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Abstract

This paper discusses optimization of quality measures over first order Delaunay triangu-
lations. Unlike most previous work, our measures relate to edge-adjacent or vertex-adjacent
triangles instead of only to single triangles. We give efficient algorithms to optimize cer-
tain measures, whereas other measures are shown to be NP-hard. For two of the NP-hard
maximization problems we provide for any constant ε > 0, factor (1 − ε) approximation
algorithms that run in 2O(1/ε) · n and 2O(1/ε2) · n time (when the Delaunay triangulation is
given). For a third NP-hard problem the NP-hardness proof provides an inapproximability
result. Our results are presented for the class of first-order Delaunay triangulations, but
also apply to triangulations where for every triangle at least two edges are fixed. One of the
approximation results is also extended to k-th order Delaunay triangulations.
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1 Introduction

Triangulation is a well-studied topic in computational geometry. The input is a point set or
planar straight line graph in the plane, and the objective is to generate a subdivision where
all faces are triangles, except for the outer face. In some cases extra points are allowed, in
which case we speak of a Steiner triangulation. Since a point set (or planar straight line graph)
allows many different triangulations, one can try to compute one that optimizes a criterion.
For example, one could maximize the minimum angle used in any triangle, or minimize the
total edge length (minimum weight triangulation). The former optimization is solved with the
Delaunay triangulation in O(n log n) time for n points. The latter optimization is NP-hard [19].

Several other optimization measures exist. In finite element methods, triangular meshes with
various quality constraints are used, and Steiner points may be used to achieve this. See Bern
and Plassmann [4] for a survey. Other optimization measures arise if the triangulation represents
a terrain (in which case it is called a polyhedral terrain in computational geometry): all vertices
have a specified height, and the height of points on edges and on triangles is obtained by linear
interpolation. Such a terrain representation is common in GIS and is called a TIN [6, 26].

Bern et al. [3] show that measures such as maxmin triangle height, minmax slope, and min-
max eccentricity of any triangle can be optimized with a technique called edge insertion. The
technique yields O(n3) or O(n2 log n) time algorithms. Other measures such as minmax an-
gle [9] and minmax edge length can also be optimized in polynomial time [8]. Interestingly,
the Delaunay triangulation optimizes several measures simultaneously: maxmin angle, minmax
circumscribed circle, minmax smallest enclosing circle, and minimum integral of the gradient
squared (e.g. [3]).

For terrain modeling in GIS [6, 26], Steiner points cannot be used because their elevation would
not be known. Terrain modeling leads to a number of optimization criteria, both to yield good
rendering of the terrain for visualization, and to make it suitable for modeling processes like
water runoff and erosion [13, 18, 25]. The terrain characteristics slope and aspect are especially
important. Furthermore, local minima and artificial dams, which may be artifacts due to the
creation of the triangulation, should be avoided [7, 14, 17, 24] (a vertex is a local minimum if
all neighboring vertices are higher).

The Delaunay triangulation of a set P of points is defined as the triangulation where all ver-
tices are points of P and the circumcircle of the three vertices of any triangle does not contain
any other point of P . If no four points of P are cocircular, then the Delaunay triangulation
is uniquely defined. Gudmundsson et al. [10] define higher order Delaunay triangulations, a
class of triangulations where a few points are allowed inside the circumcircles of triangles. A
triangulation is k-th order Delaunay if the circumcircle of the three vertices of any triangle con-
tains at most k other points (see Figure 1). First order Delaunay triangulations have a special
structure. If we take all edges that are certain to be in the first order Delaunay triangulation,
then the resulting subdivision only has triangles and convex quadrilaterals (and an unbounded
face). In the convex quadrilaterals, both diagonals are possible to obtain a first order Delaunay
triangulation. We call these diagonals flippable, and similarly we call the quadrilateral flippable.
Due to their special structure, measures like the number of local minima or extrema can be
minimized in O(n log n) time. The same holds for minimizing the maximum area triangle, min-
imizing the total edge length, and various other measures [10]. On the other hand, minimizing
the maximum vertex degree was only approximated by a factor of roughly 3/2.
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(a) (b) (c)

Figure 1: (a) Delaunay triangulation (zero-th order). (b) Second order Delaunay triangulation
(light grey triangles are first order, medium grey triangles are second order). (c) Structure of
first order Delaunay triangulations: one of every pair of intersecting edges must be chosen.

For higher order Delaunay triangulations, fewer results are known. Minimizing local minima
in a terrain becomes NP-hard for orders higher than nε, where ε > 0 is any constant [7].
Experiments showed that low order Delaunay triangulations can reduce the number of local
minima significantly. For first order Delaunay triangulations, the reduction is already 15–20%
with respect to the Delaunay triangulation on natural terrains, and for fourth order a heuristic
achieved reductions of roughly 50% [7].

Most of the measures mentioned above are measures for single triangles. Exceptions are total
edge length, number of local minima or extrema, and maximum vertex degree. In this paper, we
consider measures that depend on pairs of triangles that are edge-adjacent, and measures that
depend on groups of triangles that are vertex-adjacent. Notice that a single flip in a first order
Delaunay triangulation influences five pairs of edge-adjacent triangles and four vertex-adjacent
groups. The edge insertion paradigm [3] cannot be used for such problems, because it relies on
incremental improvement of the worst situation that occurs in a single triangle.

We consider objectives of the maxmin or minmax type, but also objectives where the number of
undesirable situations must be minimized. An example of a minmax problem for edge-adjacent
triangles is minimizing the maximum ratio of edge-adjacent triangle areas:

min
T

max
e∈T

(
maxarea(t, t′)
minarea(t, t′)

)
, where e ∈ ∂t and e ∈ ∂t′ and T is first order Delaunay.

This measure may be relevant for mesh generation for numerical methods. For polyhedral
terrains, an example in the same class is minimizing the maximum spatial angle of the normals of
edge-adjacent triangles. This measure is important for good slope characteristics, needed for flow
modeling. Geomorphologists classify parts of mountains or hills as footslopes, hillslopes, valley
heads, etc. [13]. Certain types of classes are characterized by terrain convexity or concavity. If
we know that a part of a terrain is a valley head, we should maximize the number of convex
edges or convex vertices in that part. A vertex of a polyhedral terrain is convex if there is a
plane through that vertex such that all of its neighbors are on or below that plane, and at least
one strictly below. The definition of concave vertices is analogous. A vertex is mixed if every
plane containing it has neighbors strictly above and below the plane. We study maximization of
the number of convex edges, maximization of the number of convex vertices, and minimization
of the number of mixed vertices.
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Table 1: Optimization problems and complexity results for first order Delaunay triangulations.
d is the maximum vertex degree in the Delaunay triangulation.

