
Mining Helium programs with Neon

Jurriaan Hage

Peter van Keeken

Department of Information and Computing Sciences,
Utrecht University

Technical Report UU-CS-2007-012

www.cs.uu.nl

ISSN: 0924-3275



Abstract

Over the years we have collected a large collection of Haskell
programs written by students in a first-year functional programming
course using the Helium compiler. The mining of such a collection is
not trivial, especially since the programming was done in vivo, and
hence largely outside our control. We have developed a sizable library
in Haskell, called Neon, for computing characteristics of this collec-
tion of programs and presenting the results visually. These computa-
tions range from simple kinds of analyses like computing the average
length of a program per student to determining how long it takes for
a programmer to resolve a type error.

1



1 Introduction and motivation

When the Helium compiler for learning Haskell was developed in Utrecht [5],
a lot of effort was made to improve error messages for novice students. The
major innovation of the compiler was to use type graphs and heuristics on
such type graphs to improve type error messages. Some of these heuristics
were built-in [3], others were in the form of type inference directives that
can be specified in special .type files that accompany the ordinary Haskell
sources. This allowed the customization the behaviour of the compiler for
classes of expressions, opening up possiblities for supporting domain-specific
type-error messages for domain-specific libraries [4].

Although such an innovation seems worthwhile at first glance, its worth
in a practical sense can only be established emperically. For this reason a
logging facility was added to Helium which logs all the programs compiled
by a programmer (if he does not explicitly turn it off). This has resulted
in a large collection of programs (about 68,000, collected during various
incarnations of the functional programming course at Universiteit Utrecht).

In this paper we describe our experiences in mining this huge collection
of programs, offer abstractions that turned out to be useful when such is
attempted, discuss the Neon library to deal effectively with the implemen-
tation of analyses of our collection of loggings, and identify problems we
have run into. Many of these problems have to do with a lack of control
of the experimental situation. Indeed, we did not actually perform a con-
trolled experiment, but analyzed logged programs after the fact, making it
more apt to talk of data mining. The advantage of our set-up is that with
the necessary care being taken, we obtain lots of information at little or no
cost. This information can help us to improve our compiler, but it can also
teach us about how students program, which concepts students use or avoid
a lot, where and when they make the most mistakes, but also how long it
takes them to correct a mistake detected by the compiler.

To illustrate our work, we have performed a number of analyses of which
we give the results in Section 2. In Section 5 on implementation, we show
how one of these can be implemented. In Section 3 we discuss concepts
we used, taken from the field of descriptive statistics and in Section 4 we
discuss concepts that are specifically useful within our domain. In Section 6
we discuss related work, and Section 7 concludes with a discussion and
directions for further research.

2



Figure 1: Average module length in terms of lines of sourcefile per week
(left) and per day (right) based on the 2003/2004 data set.

2 Examples

The examples in this section serve to illustrate the possibilities of our library
when applied to our collection of logged programs. Our main interest with
these examples is to show the kind of queries that can be posed to our
collection of programs, and not to investigate a specific hypothesis; we leave
that to future papers. The master thesis of the second author [11] contains
a more thorough description of the analyses including their implementation
and an interpretation of the results, with pointers for further study.

Number of lines analysis

To get an impression how the length of compiled programs evolves during
the course, we have the computed minimum, average, median and maximum
number of lines for the loggings from the course year 2003/2004. Figure 1
(left) gives the average module length for each of the first eight weeks of
the course (the final two weeks no loggings were made), as generated by
the ploticus program [2] to which we fed the computed data. In the his-
togram of Figure 1(right), we give the same for each day that loggings were
made. The fact that week 10 had a deadline should not come as a surprise
now. In Section 6.1 of [11] similar pictures are given for individual students,
while Section 6.3 contains a more refined analysis showing how the number
lines of comments evolves over the course, as compared to the number lines
containing actual code.

3



Figure 2: Absolute and relative number of compiles per phase, given per
week from 2003/2004.

Phase analysis

The Helium compiler may terminate in one of a number compiler phases
(due to a programming error of some kind), or it may terminate due to an
internal error (of the compiler), or it results in a correct compilation and
generates code (the CodeGen phase). The four most interesting compiler er-
ror phases are Lexical, Parsing, Static (simple static errors such as undefined
or multiply defined identifiers) and Typing (for a type error).

In this analysis we compute for each week during the course in the year
2003/2004 and for each of the five phases, the number of compiles terminat-
ing in that phase. The result of this computation is given in Figure 2(left).
To be able to compare their relative values, we computed the ratio between
each of these numbers and the total number for that week, and obtained the
results displayed on the right. In both figures, the x-axis displays the weeks
(6–13 of the year 2004) in which the loggings were made. The y-axis of the
figure on the left gives absolute logging counts, the y-axis on the right gives
the ratios (both cumulatively). The latter shows that over the eight course
weeks, these ratios hardly change, except for a noticeable dip in the ratio
of parse errors, setting in after the first week. However, towards the end of
the course, this ratio, surprisingly maybe, increases again. What the rea-
sons may be for this phenomenon is not easily determined and needs further
investigation. For example, it may be due to the fact that difficult syntax is
introduced towards the end of the course, but other factors could be involved
as well. In Section 5, we show how Figure 2(left) can be computed.

