Turning an interactive tool implemented in
Haskell into a web application — An
experience report

Sylvia Stuurman

Johan Jeuring

Department of Information and Computing Sciences, Utrecht University
Technical Report UU-CS-2007-008

www.cs.uu.nl
ISSN: 0924-3275

Abstract

At the Open University, The Netherlands, we are developing interactive exercise assistants that
give good feedback to students trying to solve mathematical or logical exercises. To simplify
installing, maintaining, and adapting the tools, and to improve reporting facilities, we have turned
our tools into web applications. Since our tools are implemented in Haskell, this implies that we
have to be able to connect an interactive Haskell application to the web. We have developed an
architecture that makes it possible to change an application written in Haskell into a light-weight
webservice for an Ajax-style web-based application.

In this paper, we discuss the various possibilities to combine Haskell and a web-based applica-
tion. We investigate the advantages and disadvantages of the chosen architecture with respect to
changes in the interface of the tool written in Haskell.

Figure 1: The equation solver

1 Introduction

At the Open University, The Netherlands, we are developing several exercise-assistant tools: tools
in which a student stepwise constructs a solution to an exercise. Examples of exercises the tools
support are rewriting a logical expression to disjunctive normal form [14], and solving a system
of linear equations [20]. Figure 1 shows a screenshot of our desktop application that supports
solving a system of linear equations.

The user-interface of the tools is simple: a student is presented with a text field that contains
an exercise, in which the student rewrites the exercise towards a solution. After each step, the
student can press a Submit button and receive feedback, which appears in the feedback field.
The distinctive feature of our tools is the feedback the tools give when a student makes an error.
Furthermore, the tool keeps the history of the steps the student performs, and the student can
undo previous steps.

To implement our tools, we need functionality for parsing, pretty-printing, symbolic evaluation,
several analyses, etc. This functionality builds, traverses, or folds abstract syntax trees. Further-
more, the exercise-assistant tools for the different domains (logical expressions, linear equations)
are very similar, and we want to minimize code duplication. The lazy higher-order functional pro-
gramming language Haskell [12] is particularly good at manipulating abstract syntax trees, and the
high level of abstraction support by Haskell minimizes code duplication, so we have implemented
our tools in Haskell.

We want to turn our exercise assistants into web applications for several reasons. First, the
exercise-assistant tools have been developed recently, and are still evolving. Yet we want our
students to use the most recent versions of our tools. Deploying an evolving tool is difficult.
Deployment in the form of an on-line version of the tool, maintained at a single location, is highly
desirable. A web application has the advantage that both the logical part and the presentational
part of the application are located at a single location. Therefore, both parts can be maintained
without the need of upgrading the application on user machines. Second, the distinguishing feature
of our tools is the feedback they give to the student. To improve feedback, we want to log errors
and feedback messages. Logging is very hard if not impossible if the tools are installed on user
machines. It is much easier to connect a web application to a database and store all errors and
feedback messages. Third, we are also considering providing feedback to teachers about common
errors made by groups of students. Again, collecting such feedback is much easier in a web
application in which such a group of users can login.

This paper investigates the various possibilities for tying an interactive Haskell program to the
web. We describe the requirements for an interactive web application that uses Haskell for its

functionality in section 2. Section 3 discusses the various techniques and architectures available
for tying an interactive Haskell to the web, and shows our solution, in which the tool is tied as
a light-weight webservice into a web-based application. Section 4 investigates the problems we
encounter with such a solution if we want to change the tool, and discusses possible directions to
solve those obstacles. The solution for the integration of a Haskell program in a web application
is, obviously, specific for tools written in Haskell; the problems caused by changes in a system
based on light-weight web services are problems that manifest themselves independently of the
programming language behind a web service.

2 Requirements

We have the following requirements for an on-line version of our exercise assistant.

1. Interactivity. The application should have a response behavior that resembles that of a
desktop application: there should not be a page reload after each equation or formula that
a student submits.