Triangles Opt. worst local measure Result Opt. # occurrences Result
incident to (minmax)
edge area ratio O(n log n) max #convex edges NP-hard

angle of outward normals O(n log n)
vertex area ratio O(nd log n) max #convex vertices O(n log n)

angle of outward normals O(nd log n) min #local minima O(n log n) [10]
vertex degree NP-hard min #mixed vertices NP-hard

Given a planar point set P with or without elevation, we study the complexity of optimizing
measures over all first order Delaunay triangulations. Measures we consider are shown classified
in Table 1, which also shows our results. The optimization of other worst local measures for
edge-adjacent triangles can also be solved in O(n log n) time with the same technique, like
minimizing the largest minimum enclosing circle of any two edge-adjacent triangles.

The proof of NP-hardness of minimizing the maximum vertex degree justifies the factor 3/2
approximation algorithm given before in [10]. The proof yields inapproximability beyond a con-
stant greater than 1 in polynomial time unless P=NP. It was already known that triangulating
a biconnected planar graph while minimizing the maximum degree is NP-hard [15]. We further
note that minimizing the number of local minima and extrema in polyhedral terrains can be
solved in O(n log n) time [10].

The NP-hard problems of maximizing the number of convex edges and maximizing the number
of non-mixed vertices can be approximated —for any constant ε > 0— within a factor 1− ε in
2O(1/ε)·n and 2O(1/ε2)·n time, if the Delaunay triangulation is given. We show this using bounded
width tree decompositions. The approximation algorithm to maximize convex edges can be
generalized to k-th order Delaunay triangulations. The running time becomes 22O∗(k)

2O∗( 1
ε2

)n.

The NP-hardness results show that, despite the simple structure of first order Delaunay trian-
gulations, optimization of various measures is hard. They are the first NP-hardness results for
first order Delaunay triangulations. The status of these problems over the class of all triangu-
lations of a point set is open. All of our results also apply to what we could call singly-flippable
triangulations: triangulations in which only the edges from a designated subset may be flipped,
and no triangle is incident to more than one flippable edge. This implies that our techniques
are not restricted to any Delaunay-related criterion.

The remainder of this paper is organized as follows. Section 2 gives the O(n log n) and O(nd log n)
time algorithms of Table 1, Section 3 gives the NP-hardness proofs, and Section 4 gives the
(1− ε)-approximation algorithms. In this paper we assume non-degeneracy of the input set P
of points: no four points are cocircular.

2 Exact Algorithms

We start this section with a problem that turns out to be surprisingly easy to solve, namely,
maximizing the number of convex vertices over all possible first order Delaunay triangulations.
Let P be a set of n points in the plane, where each point has a height value. As observed
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before, if we take the Delaunay triangulation T of P , it has a number of edges that are in any
first order Delaunay triangulation, and a number of flippable edges, and no two flippable edges
bound the same Delaunay triangle [10]. The Delaunay triangulation and its flippable edges can
be determined in O(n log n) time.

For any flippable quadrilateral, one diagonal is reflex and the other diagonal is convex in 3-
dimensional space, unless the four vertices of the quadrilateral are co-planar. Consider a convex
vertex v in T . If it is incident to a flippable quadrilateral where the convex diagonal is present,
then v will remain convex if we use the reflex diagonal instead (regardless of which diagonal
is incident to v). In other words: using only reflex edges in flippable quadrilaterals does not
cause any vertex to become non-convex. At the same time, it may turn non-convex vertices
into convex ones. It follows that the maximization problem can be solved in linear time once
the flippable quadrilaterals have been identified, by simply selecting the reflex flippable edge in
every flippable quadrilateral.

Theorem 1 A first order Delaunay triangulation that maximizes the number of convex vertices
can be computed in O(n log n) time.

2.1 Measures on edge-adjacent triangles

In this section we show how to optimize a measure function M defined for a triangulation
T , over all first order Delaunay triangulations of P . The function M should be of the shape
M(T ) = maxq∈T µ(q) for q a (not necessarily flippable) quadrilateral, and we wish to minimize
M(T ) over all first order Delaunay triangulations T of the given point set. We also use µ(e)
for any edge e in a triangulation to denote µ(q), where e is the diagonal of q. A first order
Delaunay triangulation has four types of edges: between two fixed triangles, between a fixed
triangle and a flippable quadrilateral, between two flippable quadrilaterals, and flippable edges.
As a consequence, there are only O(n) possible values for M(T ), and we can determine and sort
them in O(n log n) time.

We solve the minM(T ) problem by transforming it into a series of 2-SAT instances. We will
use 2-SAT to answer the following question: Is there a first order Delaunay triangulation T such
that M(T ) ≤ µ0? Since there are O(n) interesting values for µ0, we can apply binary search to
find the smallest one. This can be achieved efficiently because the function we are optimizing
is local to quadrilaterals, that is, M(T ) = µ(q), for some quadrilateral q. Since the number of
quadrilaterals (either flippable or not) is linear in n, the set of all the possible values for M(T )
can be computed in linear time once the flippable quadrilaterals have been identified. After
some elimination of choices of diagonals, we will model the flippable quadrilaterals by variables,
and the two diagonals will be its truth assignments. We describe the elimination first.

Let S be the subdivision that is the Delaunay triangulation of P with all flippable edges removed,
see Figure 2(a), and let µ0 be given. For every edge e of S between a triangle and a quadrilateral,
decide which of the two diagonals of the quadrilateral induces µ(e) > µ0. If both do, then we
can answer the question immediately with “no”. If only one diagonal has µ(e) > µ0, then we
fix the other diagonal in S. Otherwise, we continue with the next edge between a triangle and
a quadrilateral. This step may have made flippable quadrilaterals into two fixed triangles in S.
Next we test the possible diagonals of each quadrilateral of S. If both diagonals give µ(·) > µ0,
then we answer with “no” again. If only one diagonal gives µ(·) > µ0, then we fix the other
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Figure 2: (a) The fixed first order Delaunay edges and flippable quadrilaterals. (b) Variables
for the quadrilaterals. (c) Clauses that make a 2-SAT instance.

diagonal to make two new triangles in S. Next we test all edges of S between adjacent fixed
triangles. If any such edge does not satisfy µ(e) > µ0, then we answer the question with “no”
again.

It remains to solve the problem for edges between quadrilaterals of S. For every quadrilateral q
we introduce a Boolean variable xq, see Figure 2(b), and let one diagonal choice represent true
and the other false. Let e be an edge of S between two quadrilaterals q and r. For each choice
of diagonals in q and r that gives µ(e) > µ0, for example the one with true in q and false
in r, we make a clause (¬xq ∨ xr), see Figure 2(c). We get at most four clauses for any edge
between two quadrilaterals, so O(n) clauses overall. The conjunction of all clauses is a 2-SAT
instance.

The satisfiability of the constructed 2-CNF expression (together with a satisfying truth assign-
ment, if it exists) can be found in linear time with the algorithm of Aspvall et al. [1], hence the
original question can also be answered within this time bound.

