer to the question.

Tools like BUGGY [6], DEBUGGY [7], and BUGFIX [19] assume the exis-
tence of complete sets of correct and incorrect rewrite rules to diagnose bugs in
students’ solutions. These tools also look at the final answer of the student, but
they try to derive the most probable incorrect intermediate rule that has been
applied.

There are fewer e-learning tools that let a student solve an exercise in a step-
wise fashion. Tools like Aplusix [9] and the Freudenthal applets [13] only report
whether or not an intermediate rule has been applied correctly or not. Our own
interactive exercise assistants for solving systems of linear equations [29], and
rewriting logical expressions to disjunctive normal form [24], try to determine
which rewrite rule has been applied by the student. If they cannot determine
such a rule, they find the closest possible match, and give that as feedback. The
feedback does not have to be specified per exercise, but is derived generically.
ActiveMath [10,14] also gives feedback at each intermediate step, but the feed-
back is either incorrect/correct, or the feedback has to be specified per exercise.
Finally, a tool like Math(X)Pert [4,3] only allows correct transformation steps,
but can give hints for the next step to take.

All of these approaches have some problems. In the first approach the ef-
fort required to specify feedback is substantial: the size of the description of
the exercise might easily increase with a factor ten. Furthermore, it is hard to
reuse feedback across exercises, and if a teacher thinks of a better way to pro-
vide feedback, for example because (s)he has found a common misconception
of the students, all exercises that use this feedback have to be adapted. The
second approach is promising, and has led to interesting results. The main idea
of BUGFIX is to construct all possible paths using correct and incorrect rules
between the exercise and the students’ solution. A possible disadvantage of the
approach is that there are already around 350 buggy rules just for the domain
of expressions over integers with addition, subtraction, multiplication, and divi-
sion. Determining and providing these buggy rules to an e-learning system thus
becomes a task that may easily take months. In principle, the third approach
suffers from fewer problems. Since feedback is given at and about intermediate
steps, fewer buggy rules are applicable compared with the situation where a final
answer is compared with the initial exercise. However, most tools do not give
more feedback than incorrect/correct. If a student follows a wrong strategy, no



feedback is given. Only ActiveMath gives feedback on the level of strategies, but
this feedback seems to have to be specified per exercise. Furthermore, it is impos-
sible to specify a strategy in ActiveMath [1], so adding a new strategy to solve a
problem often requires a partial reimplementation of the tool. Furthermore, the
tools we have seen do not take the current expression of the student properly
into account when providing feedback. Since it is impossible to make errors in
rewriting in Math(X)Pert, the feedback given by Math(X)Pert is on the level of
strategy. Exactly how feedback works in Math(X)Pert is not documented, but
we did find that it is easy to stray away from a good path towards a solution,
and that it is possible to confuse Math(X)Pert by doing so.

It is rather unfortunate that considering feedback, current e-learning systems
hardly improve upon, and usually are worse than, the 35 year old Goldberg
tuition program [16,15]. Goldberg’s program is a computer-assisted instruction
program that helps students learn Group Theory. Goldberg used a theorem
prover to give hints to students when asked for help. A strategy is similar to a
‘proof plan’ of a theorem prover, so we expect we can provide similar feedback as
Goldberg. Already in 1983, Bundy [8] says: ‘Goldberg’s system is based on the
tenet that a teacher must understand something if (s)he is to teach it successfully,
even if the teacher is a computer program. This may seem obvious, but it is a
tenet which is violated by the more conventional ‘drill and practice’ Computer
Aided Instruction programs.’ The situation in 2007 is not much different from
the situation in 1983, or 1973. The fundamental problem is that in most e-
learning systems, strategies for solving problems are not explicitly modelled.
Without explicit strategies it becomes difficult to reason about strategies, and
to provide feedback. To quote Bundy [8] again: ‘Whatever aspect of intelligence
you attempt to model in a computer program, the same needs arise over and
over again

– The need to have knowledge about the domain.
– The need to reason with that knowledge.
– The need for knowledge about how to direct or guide that reasoning.’