2. Presentation. It should be possible to present the web application using different presentation
mechanisms. In other words, the functionality of the feedback tool should be separated from
the presentation. Then it is, for example, possible to fully integrate the application in a
Blackboard course, a Moodle course, or an ASP application.

3. Authentication. For the same reason, authentication should be separated from the feedback
application, so that authentication from the environment of the user (such as a Blackboard
site) may be used.

4. Scalability. It should be possible to support the use of the exercise assistant by many users
at the same time.

5. Flexibility. In its present form the tool only covers two domains, does not make use of the
history of errors of a particular user, and does not analyse the results of a group of students.
In the future we want to adapt our tools at least with respect to these points, but we expect
many other changes to be implemented. It should be relatively easy to make changes to the
tool, preferably in a single location. The flexibility requirement can be further refined as
follows:

(a) Transparency. It should be transparent for the exercise assistant whether it resides in a
desktop application with a GUTI or in a web application. Then the exercise assistant can
evolve without having to apply changes in different versions of the exercise assistant.

(b) Stateless connections. If possible, the web application should adhere to the REST style
(Representational State Transfer), documented in [6]. In REST, interactions between
client and server are stateless. A client request for information is performed through
an HTTP Get request; a client providing information that may change the information
on the server is performed through an HTTP Post request.

The REST architecture is the architecture that has made the web as scalable as it has
shown to be, and adhering to its principles will at least make it possible for a web
application to be flexible with respect to changes and scaling.

Most of these requirements are standard requirements for interactive web-based applications.

3 Solution

Figure 2 shows how the on-line version of the exercise assistant is distributed over different ma-
chines, with one application server communicating with several web servers, each of which com-
municates with several browsers. According to the ‘presentation’ (2) and ‘authentication’ require-
ments (3), the exercise assistant should be able to communicate with several different web servers

Browser
—

Web

server
Browser

Browser

1
Web Application

server server
Browser

Browser

1
Web

server
Browser

Figure 2: Deployment architecture

’ Browser ‘ ’ Web ‘ ’Application

server server

resources: resources: resources:
Javascript and HTML Javascript and HTML Exercise Assistant in
Haskell

interpretation storage execution

Figure 3: Resources

(for instance hosting a Blackboard environment), each of which serves several clients in the form
of browsers.

The ‘interactivity’ requirement (1) suggests to make use of Ajax [10], which, in short, implies
that when a user submits a rewritten expression, the action that follows is not an HTTP-Post
request communicating the input to the server and resulting in a page reload, but an XMLHTTP
request, communicating the input and receiving the feedback without a page reload. Code in a
scripting language in the page (in practice, that scripting language is almost always Javascript)
performs that action, and shows the response in one or more elements of the page. Because the
web browser does not need to render a whole page, Ajax-based applications have a response time
that almost resembles that of a desktop application.

By using the Really Simple History framework [18], it is possible for the user to undo previously
submitted rewritings.

The application server in figure 2 receives input from different web servers, and responds by
sending the feedback. In the architecture we propose, the application server functions as a light-
weight web service, without the overhead of SOAP and related standards, relying on simple HTTP
and XMLHTTP requests. To implement the application server, we need a web server that can
communicate with the exercise assistant.

Figure 3 shows how the resources for the on-line Exercise Assistant are distributed over the
browser, the web server and the application server. The web server stores the HTML and
Javascript, the browser interprets the HTML and Javascript, and the Exercise Assistant is ex-
ecuted in the application server.

3.1 Techniques for calling Haskell applications from a webserver
There exist a number of techniques for calling a Haskell function from a webserver.

Program Call. When the webserver supports server-side scripts such as PHP, JSP or ASP, a
script can simply call an executable of a Haskell program with the input of the user as a

parameter, and send back the result to the user. The disadvantage of such a solution is that
each time a user presses a submit button, a new process is started with an associated time
delay, violating the ‘interactivity’ requirement 1. Moreover, with many users working at
the same time, the number of processes may become a bottleneck, violating the ‘scalability’
requirement 4.