The optimization algorithm proceeds by doing binary search on the possible values for M(T )
until it finds the optimal one, which requires at most O(log n) steps. Each step involves con-
structing and solving an instance of 2-SAT, which can be done in linear time, hence the overall
running time of the algorithm is O(n log n).

Theorem 2 A first order Delaunay triangulation that minimizes the maximum area ratio of
edge adjacent triangles can be computed in O(n log n) time. If the triangulation represents a
polyhedral terrain, the same result holds for minimizing the maximum angle of outward normals.

2.2 Measures on vertex-adjacent triangles

The algorithm described in the previous section can easily be extended to minimize measure
functions of the form M(T ) = maxt,t′∈T µ(t, t′) for t and t′ triangles in T with a common vertex.
The set of possible values of M(T ) induced by pairs of triangles incident to a vertex v is

(
d(v)
2

)
,

where d(v) denotes the degree of v. Since the sum of the degrees of all vertices is O(n), the total
number of possible values of M(T ) is at most

∑
v∈T d(v)2 = d ·∑v∈T d(v) = O(dn), where d is

the maximum degree of any vertex in the triangulation. It follows that this type of optimization
problem can be solved in O(nd log n) time.
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Figure 3: (a) The construction of a fan. (b) A left-turning fan. (c) A right-turning fan.

Theorem 3 A first order Delaunay triangulation that minimizes the maximum area ratio of
vertex adjacent triangles can be computed in O(nd log n) time, where d is the maximum vertex
degree in the Delaunay triangulation. If the triangulation represents a polyhedral terrain, the
same result holds for minimizing the maximum angle of outward normals.

3 NP-Hardness Results

In this section we show NP-hardness for three different optimization problems on first order
Delaunay triangulations.

3.1 Mixed vertices

Suppose we have a triangulated terrain, that is, a triangulation where every vertex has an
elevation attribute. In such a terrain, we call a vertex mixed if there exists no plane through
this vertex such that all neighboring vertices are on one side of the plane. In real terrains, such
mixed vertices are uncommon, so we want to minimize their number.

Problem 1 Given a set of points with elevation information, construct a first order Delaunay
triangulation of this point set such that the number of mixed vertices is minimal.

This problem is NP-hard. We prove this by reduction from planar 3-SAT [16].

We represent the variables occurring in a 3-SAT instance by fan-gadgets, as in Figure 3(a). A
fan gadget consists of 25 points with a certain elevation. In the figure, all possible first order
Delaunay edges are shown. Solid edges are in every first order Delaunay triangulation; dashed
and dotted edges are flippable. The square nodes and the dotted edges are the most important
part. We make the following observation:

Observation 1 A square vertex is mixed if and only if both incident dotted edges are in the
triangulation.

Furthermore, we construct the gadget in such a way that the state of the round vertices does
not depend on any of the dotted edges. The white round vertices are always non-mixed, even
if all possible incident edges would be in the triangulation; the gray round vertices are always
mixed, already if only the fixed edges are in the triangulation. This implies that the number of
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Figure 4: (a) Connecting variables. (b) An inverter gadget.

mixed vertices is only affected by square vertices, and can only be minimal if there are never
two dotted edges incident to the same square vertex. A fan-gadget therefore has two possible
states, see Figures 3(b) and 3(c).

We can connect fans together to form larger chains that are all in the same state, see Figure 4(a).
We turned two more vertices into square vertices, and if the left fan is left-turning, the right
fan must also be left-turning and the other way around. We can connect up to three fans to an
existing fan, so chains can also split.

We also need to make negations in chains; for this we use the inverter gadget in Figure 4(b).
Here, if the leftmost flippable quadrilateral has its positive sloping diagonal in the triangulation,
the rightmost flippable quadrilateral must have its negative sloping diagonal and the other way
around. We can incorporate an inverter gadget in a chain to change its value.

We represent the clauses occurring in the 3-SAT instance by a special clause vertex, see Figure 5.
Here three fan chains come together at one square vertex in a darker shade of gray. This vertex
has a slightly different property than the other square vertices.

Observation 2 A clause vertex is mixed if and only if all three incident dotted edges are in the
triangulation.
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Figure 6: A coating to shield the construction from interference from outside.

Therefore the clause can be satisfied if at least one of the three fans is not right-turning, and
by including inverters at the appropriate places this can represent any Boolean clause.

With these gadgets we can build the whole planar 3-SAT instance. Finally, we need to trian-
gulate the remaining gaps, hence we need to ensure that the vertices on the boundary really
have a fixed status. To do this, we add an extra layer of vertices at a very high elevation, see
Figure 6. The vertices need not really be infinitely high, just high enough. Now these vertices
will all be non-mixed, and for the vertices that are not on the boundary their properties can
just be checked locally.

Theorem 4 Minimizing the number of mixed vertices over all first order Delaunay triangula-
tions is NP-hard.

3.2 Triangles incident to a vertex

Problem 2 Given a set of points, construct a first order Delaunay triangulation of the point
set such that the maximum vertex degree is minimum.

This problem is NP-hard. We prove this by reduction from planar 3-SAT [16]. Given a 3-SAT
instance, we will construct a point set such that a triangulation with maximum vertex degree
d exists if and only if the instance is satisfiable, for some suitably chosen d.

We represent variables by chains of flippable quadrilaterals, see Figure 7(a). The idea is that the
vertices of the quadrilaterals have d−1 fixed edges, so only one of the two diagonals incident to
each vertex is allowed to be in the triangulation. This implies that there are only two possible
triangulations of the whole chain.

We can also split these chains, by using a ring of quadrilaterals, see Figure 8(a). In the ring,
all flippable diagonals must either be situated in clockwise or in counterclockwise direction. To

9



(a) (b) (c)

Figure 7: (a) A variable chain. (b) One state. (c) The other state.

turn the chains over small angles, we just deform some quadrilaterals slightly as in figure 8(b).
Finally we represent clauses by a special clause vertex that has d− 2 fixed outgoing edges, see
Figure 8(c). This means that only two of the flippable diagonals can be in the triangulation.

These gadgets are sufficient to build the whole 3-SAT instance. However, we need to include
some more points to ensure that the degree of each vertex is exactly d. For normal vertices there
are always two flippable edges, so we need to include exactly d − 1 fixed edges. By including
these, we need to ensure that the flippable edges remain flippable and the fixed edges are really
fixed. In Figure 9 we see how we can achieve this. If we have a horizontal chain of quadrilaterals,
we add one point beneath the middle of each quadrilateral, and one point above it, such that
they are just outside the circle through the four corners of the quadrilateral. This ensures that
the four possible triangles inside the quadrilateral are still first order Delaunay triangles. Then,
for each vertex, we add d − 6 more points on a circle that goes through the two newly added
neighbors of this vertex and that contains this vertex and its opposing vertex in its interior. If
we would flip any of the edges of the resulting triangulation, there would be a face that has its
three corners on this circle, and thus would not be first order Delaunay.