Note that the three components from which we want to automatically construct
feedback: domain, rewrite rules, and strategies, directly correspond to Bundy’s
essential components of intelligence. These three components are essential for
proper mathematical knowledge management [12] when it comes to modeling
mathematical exercises.

Many existing e-learning tools for mathematical exercises use Computer Al-
gebra Systems (CAS) to verify correctness of answers. This is attractive, because
mathematical knowledge present in a CAS is reused for the e-learning tool.
However, reusing a CAS in an e-learning tool has a distinctive disadvantage
that the strategy for solving a mathematical problem is not directly available
to the e-learning tool, and hence it is impossible to give feedback about possi-
ble misunderstandings of the strategy. Furthermore, the strategy for solving a
mathematical problem used by a CAS might differ from the strategy the student
should learn.



3 An example domain

This section gives an example in which we specify the three components we need
for automatically constructing feedback. It introduces the domain of classical
logic expressions, the rules for logical expressions, and the strategy for rewriting
a logical expression to normal form.

The domain. An example of a logical expression is ¬(x ∨ (y ∧ z)). A logical
expression is a logical variable, a constant true or false, the negation of a
logical expression, or the conjunction, disjunction, or implication of two logical
expressions. In a grammar:

Logic ::= Var
| true

| false

| ¬Logic
| Logic ∧ Logic
| Logic ∨ Logic
| Logic → Logic

An identifier starting with a capital is a non-terminal, and a lower-case identifier
is a terminal.

The rules. Logical expressions form a boolean algebra, and hence there exist a
number of rules for logical expressions, such as true is the unit of ∧, false is
the zero of ∧, and ∧ is commutative and associative. Each rule is given a name.

TrueLeftUnitAnd: true ∧ x = x
FalseLeftZeroAnd: false ∧ x = false
AndComm: x ∧ y = y ∧ x
AndLeftAssoc: x ∧ (y ∧ z) = (x ∧ y) ∧ z

where x, y, and z range over any logical expression. Similar rules hold for ∨. For
negation we have de Morgan’s rules, amongst others.

NotTrue: ¬true = false
NotFalse: ¬false = true
NotNot: ¬¬x = x
DeMorganAnd: ¬(x ∧ y) = ¬x ∨ ¬y
DeMorganOr: ¬(x ∨ y) = ¬x ∧ ¬y

And, finally, ∨ and ∧ distribute over each other.

AndRightOverOr: (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)
OrRightOverAnd: (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z)



Buggy rules Many buggy rules can be formulated for the domain of logical
expressions. For example, a student might forget to change an ∧ into an ∨ in
the De Morgan rules:

DeMorganAndBuggy: ¬(x ∧ y) = ¬x ∧ ¬y
DeMorganOrBuggy: ¬(x ∨ y) = ¬x ∨ ¬y

A strategy. To rewrite a logical expression to normal form, the basic rules for
logical expressions have to be combined to describe how a logical expression is
rewritten to disjunctive normal form. One possible strategy for rewriting logical
formulas to disjunctive normal form is to

– first eliminate all ¬’s that are not in front of an expression variable by means
of any of the rules for ¬.

– Then bottom-up eliminate all ∨’s that appear below top level, using the rule
that says that ∧ distributes over ∨.

Both of these two parts have to be applied until they cannot be applied anymore.
From this informal description we see that to specify a strategy, we need at least
the concepts of

– applying a single basic rewrite rule (‘using the rule that ∧ distributes over
∨’),

– choice (‘any of the rules for ¬’, denoted by |),
– sequence (‘first . . . Then . . . ’, denoted by ;),
– repeat until exhausted (‘until they cannot be applied anymore’, denoted by

repeat),
– bottom-up (and top-down and anywhere, denoted by bottomUp).