CGI. CGI, the Common Gateway Interface, is a standard for programs to communicate with web
servers. With CGI, it is possible to use a program without a scripting language like PHP.
However, using CGI has the same problems as the previous technique: when a user presses
submit, a new process is started.

Server-side scripting. In [17], Haskell Server Pages are proposed, which treat HTML or XML
fragments as ordinary expressions. It is possible to refactor our exercise assistant to Haskell
Server Pages and thus turn it into a web-service. However, we would have to maintain both
a desktop version of the tool and an on-line version, violating the ‘transparency’ require-
ment Ha.

COM objects. In [7], a technique is described to package a Haskell program as a COM object.
Such a COM object may be called from an ASP page, and there are solutions for other
scripting languages as well. The constraint of such a solution is that COM objects need a
Microsoft platform. And this solution has the same problem as the first two solutions: for
every request, a new process is started.

FastCGI. FastCGI [15] is a fast web server interface that solves the performance problems in-
herent in CGI. It uses a persistent process instead of a process for each request, like CGI.
There is a FastCGI implementation for Haskell [3]. To make use of FastCGI, we would have
to write a program which is capable of scheduling the Exercise Assistant in several threads,
and keeping track of sessions if needed.

Apache module. In the same way as the Apache web server supports scripting languages like
PHP, we can use an Apache module supporting the interpretation of Haskell source code.
Such a module is available [11]. There are issues that have to be solved (the Haskell in-
terpreter is not thread-safe for instance) before this could be a viable option. Another
disadvantage is that interpretation of the exercise assistant might be too slow with respect
to the ‘interactivity’ requirement 1.

Application server. A start for an application server for web services could be the web server
in Haskell described in [16]. Another candidate is the HTTP server of the HAIFA project [8]
and [9], which offers a simple HT'TP server with handlers to be built in as Haskell functions.
A third possibility is the HAppS application server, which is the most complete server at
this moment [13], supporting sessions and DBMS access without having to use a monad. It
is this application server that we chose for our web application.

3.2 The on-line Exercise Assistant

The on-line Exercise Assistant in figure 4, is started when the user types in the URL in the
browser!. A simple HTTP Get-request is sent to the web server. The web server (in our reference
implementation an Apache web server supporting PHP) sends a page containing Javascript code to
the browser. The Javascript code, when interpreted in the browser, asks the application server to
generate an exercise using an XMLHTTP request, and shows the resulting exercise in an editable
element on the page. The user then starts to solve the exercise. When the user presses the submit
button, the necessary data are sent to the application server in an XMLHTTP request by the
Javascript code in the page. The application server, after having called the exercise assistant,
responds by sending feedback to the browser, where Javascript code pastes the result in the right
places in the page, the Ajax-way.

LAt the moment the Exercise Assistant can be found on http://wuw.exercise-assistants.org/feedback/. The
domain-name will remain stable, the postfix feedback might change in the future.

B Oprieuw zosken,, @spask Paveusmadis - [FBlabeeldingen tonen B passend mumJ

OpenUniversiteithederland

FEEDBACK ENGINE ONLINE

x>t >

<> v > @)

Feedback
Voortgang

[Feedback. ..

[veortgang. . .

Figure 4: On-line Exercise Assistant

Web browser >

communicates

Web server

Application server

Exercise
assistant

Figure 5: Components

Figure 5 shows the components of the architecture at run-time. The arrow between the Browser
component and the Web server component means that the Browser component requests a page
from the Web server component, and the Web server component sends a page (the user interface)
including Javascript code, which will function as the Communication component. Both the user
interface and the Communication component are stored in the Web server component, and are
interpreted in the Browser component. The Communication component communicates with the
Application server component, which calls the Exercise Assistant to receive feedback.

We have implemented the system using Apache as a webserver with support for PHP, and
HAppS as a Haskell application server. More than one webserver may connect to the application
server, and there are no restrictions regarding the technologies used in the web server.