Similar constructions can be used on the other gadgets, so the new triangulation will look like
the one shown in Figure 10. The only problem occurs in the splitter gadget, in the middle of
the figure. Here some new flippable quadrilaterals are introduced, marked by the dashed edges.
However, if we just make sure that the inner vertices of the ring have fixed degree d − 1, then
these all have to be flipped away, and will then count as fixed edges for the two vertices that
then become connected.

Now we only need to fill the remaining holes with triangles, such that the whole construction
becomes a triangulation. The outer triangles are all fixed, so anything that happens outside the
contruction does not influence anything inside. So we just need to make sure that there will be
no vertices of high degree outside. This means we need to add some Steiner points such that
the Delaunay triangulation of the resulting set has bounded vertex degree.

We can do this, for example, by using the algorithm of Ruppert [22]. It takes as input a planar

(a) (b) (c)

Figure 8: (a) Variable chains can be split. (b) Chains can turn over angles of 30◦. (c) A clause
gadget.
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Figure 9: We add fixed triangles to increase the degree.

straight line graph and generates a triangulation respecting the edges and vertices of the graph,
where no angle is smaller than a parameter α < 20◦. The algorithm produces an output of size
related to the local feature size of the input (that in turn is related to the vertex spacing, so in
our case is some value depending on d). The running time of the algorithm is quadratic in the
output size, hence it is also polynomial.

If all angles of the resulting triangulation are larger than, say, 18◦, then no vertex has a degree
higher than 20 in the Delaunay triangulation, so a value of d = 20 will do.

Theorem 5 Minimizing the maximum vertex degree over all first order Delaunay triangulations
is NP-hard.

3.3 Convex edges

In a triangulated terrain, every edge between two triangles is either convex or reflex. If we know
that the (part of the) real terrain we are modeling is globally convex, we may want to maximize
the number of convex edges in our model.

Problem 3 Given a set of points with elevation information, construct a first order Delaunay
triangulation of this point set such that the number of convex edges is maximal.

This problem is NP-hard, and we prove this by a reduction from planar MAX-2-SAT [11].

We build the SAT instance on a regular grid of unit-quadrilaterals. On such a grid, all diag-
onals are flippable, while the edges between neighboring quadrilaterals are fixed. A flippable
quadrilateral always has one convex and one reflex diagonal. We assign the heights in such a

Figure 10: A shiny coating of fixed triangles.
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(a) (b) (c)

Figure 11: (a) A group of quadrilaterals. (b) One optimal state. (c) The other optimal state.

way that an edge between two flippable quadrilaterals is convex if at least one neighbor has
a reflex diagonal, and reflex otherwise. The edges at the border of the grid should always be
reflex.

We build variables by making large areas of adjacent flippable quadrilaterals, where the width
of such an area is everywhere at least two, see Figure 11(a). For such an area the maximal value
is achieved by alternating convex and reflex edges in a chessboard pattern, and there are two
solutions of equal value, as shown in Figures 11(b) and 11(c). We get a credit for every convex
edge, so in these situations we get one credit for every edge between two adjacent quadrilaterals,
and one for each convex quadrilateral, which is half the total number of quadrilaterals.

To connect variables to each other, we make one large pool of quadrilaterals for each variable,
and send tentacles to meet the other variables, see Figure 12. A meeting point consists of a
single shared edge. this edge gives a credit when at least one of the incident quadrilaterals is in
the reflex state.

This way we can build the whole MAX-2-SAT instance, and we get a fixed number of credits for
all variables, plus the number of satisfiable clauses. This does mean that the variable pools need
to be large enough to make breaking the value of a variable too expensive. A breakline costs
as many credits as it is edges long, divided by two. It can gain as many points as the lowest
number of tentacles that were cut off. Therefore, making the pool bigger than the number of
tentacles is sufficient.

Figure 12: Connecting variables.
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(a) (b)

Figure 13: (a) Skipping a step. (b) A coating of high peaks. The square vertices are at ∞, the
round ones at xy − x2+y2

10 .

To make sure that we can connect every pair of variables in every desired way, we need to be able
to skip a column or row sometimes. A chain with a skip in it would just look like Figure 13(a).

Finally, we need to assign heights to the vertices to realize the required properties. We can do
this by placing the vertices on a surface, for example of the function f :

f(x, y) = xy − 1
10

(x2 + y2)

This assignment realizes the properties within the construction. We also wanted all edges on the
border to be always reflex; for that we add a coating of points at elevation ∞, see Figure 13(b).
What happens outside this coating is irrelevant: any first order Delaunay triangulation of the
remaining faces can be used.

Theorem 6 Maximizing the number of convex edges over all first order Delaunay triangulations
is NP-hard.

4 Approximation Algorithms

The problems of optimizing the number of convex edges or mixed vertices and minimizing the
maximum vertex degree were shown NP-hard; hence it is of interest to develop approximation
algorithms for them. For the last problem there is already a 1.5-approximation [10], and our
NP-hardness proof shows that no polynomial time approximation scheme exists unless P=NP.
For the other two problems we present polynomial time approximation schemes. We also show
how the algorithm for maximizing convex edges can be extended to k-th order Delaunay trian-
gulations.

The general idea is as follows. First we transform the problem into a graph problem on some
planar graph that can be obtained from the Delaunay triangulation without flippable edges.
The resulting graph is partitioned into layers of outerplanarity at most λ. For each choice of i,
where 0 ≤ i < λ, we delete every (jλ+i)-th layer of vertices, where j = 0, 1, 2, . . .. The resulting
“thick” layers are independent. For each thick layer, we compute a tree decomposition of width
at most 3λ − 1 and solve the problem optimally on this decomposition in 2O(λ)n time, using
dynamic programming. Finally, the union of the solutions of all the thick layers for a given i
yields a solution to the original problem. We simply choose i such that the size of the solution
is maximal, and return the corresponding triangulation as the output.
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Figure 14: (a) Initial triangulation (solid edges are fixed). (b) Graph (in gray) where each vertex
represents a flippable quadrilateral. (c) The same graph showing the outerplanarity layers.

Such an approach gives a (1−ε)-approximation if λ is chosen suitably, depending on the problem
and ε [2, 12]. This can be seen as follows. Let Si, 0 ≤ i < λ, be the union of the solutions of
the thick layers for a given i. Let OPT , an optimal solution with value OPT , be partitioned
according to its outerplanarity layers modulo λ, that is, the i-th group OPTi contains a layer that
is l-outerplanar if and only if i = lmodλ. Since OPT = ∪iOPTi, there must be an index r such
that |OPTr| < |OPT |

λ . Now OPT − OPTr is a (probably suboptimal) solution to the problem,
where the (λ + r)-th layers have been removed. Then |Sr| ≥ |OPT | − |OPTr| ≥ (1− 1

λ)|OPT |.
Therefore the size of the solution given by the algorithm will be at least (1− ε)OPT .