If we have these concepts available, we can specify a strategy for rewriting a
logical expression to normal form as follows:

Dnf = EliminateNots ; MoveOrToTop
EliminateNots = repeat (DeMorganAnd | DeMorganOr | NotNot

| NotTrue | NotFalse)
MoveOrToTop = repeat

(bottomUp (AndLeftOverOr | AndRightOverOr))

For example, if we apply this strategy to the example logical expression, we get
the following derivation:

¬(x ∨ (y ∧ z))
= DeMorganOr

¬x ∧ ¬(y ∧ z)
= DeMorganAnd

¬x ∧ (¬y ∨ ¬z)
= AndLeftOverOr

(¬x ∧ ¬y) ∨ (¬x ∧ ¬z)



If we view Dnf as the specification of a language of transformation steps, the
three-rule sequence [DeMorganOr,DeMorganAnd,AndLeftOverOr] can
be viewed as a sentence from the strategy Dnf transforming ¬(x ∨ (y ∧ z)) into
its disjunctive normal form.

4 Specifying strategies

Strategies are usually specified informally. To be able to automatically construct
feedback for a student, we have to make the strategy that has to be used ex-
plicit. How do we specify a strategy? A strategy determines how basic steps
are combined together to reach a solution to a problem. An example of an ex-
plicit strategy has been given in the previous section. This section discusses a
formalism for specifying strategies.

Concepts like applying a basic rewrite rule, choice, sequence, etc. all appear
in a strategy language like Stratego, and a Stratego-like language for specifying
strategies seems feasible [35,34,25]. We use the following grammar for specifying
strategies:

Strategy ::= Var
| basic Rule
| Strategy | Strategy
| Strategy ; Strategy
| repeat Strategy
| bottomUp Strategy

Var generates names that can be used in strategies, and Rule generates the set
of basic rewrite rules that may be applied in a particular strategy. An example
of a strategy, a sentence of this language of strategies, is the strategy Dnf defined
in the previous section.

This is a rather basic and incomplete definition of strategies; the following
components are missing:

– Sometimes we want to specify that it is possible to work on different parts
of a problem separately, so we need a parallel strategy combinator.

– Some basic rules require input from the student. For example, when sub-
tracting two equations we need a multiplier for one of those equations. So
we need variants of the basic combinator, with which we can specify that
student input is required. Other basic rules require multiple selections in the
domain. For example, when substituting x = . . . in another equation, we have
to select both the equation to be substituted, and the equations in which it
is to be substituted. Again we need a variant of the basic combinator to
specify how many selections in the domain have to be made.

– Some exercises require the student to show the existence of an object that
satisfies a particular property. So the student has to supply a particular



value. We expect we have to add a combinator to the strategy specification
language with which we can express that a student has to supply a value at
a particular point in a strategy.

We have experimented with specifying strategies in the domains of logic and
parts of linear algebra. However, we have to experiment with more domains to
validate the choice of language for specifying strategies. We need a language
with at least the power of a context-free grammar, since we want to be able
to specify strategies that require performing a certain substrategy n times, and
then another substrategy equally often. Such a strategy cannot be expressed by
means of a regular grammar (or a finite-state automaton).

5 Feedback on strategies

Our main reason to explicitly specify a strategy is to give feedback to a student
if (s)he does not follow the strategy. A second reason is to be able to give a hint
when a student asks for it. Using techniques from the field of parser generators,
parser combinators and error-correcting parsers, we can automatically construct
feedback if a step submitted by the student is not valid according to the strategy.
This section explains how we do this.

To determine whether or not a student is on the right track in solving an
exercise using a particular strategy, we try to determine whether or not the se-
quence of transformations specified by the student is a prefix (an initial segment)
of a sentence from the grammar specified by the strategy.