4 Problems and possible remedies

Although the architecture has been chosen with flexibility in mind, there are some problems with
respect to changing the web application. These problems are caused by the Haskell application
server, and by the decision to implement the web application as a light-weight webservice.

4.1 Haskell application server-specific problems

The Haskell application server checks incoming requests and calls the appropriate function of the
feedback engine. The application server code is compiled together with the feedback engine code
to achieve this functionality. That means that for each change, the server (including the exercise
assistant) has to be shut down, recompiled, and restarted.

Remedy A solution for this Haskell application server-specific obstacle would be to have a
configuration file that couples patterns in the URL of a request to the name of the function to
call, combined with pluggable functions. One of the patterns could have an associated action
to reread the configuration file. In that case, functions can be compiled separately from the
application server, and there would be no downtime. Using the existing plugin-technology for
Haskell [19], such a solution is possible, at least in theory. However, the plug-in technology is not
yet stable enough to be able to rely on it.

Another option is to choose the FastCGI solution instead of the application server. The
disadvantage of such a solution is that we would have to write code for functionality that is
already available in the Haskell application server, such as scheduling of threads, working with
sessions, and database access.

For now we stick to the application server solution, but we may have to choose another tech-
nique if we have to apply changes very often.

4.2 Light-weight webservices related obstacles

Other problems for changing the web application are caused by the implementation of the exercise
assistant itself.

e At the moment, exercise assistant expects two strings as input: one containing the ex-
pression that a user has entered, and one containing the expression from the previous correct
attempt (or the generated exercise with which the user started). This means that the ap-
plication server has to call the exercise assistant with two strings as input.

e The application server expects a request with a value for a variable named ”answer” and
a value for a variable named ”previousanswer”. These values (both strings) are input for
the exercise assistant. This means that the communication component (in Javascript)
should send an XMLHTTP-Post request with a value for a variable named ”answer” and a
value for a variable named ” previousanswer”. It also means that the web page should allow
the user to type in an answer, and that the communication component should remember

the previous answer and know from which element of the page it can extract the value for
”answer” .

e The exercise assistant returns two strings and a boolean when it has been called. This
means that the application server should use those two strings and the boolean to compose
a return message.

e The application server returns a value for a variable named ”feedback”, a value for a
variable named ”progress”, and a value for a variable named ”consistent”. The communi-
cation component should know what to do with these values, and it should know which
elements of the page should be updated.

It follows that any change in the feedback functionality of the exercise assistant that involves a

change in input or response has consequences for the application server, for the web page, and for

the communication component in the web page. The same applies for the generation of exercises.
Some examples of such changes are:

e We might want to offer the possibility to give feedback in different languages (English, Dutch,
Spanish,...). Then the start page of the exercise assistant would offer the user a choice of
languages, and either the communication component would send the preferred language with
each request, or the preferences per user would be saved in the application server, and the
user would be known by name. In both cases a request for the application server contains
an extra parameter.

e When the exercise assistant returns three instead of two strings (for instance showing the
progress of the user at each step), the application server will have to encode that third string
into the response to the browser as well. We will have to update both the HTML page (add
another text field) and the communication component (read another field of the response,
and show it in the added text field).

e Similar measures have to be taken when we want to store the steps of individual users,
analyse those steps as input for the feedback engine, or add user authentication.

It is obvious that we run into problems with the above changes. We expect not only to change
the implementation of our light-weight web service, but also its interface. With a change of
the interface, changes are needed in the application server, in the web page, as well as in the
communication component.