In the reminder of this section we present the algorithms in more detail.

4.1 Maximizing the number of convex edges

We build a graph G that has a vertex (called q-vertex) for each flippable quadrilateral, and an
edge between two q-vertices if and only if their corresponding quadrilaterals share an edge. The
rest of the input (all the fixed triangles) are not explicitly represented, see Figure 14(b). Each
q-vertex has two possible states, convex or reflex, depending on the choice of the diagonal. It
also has a value that depends on its state and represents the number of convex edges among
the flippable edge and any edges that the quadrilateral shares with fixed triangles when the
q-vertex is in that state (from 0 to 5). Furthermore, every edge in G has a value that depends
on the states of both incident q-vertices. The goal of the algorithm is to find a state for each
q-vertex such that the sum of the values (total number of convex edges) is maximized.

To create the independent thick layers from the graph we will remove the edges that connect
two consecutive layers jλ+i and jλ+i+1 in G, where j = 0, 1, 2, . . ., for all choices of 0 ≤ i < λ.
The layers created after removing one set of layers of edges are independent, so if we optimize
them separately and then join them by adding the removed edges, the number of convex edges
after the join cannot decrease. Some edges are not considered for every i, but only in λ − 1
out of λ solutions. We get a (1 − ε)-approximation algorithm by taking λ = d1

εe, due to the
pigeonhole principle [2, 12].

Once we have the thick layers, each layer is solved optimally by using a tree decomposition
approach. Since each layer is a λ-outerplanar graph, a tree decomposition with treewidth at
most 3λ− 1 can be computed in time linear in the number of nodes of the graph [5]. Once we
have this decomposition we can apply one of the standard techniques to deal with problems on
graphs of small treewidth. The technique consists of building tables of partial solutions in the
nodes of the tree decomposition [5, 20].
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x1 x2 ... xni−1 xni mi()
c c ... c c

c c ... c r

c c ... r c

c c ... r r

...
r r ... r r

Table 2: Each table Ai contains all the possible assignments for the quadrilaterals in the bag.
Each flippable quadrilateral xi can be assigned a convex (c) or reflex (r) state.

Definition 1 (from [20], originally in [21]) Let G = (V, E) be a graph. A tree decomposition
of G is a pair 〈{Xi | i ∈ I}, T 〉 where each Xi is a subset of V , called a bag, and T is a tree
with the elements of I as nodes. The following three properties must hold:

• ⋃
i∈I Xi = V .

• For every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi.
• For all i, j, k ∈ I, if j lies on the path between i and k in T then Xi ∩Xk ⊆ Xj.

The width of 〈{Xi | i ∈ I}, T 〉 equals max{|Xi| | i ∈ I}−1. The treewidth of G is the minimum
ω such that G has a tree decomposition of width ω.

Let 〈{Xi | i ∈ I}, T 〉 a tree decomposition of our graph G. We will make T rooted by choosing
any node to be the root. For each bag Xi, we will store a table Ai (i ∈ I), see Table 2. Tables
will be created in a bottom up fashion as follows. For each bag Xi, the table Ai has 2ni rows and
ni + 1 columns, where ni = |Xi|. Each row represents an assignment of a state (reflex/convex )
to each q-vertex (flippable quadrilateral) in Xi. All the different possible assignments for the
bag are represented in the table. Furthermore, for each assignment Cj an extra value mi(Cj)
is stored, containing the number of convex edges in an optimal triangulation of the point set
induced by the subtree rooted at Xi that includes the current coloring as a subset. The details
on how to compute these values are presented below.

Step 1: Table initialization. For every table Ai and each assignment Cj , we set mi(Cj) to be
the number of convex edges for that assignment: The sum of the values of each q-vertex (that
will vary according to its state), plus 1 for each edge with both incident q-vertices in Xi if their
states define a convex edge between the corresponding quadrilaterals (with diagonals chosen).

Step 2: Table update. Next the tree is traversed, starting from the leaves, finishing at the
root. For each node, the column mi of Ai is updated based on its children. Let i be the parent
of node j. Bags Xi and Xj have some q-vertices in common. We sort both tables first by the
columns of the shared q-vertices, and second by mi. Then we scan Ai row by row, and for each
assignment Cl we update mi(Cl) based on the highest value that mj() has for that combination
of the shared q-vertices. For later reconstruction of the triangulation we also store a pointer to
the corresponding row in Aj . When a node Xi has several children, we update Ai against each
child, one at a time, in the same way. Once the root node is updated, the number of convex
edges in an optimal triangulation will be in the last column of one of the rows of its table. The
final triangulation can be computed by following the pointers in the tables.

The correctness of the method follows from the definition and properties of tree decompositions,
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and the arguments are identical to the ones that hold for other well-known problems where the
same technique has been used, such as vertex cover or dominating set (see [20]).

The running time is dominated by the computation and merging of the tables. The sorting
of each table can be done in time O(2ωω) (because all but one column have only two states).
The time for updating a table based on another one is linear in the size of the largest one,
so O(2ω). The number of tables is linear in the number of nodes |I| of tree T , hence the
total running time is O(2ωω · |I|). Since the graph is λ-outerplanar we can compute a tree
decomposition of width ω ≤ 3λ − 1 and |I| = O(n) nodes [5, 20]. We apply this algorithm to
the λ different values of i to get an approximation scheme, so the worst-case running time is
O(λ2ωω · |I|) = O(λ28λ · n) = O( 1

ε2 8
1
ε · n) = 2O(1/ε) · n.

Theorem 7 For any ε > 0, a (1 − ε)-approximation algorithm for maximizing the number of
convex edges over all first order Delaunay triangulations exists that takes 2O(1/ε) ·n time (if the
Delaunay triangulation is given).

4.2 Maximizing the number of non-mixed vertices

The approach above requires several adaptations before it can be used to maximize the number
of non-mixed vertices, mainly because the state of a vertex (mixed/non-mixed) is determined by
all incident quadrilaterals. As before, let S be the subdivision that is the Delaunay triangulation
of the set P of points, with all flippable edges removed. The graph G of which we will compute
a tree decomposition has one vertex for each quadrilateral of S (called a q-vertex), and one
vertex for each vertex of S that has at least one incident quadrilateral (called a p-vertex of
G). There is an edge between a q-vertex and a p-vertex if the quadrilateral of the q-vertex is
incident to the vertex in S of the p-vertex. Note that G is planar and bipartite. Each q-vertex
has two possible states, flipped or non-flipped (Delaunay), and each p-vertex has a value, mixed
or non-mixed, that depends on the states of the incident q-vertices. The goal is to assign a state
to each q-vertex to maximize the number of non-mixed p-vertices.