We have implemented a set of combinators corresponding to the strategy
combinators specified in Section 4 in Haskell [30]. These combinators are very
similar to the parser combinators used in higher-order lazy functional program-
ming [21,32]. But instead of parsing sentences, they recognize initial segments
of sentences. For example, we can write (<*> corresponds to ;, <|> to |):

dnf = eliminateNots <*> moveOrToTop

eliminateNots = repeatExhausted
(basic DeMorganAnd <|> basic DeMorganOr <|> basic NotNot
<|> basic NotTrue <|> basic NotFalse)

moveOrToTop = repeatExhausted
(bottomUp (basic AndLeftOverOr <|> basic AndRightOverOr))

Here, the <*>-combinator takes two recognizers, and tries to recognize the first
followed by the second. The <|>-combinator takes two recognizers, and tries
to either recognize the first or the second. The basic-combinator recognizes a
single transformation step. To check whether or not a transformation step can
be applied, we have to know where it has to be applied in an expression. For
example, the transformation step DeMorganAnd is only applicable to the right
argument of the operator ∧ in the expression ¬x ∧ ¬(y ∧ z). It follows that a



transformation step has to be accompanied by a selection, which tells the sys-
tem where to apply a transformation step. So each basic recognizer recognizes
a transformation step, followed by a selection in the expression where the trans-
formation step has to be applied. We do not describe the implementation of the
library in this paper; the implementation will be published with this paper on
our publications page3.

Recognizers have an underlying state: the expression (exercise) that is being
transformed. Each basic rule represents a rewrite step. So besides combinators
for recognizers, we also need an implementation for the rules. At the moment
we use Strafunski [23], a strategy rewriting library for Haskell, for this purpose.
For example, the rule DeMorganAnd is implemented as follows:

ruleDeMorganAnd (Not (x :&&: y)) = return (Not x :||: Not y)
ruleDeMorganAnd x = fail "DeMorganAnd"

Here Not is the ASCII representation of ¬, :&&: of ∧, and :||: of ∨. Since the
underlying language of Strafunski is Haskell, we can encode powerful rewrite
rules with side-conditions, if-then-else expressions, etc. For example, for arith-
metical expressions we would define amongst others:

ruleDiv (Con x :/: Con 0) = fail "Divide by zero"
ruleDiv (Con x :/: Con y) = return (x/y)
ruleDiv x = fail "Div"

Each time we recognize a transformation step we apply the corresponding rewrite
rule to the underlying state.

The standard approach to recognizers would give a program that either says
accept or reject. We want to provide better feedback than just correct/incorrect.
For this purpose, we use a variant of error-correcting parsers [33]. In particular,
we have used the ‘polish parsers’ introduced by Swierstra and Hughes [20] to
rewrite our combinators into recognizers that provide better feedback. For exam-
ple, if a student submits the sequence (where submitting a sequence might mean
pressing the buttons corresponding to the transformation steps, and selecting
subexpressions) [DeMorganOr,DeMorganAnd] together with the appropri-
ate selection commands, to rewrite ¬(x∨(y∧z)), and then says she is finished, our
tool signals that a transformation step is missing, namely AndLeftOverOr.
How to report this to the student is a different question (‘the solution of the
exercise has not been reached yet’, or, ‘you should try to apply the rule that dis-
tributes ∧ over ∨’, or . . .). The adapted recognizer analyzes the strategy, signals
errors, and suggests possible correct steps when asked for.

When using error-correcting parsers, the feedback is always given on the
level of a single transformation step. It is desirable to provide feedback at a
higher level. For example, when rewriting ¬(x∨ (y∧ (z ∨w))) with the sequence
[DeMorganOr,AndLeftOverOr] we might prefer the error message ‘you
have not eliminated all ¬’s not in front of a variable yet’ instead of a message

3 See http://www.cs.uu.nl/∼johanj/publications



‘insert the transformation-step DeMorganAnd’. This kind of high-level feed-
back can be specified in the recognizer. For example, for the dnf strategy we can
write

eliminateNotM = "not all not’s in front of a variable have been
eliminated yet"

moveOrToTopM = "not all or’s have been moved to top level yet"

dnf = addMessage eliminateNotM eliminateNots
<*> addMessage moveOrToTopM moveOrToTop

Using this recognizer, we get the desired feedback in the above example.

6 Conclusions

We have shown how we can give good feedback to students interactively solving
an exercise on the level of the strategy for solving the exercise. As far as we are
aware, our approach to automatically constructing feedback is novel.