Remedy When the coupling between a presentation layer and a logic layer is too tight, the
solution is often sought in a model-based approach. A web application is modeled as a single
entity, and from the models, the presentation layer is generated. An example of that approach is
OOWS [21]. A model-based approach might even be used to generate the presentation layer, the
logical layer and the database layer [5, 1].
In our architecture, that is not a viable option, because we want to keep the possibility to use the
Exercise Assistant from different web servers, which will, in practise, not be under our control.
In the area of webservices, the solution for this problem is to describe capabilities and properties
of web services in a specific language that should be understood by the requester of a web service.
DAML-S [2] is a language for specification of the semantics of a web service; WSDL [4] is a language
for a communication-level description of the messages and protocols. The problem of the alignment
of the user interface with a changing interface of web services, or a changing logical model, has
been observed often. In [22] for instance, the authors mention the problem of ”synchronization
of the human user interface with the BPEL engine”, in webservices that are ”choreographed”
as a conversational process (BPEL is a language for such choreography). Even the sequence of
the webservices used as such is difficult to synchronize with in the user interface: "If the page
flow-based approach is chosen, the synchronization of the user interface and the BPEL engine is

Web browser

User interface
Communication

>

communicates

Web server

~~~~~~

~~~~~~~~~~~~

Exercise
assistant

Figure 6: Components

a major challenge, introducing mutual dependencies between the user interface and the BPEL
process. These dependencies must be designed explicitly.”

In our case, we opt for a rather simple solution. In the architecture that we have described,
depicted in figure 5, the communication component (in Javascript) is the responsibility of the web
server: it is sent from the web server to the browser. The reason is that the elements of the web
page are tightly coupled to the Javascript code of the communication component, because the
communication component should know from which elements to retrieve the data, and in which
elements to display the response.

In figure 6, we show the solution. The responsibility for the communication component is
shifted to the application server. Because of the tight coupling mentioned above, the application
server should provide the elements of the page that are vital for the application as well. They will
be pasted in the web page that is provided by the web server.

The web server thus sends a page to the browser, while the application server sends the commu-
nication component, and those page elements that are needed by the communication component.
The page itself, and the stylesheet that determines the look of the elements is determined by
the web server; the Javascript and the page elements it needs, are determined by the application
server.

4.3 Debugging

A web application like the one we present here, is hard to debug because a bug may be located
in different places, and the application is built using several languages. Changing the Javascript
code by hand each time there is a change in the interface of the exercise assistant will probably
result in extra hours spent searching for bugs.

Remedy It is highly desirable to find a way to specify what we need of the Javascript code, and
generate the code and the page elements each time that there is a change in the specification.

5 Conclusions and future work

We have shown that we can use existing techniques to turn an interactive Haskell application into
a web-based application. Furthermore, we have investigated the problems caused by the many
changes that we foresee in the Haskell application, and discussed solutions to those problems.

Some of those problems are caused by the fact that our application is written in Haskell, using
a Haskell application server, and some are the result of our wish not only to be able to change the
implementation of the webservice, but also the interface.

In the future, we will implement the remedies we have formulated in this paper, to see if we
are able to implement a web-based application with the inherent property that changes in the web
service are possible without the need to apply changes elsewhere.

Strategies and Editor Another future direction in our experiment is to enhance the editing
capabilities of the application and to introduce the concept of strategies.

For each domain, we would like to be able to express different strategies that a user may follow
while solving an exercise. Strategies could be used to offer the user a set of possible transformations
for a given selection in the exercise at hand, or to give feedback about the strategy that is used.
With respect to responsiveness, it will probably be necessary to build the capability to recognise
wich selections in an expression are valid and which are not valid, into the Javascript component.
In an expression a * (b + ¢) for instance, b + ¢ is a valid selection, while a(b is not.

We will extend the Javascript code with this capability. The communication component will
then be able to communicate to the application which part of an expression is selected. We will
need ways to specify the rules for viable selections in different domains, and those specifications
will be used both by the Exercise Assistant in Haskell and the communication component in
Javascript.

So, switching the responsability for the Javascript code to the application server is not only
needed for the flexibility with respect to changes in the Exercise Assistent, it is also needed to
turn the browser into a smart editor that knows which selections in an expression are valid.

References

[1] P. Achten, M. v. Eekelen, and R. Plasmeijer. Generic Graphical User Interfaces. In The 15th
International Workshop on the Implementation of Functional Languages, IFL 2003, Selected
Papers, volume 3145 of LNCS, pages 152-167. Springer, 2004.