Graph G still needs some preprocessing. Firstly, it may contain p-vertices that can never be
non-mixed, because their fixed incident edges already make them mixed. All such p-vertices
will be removed. Secondly, there can be q-vertices that are connected to only one p-vertex. So
we can always choose the diagonal of the quadrilateral non-incident to the p-vertex, helping it
to become non-mixed. Hence, all q-vertices of degree 1 can also be removed. In graph G, each
q-vertex has degree between 2 and 4, and each p-vertex can be turned non-mixed (for example
by choosing all diagonals in incident quadrilaterals non-incident to that vertex).

We will also remove from G all p-vertices with degree larger than some value d. This implies
that we will not use these vertices in the maximization of non-mixed vertices, and hence we
will lose optimality in this step. Since G is a planar graph, we remove at most b6n/dc vertices,
if G had n vertices. We will show that sufficiently many p-vertices remain that can be turned
non-mixed to yield an approximation scheme, if d is chosen suitably.

After these preprocessing steps we get a number of connected components with p-vertices of
degree at most d. We proceed to solve each component in a similar way as the previous problem:
taking thick layers and solving each layer optimally by using dynamic programming on a tree
decomposition. For each component we create a series of thick layers that are λ-outerplanar,
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for λ even, by deleting every (jλ+ i)-th layer of vertices where j = 0, 1, 2, . . ., and i takes values
i = 0, 2, 4, . . . , λ. Notice that we only need to remove layers of p-vertices, hence i must be even.

We can analyze the two steps where we approximate separately. Let the first one have a ratio
ε1 and the second one ε2. The solution obtained by our algorithm will be at least (1− ε1)(1−
ε2)OPT . We will choose ε1 = ε2 = 1

2ε.

The approximation by removing layers is almost as before, but now each p-vertex is considered
in λ/2− 1 out of λ/2 solutions. Therefore we get a (1−ε2)-approximation by taking λ = d2/ε2e
(to simplify the presentation, we are assuming d2/ε2e is even, otherwise we take λ = d2/ε2e+1).
It remains to show that the removal of higher degree vertices gives a (1 − ε1)-approximation.
The graph G has a number of connected components where all the q-vertices have degree at
most 4, and each p-vertex can be turned non-mixed, possibly at the expense of others. In any
component, we can always make a linear number of the p-vertices non-mixed by choosing a
p-vertex and choosing the diagonal in all incident quadrilaterals non-incident to that p-vertex.
Every time we do this, the “neighboring” p-vertices (connected through exactly one q-vertex)
may be prevented from being non-mixed. Since the component is planar, there must be a p-
vertex of degree at most 5. We can make that vertex non-mixed, preventing at most 10 (two
per quadrilateral) other p-vertices from being non-mixed, and continue in this way. Hence, at
least 1/11 of the p-vertices can be made non-mixed. Therefore at least a fraction of 1

11(1 − 6
d)

of the vertices will be non-mixed. We take d = d66
ε1
e+ 6 to guarantee a (1− ε1)-approximation.

On every thick layer we compute a tree decomposition 〈{Xi | i ∈ I}, T 〉 of width at most 3λ− 1.
We need to modify this decomposition, because to be able to count a p-vertex as non-mixed,
we need to assure that some bag Xi of the tree decomposition contains that p-vertex with all
neighboring q-vertices. The modification simply consists in adding these neighboring q-vertices.
Any bag Xi will become larger by a factor d, the maximum degree of a p-vertex, because each
p-vertex already had at least one adjacent q-vertex in the same bag. One can verify that the
new tree decomposition still satisfies the properties of Definition 1, and its width has become
at most (3λ− 1)(1 + d).

Now we can apply the dynamic programming approach to solve the problem optimally, in the
same way as before. Some further details are given next.

Following the notation from the previous problem, we have a tree decomposition of G = (V, E)
〈{Xi | i ∈ I}, T 〉, where T is a tree with the elements of I as bags, and ω = (3λ − 1)(1 + d)
is the width of the decomposition. Each bag Xi now contains two types of vertices: q-vertices
(q1, ..., qni) and p-vertices (pni+1, ..., pmi), |Xi| = mi.

For each bag Xi = {q1, ..., qni , pni+1, ..., pmi}, compute a table Ai with the same shape as before:
2ni rows and ni + 1 columns. Only q-vertices have a column in the table. Each row represents
an assignment of a value (flipped/non-flipped) to each of the flippable quadrilaterals in Xi. The
extra value mi(Cj) contains the number of non-mixed p-vertices in an optimal triangulation of
the point set induced by the subtree rooted at Xi, that includes the current assignment as a
subset. Note that due to the extra vertices added to the tree decomposition, we can compute
the value (mixed/non-mixed) of all the p-vertices in Xi.

The table initialization is similar to before. For each assignment to the q-vertices the number
of non-mixed p-vertices is stored in mi().

The update of the tables is also done in the same way as before. In this case, when going row
by row of Ai, mi() will be updated by considering the best (highest) entry from Aj for the
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same assignment for the vertices shared, plus the number of non-mixed vertices added by the
assignment of non-shared q-vertices in Ai. It is worth mentioning that it is always possible to
compute a value for each p-vertex in Xi because all its neighbors were added to its bag after
getting the original tree decomposition. Without this addition, situations could arise in which
the value of a p-vertex depends on a q-vertex that is not in the current bag, and hence cannot
be computed.

The way the final triangulation is obtained, the correctness of the dynamic programming algo-
rithm and its running time are the same as in the previous problem. In particular, the running
time is O(2ωω|I|).
As to the running time of the reminder of the algorithm, the removal of higher-degree vertices
can be done in linear time. The dynamic programming step on the tree decomposition takes
O(2ωω · |I|) time. We take λ = d 2

ε2
e = d4

εe to assure that the removal of layers gives a (1− ε2)-
approximation. The treewidth ω of the modified tree decomposition is (3λ− 1)(d + 1), which is
O(1/ε2). Therefore the running time of the algorithm is 2O(1/ε2) · n.

Theorem 8 For any ε > 0, a (1 − ε)-approximation algorithm for maximizing the number of
non-mixed vertices over all first order Delaunay triangulations exists that takes 2O(1/ε2) ·n time
(if the Delaunay triangulation is given).

4.3 Maximizing the number of convex edges when k > 1

Up to now we have always assumed that k = 1. However, some of the approximation techniques
can also be used to obtain approximation schemes for the same problems when k > 1, at the
cost of k appearing (rather unpleasantly) in the time bound. To illustrate this, we will now
describe how to adapt the algorithm for maximizing the number of convex edges.

The general idea is very similar to the case when k = 1. First we compute the Delaunay
triangulation of the point set. The resulting triangulation is partitioned into thick layers of
outerplanarity at most λ.

First we need to introduce some definitions and results on higher order Delaunay triangulations.