Good feedback can only be given if the domain, the rules with which an
expression in the domain can be rewritten, possibly known buggy rules, and a
strategy for solving an exercise in the domain are explicit.

We have introduced a context-free grammar like formalism for specifying
strategies. A strategy specified in this formalism can be viewed as a grammar.
When solving an exercise, a student constructs (prefixes of) a sentence of this
grammar. By using techniques from the field of parser generators, parser combi-
nators, and error-correcting parsers, we have implemented a library, with which
we can build recognizers for particular strategies which recognize prefixes of sen-
tences of a grammar, and which can automatically construct feedback if a step
submitted by the student is not valid according to the strategy.

Using our results, we can build an e-learning system that provides good
feedback. There are many advantages of such a system:

– Feedback may be given at each step in a calculation towards a solution, not
just after solving an exercise. Thus feedback is given earlier than in tools
that construct feedback based on a final answer, and almost always more
accurate.

– Feedback is automatically constructed for each intermediate step for each
exercise. Feedback need not be specified for every exercise anymore, and
hence defining new exercises becomes much easier.

– Feedback is automatically constructed for each strategy. Hence, feedback
need not be specified for every class of exercises anymore, and defining a
strategy for a new class of problems, or a new strategy for solving a particular
class of problems does not require developing or reimplementing a tool.

– To construct an e-learning system for a new domain is a matter of specifying
the domain, the rules, the buggy rules, and the strategies. The e-learning
system comes for free. A single framework for constructing e-learning sys-
tems for different domains suffices. We think it is not realistic to assume



that teachers can adapt e-learning tools to cater for new strategies. We do
think there is a possibility that teachers can adapt a strategy to their needs.
Thus an e-learning system that is generated from a domain, its rules, and
a strategy makes it easier for a teacher to adapt an e-learning tool. This
probably increases the acceptance and usage of such a tool by teachers.

Future work. We have only taken the first steps towards an e-learning system
that provides good feedback. We have to integrate the results from this paper
into our existing e-learning systems to experiment with the expressiveness of our
formalism. We have already formulated a number of strategies as recognizers, but
we have to experiment with a larger set of strategies to validate the formalism
introduced in this paper. Some problems we want to work on in the future are:

– To allow working on different parts of an exercise using a different strategy,
we want to introduce a parallel combinator. We expect we can use variants
of permutation parsers [2] to implement a parallel combinator.

– How do we deal with strategies in which many trivial intermediate steps are
silently applied (such as associativity and commutativity of ∨)?

– Can we also specify ‘refinement’ rules instead of transformation rules? Re-
finement rules are useful when developing a program or a UML model, for
example.

– Some exercises require the student to show the existence of an object that
satisfies a particular property. So the student has to supply a particular
value. We expect we have to add a combinator to the strategy specification
language with which we can express that a student has to supply a value at
a particular point in a strategy.

– How do we deal with buggy strategies, or with sub-optimal strategies? We
expect we will add ‘known’ buggy strategies to strategy descriptions, and
build recognizers to recognize such buggy strategies, and provide appropriate
error messages. Dealing with sub-optimal strategies might be done similarly:
recognize and comment. The difference might be that we do not allow a
student to make progress when in a buggy strategy, whereas we allow a
student to follow a sub-optimal strategy.

– We expect we will need several variants of the basic combinator. At the
moment the basic combinator may be preceded by a number of selection
commands, which determine where the transformation step is applied in the
underlying expression. However, some transformation steps need more than
one selection in the underlying expression. For example, substitution requires
selecting an equation of the form x = . . ., and a set of equations in which this
equation is substituted. Other transformation steps require student input,
which might also be considered as a kind of selection.

– Using the strategy descriptions given in this paper, we can give good feedback
when a student makes an error. Giving a hint when a student is stuck can
be done using almost the same approach, with the exception that we have
to be specific about which choice to make when a student has to provide
input to a transformation step. For example, a student sometimes has to



supply a particular value for a variable. We expect we have to adapt our
strategy language such that transformation steps that require student input
also contain information about how to choose appropriate input when such
input is not given, or when a student asks for a hint.
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