[2] A. Ankolekar, B. Burstein, J. Hobbs, O. Lassila, D. Martin, D. McDermott, S. Mcllraith,
S. Narayanan, M. Paolucci, T. Payne, and K. Sycara. DAML-S: Web service description for
the semantic web. In Proceedings of the 1st International Semantic Web Conference (ISWC),
2002.

[3] B. Bringert. fastcgi - a Haskell library for writing FastCGI programs. http://www.cs.
chalmers.se/~bringert/darcs/haskell-fastcgi/doc/, 2006.

[4] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL) 1.1, W3C Note. Technical report, W3C, 2001.

[5] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web programming without tiers.
http://groups.inf.ed.ac.uk/links/papers/links-icfp06/1links-icfp06.pdf, 2006.

[6] R. T. Fielding and R. N. Taylor. Principled designn of modern web architecture. In Proceed-
ings of 22nd International Conference on Software Engineering, pages 407-416, June 2000.

[7] S. Finne, D. Leijen, E. Meijer, and S. L. P. Jones. Calling hell from heaven and heaven from
hell. In International Conference on Functional Programming, pages 114-125, 1999.

8]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

S. Foster. HAIFA: An XML based interoperability solution for Haskell. In Proceedings of the
6th Symposium on Trends in Functional Programming (TFP 2005), pages 103118, 2005.

S. Foster. HATFA, 2006. [on-line, accessed june 2006].

J. Garrett. Ajax: A new approach to web applications. http://www.adaptivepath.com/
publications/essays/archives/000385.php, 2005.

A. Hemel and E. Dolstra. Mod Haskell. http://losser.st-lab.cs.uu.nl/mod_haskell/
docs/mod_haskell/manual.

P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler. A history of Haskell: being lazy
with class. In The Third ACM SIGPLAN History of Programming Languages Conference
(HOPL-III), 2007.

A. Jacobson. HAppS — haskell application server. http://happs.org/, 2006. [[on-line, accessed
NOVEMBER 2006].

J. Lodder, J. Jeuring, and H. Passier. An interactive tool for manipulating logical formulae.
In M. Manzano, B. Pérez Lancho, and A. Gil, editors, Proceedings of the Second International
Congress on Tools for Teaching Logic, 2006.

O. Market. Fast CGI Whitepaper. http://fastcgi.com/devkit/doc/
fastcgi-whitepaper/fastcgi.htm, 1996.

S. Marlow. Developing a high-performance web server in Concurrent Haskell. Journal of
Functional Programming, 12(4, 5):359-374, July 2002.

E. Meijer and D. v. Velzen. Haskell server pages, functional programming and the battle for
the middle tier. Electronic Notes in Theoretical Computer Science, 41(1), 2001.

B. Neuberg. Ajax: How to handle bookmarks and back buttons. http://www.onjava.com/
pub/a/onjava/2005/10/26/ajax-handling-bookmarks-and-back-button.html, 2005.

A. Pang, D. Stewart, S. Seefried, and M. M. T. Chakravarty. Plugging Haskell in. In Pro-
ceedings of the 2004 ACM SIGPLAN workshop on Haskell, 2004.

H. Passier and J. Jeuring. Feedback in an interactive equation solver. In M. Seppailé,
S. Xambo, and O. Caprotti, editors, Proceedings of the Web Advanced Learning Conference
and Ezxhibition, WebALT 2006, pages 53—68. Oy WebALT Inc., 2006.

O. Pastor, J. Fons, and V. Pelechano. OOWS: A method to develop web applications from

web-oriented conceptual models. In International Workshop on Web Oriented Software Tech-
nology (IWWOST), 2003.

O. Zimmermann, V. Doubrovski, J. Grundler, and K. Hogg. Service-oriented architecture and
business process choreography in an order management scenario: rationale, concepts, lessons
learned. In 20th ACM SIGPLAN Conference on Object Oriented Programming Systems Lan-
guages and Applications, pages 301, 312, 2005.

10