Definition 2 (from [10]) A triangle 4uvw in a point set P is k-th order Delaunay if its
circumcircle C(u, v, w) contains at most k points of P . A triangulation of a set P of points is a
k-th order Delaunay triangulation if every triangle of the triangulation is k-th order Delaunay.

Definition 3 (from [10]) For a set of points P , an edge pq between two points p, q ∈ P is k-th
order Delaunay if there is a circle that passes through p and q that contains at most k points of
P inside. The useful order of an edge is the lowest order of a triangulation that includes that
edge.

For brevity, we will sometimes write k-OD instead of k-th order Delaunay. From now on we
assume that k ≥ 2 is a given integer.

Lemma 1 (from [10]) Let uv be a k-OD edge, let s1 be the point to the left of −→vu, such that the
circle C(u, s1, v) contains no points to the left of −→vu. Let s2 be defined similarly but to the right
of −→vu. Edge uv is a useful k-OD edge if and only if 4uvs1 and 4uvs2 are k-OD triangles.
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Lemma 2 (from [10]) The Delaunay edges intersecting one useful k-OD edge uv are connected
to at most k vertices on each side of the k-OD edge.

Note that the previous lemma implies that a useful k-OD edge can cross at most 2k−1 Delaunay
edges and 2k Delaunay triangles.

Lemma 3 (from [10]) Let uv be any Delaunay edge. The number of useful k-OD edges in a
triangulation T that intersect uv is O(k).

After computing the Delaunay triangulation of the point set, the algorithm considers thick
layers of width (outerplanarity) λ. After every thick layer, we will skip the next k layers. This
separation distance of k outerplanarity layers guarantees that no useful k-OD edge will go from
one thick layer to the next one, creating independent thick layers (this is because crossing k
layers involves crossing 2k Delaunay triangles). For each thick layer, we compute an initial tree
decomposition of width at most 3λ− 1. In order to solve the problem optimally for that layer,
the initial decomposition will be augmented in several ways, without increasing the tree width
too much. This will be detailed in the next subsection.

As before, we will solve everything for each of the possible shifts of the thick layers, solving in
this case (λ + k) problems. The union of the solutions of all the thick layers for a given shift
yields a solution to the original problem. We simply choose the shift such that the size of the
solution is the maximal, and return the corresponding triangulation as the output.

With this approach we get a (1− ε)−approximation algorithm by taking λ = d2k
ε e. Each useful

k-OD edge is considered in (λ − k) out of (λ + k) problems that are solved optimally. The
pigeon-hole principle then shows that at least one of the (λ + k) problems has a value that is a
(1− ε)-approximation of the optimum.

4.3.1 Exact algorithm for a single layer

For a given thick layer we get a subgraph of the Delaunay triangulation of bounded outerpla-
narity. This subgraph is planar, but not necessarily a triangulation, since it can have multiple
components, a non-convex outer face, or holes. The part that is triangulated defines a polygon.
We want to retriangulate this polygon, in such a way that we optimize the number of convex
edges, while making sure that all triangles are k-OD with respect to the original point set. More
precisely, we are given a set of n points P , and a polygon B that has only points of P as vertices,
has no self-intersections, but may have holes and multiple components, see Figure 15(a). We
want to compute a triangulation of the inside of B and the part of P inside B, such that the
circumcircle of each triangle does not contain more than k points of P .

Definition 4 Given a pair of vertices (u, v) we define their distance as the smallest number
of triangles that need to be crossed to walk from u to v in the Delaunay triangulation. See
Figure 15(b).

Lemma 4 Let 〈{Xi|i ∈ I}, T 〉 be a tree decomposition of the Delaunay triangulation of a set of
points, with width ω. Then for all pairs of vertices (u, v) whose distance is at most 4k, we can
add both vertices to all the bags in the shortest path between u and v in the tree decomposition,
without increasing the treewidth to more than O(24kω).
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Figure 15: (a) A point set P , and a polygon B that needs to be retriangulated. (b) A path
from u to v. The distance between u and v is 9.

Proof: For any pair (u, v) at distance at most 4k, we add vertices u and v to every bag on the
shortest path in the tree decomposition. This means that every bag of the tree decomposition
that is on this shortest path, must include at least one edge of the Delaunay triangulation that
is crossed by the path from u to v. To see this, take a look at two adjacent triangles on the
path, for example 4wxy and 4xyz in Figure 15(b). We know that both triangles are in some
bag of the tree decomposition, and these bags are on the path in the tree. We also know that
the two triangles share an edge, namely xy, and since all vertices need to occur in a connected
part of the tree, every bag on the path in the tree between the one containing 4wxy and the
one containing 4xyz must contain both x and y, and therefore the edge xy. The same applies
to every pair of adjacent triangles. Since the first triangle of the path includes u and the last
triangle includes v, the whole shortest path between u and v contains always at least some edge
crossing the path in the Delaunay triangulation.

In every bag of the tree decomposition where u and v are added there is a Delaunay edge that
is crossed by the path from u to v. Every bag of the initial tree decomposition contains at most
ω Delaunay edges, and every edge is crossed by at most O(24k) paths, because the paths have
length at most 4k. Therefore, for every bag at most O(ω24k) vertices are added. £

Observation 3 After adding the vertices as in the previous lemma, every useful k-OD edge
appears in at least one bag, and hence also every k-OD triangle.

The first part follows from the fact that if uv is a useful k-OD edge, then the distance between u
and v cannot exceed 2k. Since every k-OD edge is in some bag, property 3 of tree decompositions
implies every triangle made of three of these edges is also in some bag.

Lemma 5 (From [23]) Let (u, v) be a useful k-OD edge. Then there are at most O(k) k-OD
triangles that have uv as one of its edges.

Lemma 6 A tree decomposition of width ω that already fulfills the conditions of Lemma 4 can
be augmented to include every pair of k-OD triangles that share a useful k-OD edge in at least
one bag, increasing the treewidth to at most O(kω2).

Proof: For each useful k-OD edge uv we will add all the points that create a k-OD triangle
together with uv. Since every useful k-OD edge is present in some bag, all the possible pairs
of k-OD triangles sharing a useful k-OD edge are at least in one bag. Each bag contains at

20



most ω2 useful edges, hence from Lemma 5 we know that each bag increases its size to at most
O(kω2). £

Lemma 7 Given a tree decomposition T of width ω of some graph G, we can construct a tree
decomposition T ′ of G with the following properties:

• Every pair of adjacent bags (Xi, Xj) in T ′ differs by exactly one vertex, that is, Xi =
Xj ∪ {x} or Xj = Xi ∪ {x} for some vertex x of the graph G.

• The size increases by at most a factor 2ω, that is, |T ′| ≤ 2 · ω · |T |.
• The width increases by at most a factor 2, that is, ω′ ≤ 2 · ω.

Proof: Let Xi and Xj be adjacent bags in T . Let X ′
i = Xi −Xj and X ′

j = Xj −Xi be the
unique parts of the bags. Now we will create |X ′

i|+ |X ′
j |−1 new bags between Xi and Xj . First

we add the elements of X ′
j to Xi, one by one, until we create a new bag which is Xi ∪Xj . Then

we remove the elements of X ′
i from this bag, one by one, until we are left with just Xj . In this

way, we create fewer than 2ω(T ) new bags of width at most 2ω(T ). Note that the inclusion of
the new bags does not disrupt the tree decomposition property: any vertex of G is still present
in a connected subset of the bags of the tree. If we do this for every pair of adjacent bags in T ,
we obtain the required tree decomposition T ′. £

We now augment our initial tree decomposition of width 3λ+1 to a tree decomposition of width
at most O(k28k+1(3λ + 1)2) = 2O(k log k)λ2, following Lemmata 4, 6 and 7.

Definition 5 (From [10]) The hull of a useful k-OD edge is the union of the Delaunay triangles
intersected by this edge.

Lemma 8 Any two useful edges whose hulls intersect appear together in some bag of the de-
composition.

Proof: If two useful k-OD edges uv and wx have intersecting hulls, then there is some
Delaunay triangle t which is part of both hulls, and therefore intersected by both uv and wx.
This means that there is a path from t to u, v, w and x of length at most 4k, and therefore
they all have to be together in some bag. £

Definition 6 A fence is a collection of edges in a triangulation of the polygon that separates
the part of the polygon that we have already solved from the part we still have to solve. See
Figure 16.

Lemma 9 Given a polygon with some points inside, and a tree decomposition T following the
previous lemmata: if G is a k-OD triangulation of that polygon, any bag of T contains a set of
edges of G that form a fence for T .

Proof: There are no edges going from the part of B that we already visited to the part that
we have not yet visited. Therefore, there are no triangles that block one boundary from the
opposite boundary and there is always a path over the edges from boundary to boundary. £
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present

past

past

future

Figure 16: A fence. The black edges form a second order Delaunay triangulation. The dashed
edges are Delaunay edges. The fat edges form a fence between the past and the future within
the current bag.

Dynamic Programming Let Xi be a bag of the tree. Xi has a collection V of vertices. For
every pair of vertices v, w ∈ V we have a Boolean variable if vw is a useful k-OD edge. For every
assignment of the variables in Xi, we store a value. This value describes the best possible score
of any triangulation of the vertices in this bag and ‘lower’ bags that adheres to this assignment.

We only keep those entries that have no crossing edges and that include a fence between the
past and the future, and with the property that for any fence, the part to the left (past) of it
is a proper k-OD triangulation. This property will have to be preserved.

For a given vertex set and a graph on it, we define the value of this graph as the number of
convex edges in the graph, where an edge is convex when it is the diagonal of a quadrilateral,
and the angle between the two triangles thus formed is convex.

We follow the tree using dynamic programming. In every step, we assume that the values for
all variable assignments in the child bag are given, and we need to compute the values for all
variable assignments in the parent bag. We discern two different cases.

• The parent bag has a vertex v that is not in the child bag. The bags are otherwise
identical.
There are several new useful k-OD edges that connect v to existing vertices in the bag.
We get a new variable for all those edges. Note that there cannot be useful k-OD edges
that connect v to a vertex in the past, by Lemma 8.
For every possible state of the new set of variables, if there is no value stored in the child
bag because the state has crossings or no fence with a proper triangulation to the left, then
we store no value in the parent bag either. If there was a value in the child bag, then we
compute the new value by adding the number of newly formed convex edges to the stored
value. Finally we check whether the new set of edges creates a new fence (through v),
and if so, we check whether the part between the old fence and the new fence is correctly
triangulated with k-OD triangles. If it is not, we throw this state away.

• The child bag has a vertex v that is not in the parent bag. The bags are otherwise
identical.
Now there are several edges that were in the child bag, but are no longer in the parent
bag. For every state in the parent bag, we choose among the states in the child bag the
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one that has the highest score. If the rightmost fence of this state goes through v, we
throw the state away.

4.3.2 Time Analysis

The running time of the dynamic programming algorithm depends on the the treewidth and size
of the decomposition (number of bags). The input graph to compute the tree decomposition is
λ-outerplanar, hence we can obtain a decomposition of treewidth 3λ − 1. The decomposition
is augmented first according to Lemma 4, then according to Lemma 6, and finally according to
Lemma 7. The treewidth goes up to ω = 2O(k log k)λ2. The last augmentation step also increases
the number of bags from O(n) to m = 2O(k)n.

The dynamic programming algorithm can be easily shown to run in time O(m2ωω) (it is ω
because we keep a triangulation of the ω vertices in the bag, and ω points can be triangulated
in at most O(2ω) different ways).

Filling in ω and m we obtain a running time of 22O(k log k)λ2 log λn

Theorem 9 The subproblem of triangulating the polygon can be solved in 22O(k log k)λ2 log λn
time.

The dynamic programming algorithm of the previous sections is applied to (λ + k) different
problems. Each problem is comprised of a number of different thick layers. Their number
depends on the outerplanarity of the initial triangulation, and is at most n/(λ + k). The
dynamic programming algorithm is applied to each of these thick layers. Since the union of
them is never larger than the complete triangulation, the sum of the running time for all the
thick layers can be upperbounded by the running time of applying the dynamic algorithm to
the complete triangulation. As already mentioned, to obtain a (1−ε) factor approximation λ is
chosen to be 2k

ε . Therefore the total running time is (λ+ k) · 22O(k log k)λ2 log λn = 22O∗(k)
2O∗( 1

ε2
)n

(assuming the initial Delaunay triangulation is given).

Theorem 10 For any ε > 0, a (1 − ε)-approximation algorithm for maximizing the number
of convex edges over all k-th order Delaunay triangulations exists that takes 22O∗(k) · 2O∗( 1

ε2
) · n

time (if the Delaunay triangulation is given).

5 Discussion

We analyzed the algorithmic complexity of optimizing various measures that apply to trian-
gulations, and terrains represented by triangulations. The class of triangulations over which
optimization is done is the first order Delaunay triangulations. We gave efficient algorithms for
four measures, NP-hardness proofs for three other measures, and polynomial time approxima-
tion schemes for two measures that were shown NP-hard. One approximation algorithm could
be extended to k-th order Delaunay triangulations.

Other measures related to terrain modeling in GIS may be of interest to optimize. Also, certain
measures that have efficient, optimal algorithms for first order Delaunay triangulations may be-
come harder for second and higher order Delaunay triangulations. These are interesting topics
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for further research. It is also unknown how to generalize the approximation algorithm for max-
imizing non-mixed vertices to higher order Delaunay triangulations. Finally, improving on the
doubly-exponential dependency on the order k in the approximation algorithm for maximizing
convex edges is worthwhile.
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