4



Figure 3: Average (left) and median (right) compilation intervals (in min-
utes) for all students, given per week with a time coherence of 60 minutes
from 2003/2004.

Time between compiles

In this example, we are interested in the spread of in-between compile time
(within a programming session). A programming session terminates when
no compilation has been made for sixty minutes. We compute the average
and median for each student over the entire course. The results can be found
in Figure 3, the averages on the left, the medians on the right, given for each
week separately. It shows that recompilation times generally range between
two and three minutes, and low in-between times tend to occur frequently
(which results in the median being lower than the average). Some students
take almost ten minutes on average, and another stays below one minute.
Note that these values are somewhat influenced by the fact that compiles
of imported modules are also counted among the loggings, and typically the
in-between time between a compile of a module and one of its imports is
only a matter of milliseconds. However, in the class room setting compiling
imported modules is not something that occurs very often. We can conclude
from the pictures that there are no notable changes in behaviour during the
course.

5



Type error repair analysis

We have performed two related analyses on our loggings to discover how
much effort students need to repair a type error. The idea is to look for a
type error logging, and then determine how many compiles the student needs
to arrive at a correct compile. For each student we compute the average of
such values per week, to see whether this changes over time.

For a given student, we first compute sequences of loggings that deal
with the same program file, as an approximation of the fact that the se-
quences deal with the same program: we do not want that a correct compile
of another module is viewed as a repair. Then we break each of these se-
quences into smaller sequences that start with a type error and end in a
correct compile. For example, given the following sequence of phases of
loggings [C P T T T P T C L L P P T C P ], we obtain two se-
quences [T T T P T C ] and [T C ]. Then we compute the lengths of
these sequences and average these values for each week. The results of the
computations for all students in the year 2003/2004 can be found in Fig-
ure 4(left). The measured value here is the average number of compiles as
just discussed. Alternatively, Figure 4(right) gives the same results, but now
we measure the average time needed to solve the error, computed as the dif-
ference (in seconds) between the time stamps of the first and last logging in
each sequence. In Section 6.5 of [11] similar pictures are given for individual
students.

Type hints analysis

One of the features of Helium is that some (type) error messages were accom-
panied by a hint telling the programmer how the problem might be resolved.
The first thing one would like to know is how many compiles actually result
in error messages that contain a hint. In Figure 5, the ratio of compiles that
contain at least one hint (note that every compile may give rise to multiple
errors) is given for the year 2003/2004. The ratio is given per week, because
we would like to investigate how the ratio evolves over time. As can be
seen from the picture, there is a steady decrease in the ratio. There can be
various reasons for this: it may be that the hints help students avoid the
same mistake later, but it may also be that hints are available for mistakes
that are easy to avoid with some practice. In any case, the picture paints
a suggestive picture that demands further investigation. For example, we
could compute for each type of mistake separately how the ratio evolves over

6



Figure 4: Average number of compiles (left) and average time (right, in sec-
onds, 10 minutes time coherence) needed to repair a type incorrect program
for all students, from 2003/2004.

time. Note that in this particular case we have also included a LATEX table
that contains the same information as the picture, also generated by Neon.

3 Concepts from descriptive statistics

Many of the concepts around which our library has been built are not new.
They come from the area of descriptive statistics which deals with how to
summarize data, either with the goal of showing similarities or by showing
how they differ. Specifically, we have sought provisions for dealing with the
following issues:

• Group loggings (repeatedly) into groups of related loggings.

• Computing statistical or computational characteristics of the loggings
in each group.

• Selecting individual loggings or groups of them based on some com-
puted characteristic.

7



Hint ratio
2004 6 41.6% (446 / 1073)
2004 7 30.4% (363 / 1195)
2004 8 29.6% (318 / 1074)
2004 9 26.1% (85 / 326)
2004 10 30.7% (580 / 1890)
2004 11 21.3% (101 / 474)
2004 12 24.3% (149 / 612)
2004 13 19.0% (122 / 641)

Figure 5: Hint ratio for type incorrect compiles, from 2003/2004, given per
week.

• Presenting the results of our analyses in various ways. Essential here
is to support ways in which the library can fill in much of the details
needed for such presentations automatically.

Since many of these operations are available in database query languages
such as SQL, a valid question is then why we did not use databases. Cur-
rently, our data consists of collections of files, accessed most easily through
an ordinary (hierarchical) directory structure, which is not that easily ex-
pressed in a relational database schema (but it could be done of course).
Also, running a compiler over a program is easier when it is simply part
of the filesystem, instead of in a database. Finally, the type of queries we
are interesting in computing need a general programming language, and not
one suited specifically for databases: we will need to compare programs (in
various ways), use regular expressions, and so on.

A major reason for using Haskell is that we want easy access to Helium,
in order to reuse parts of that compiler directly for some of the analyses.
For instance, to compute the maximal nesting depth of a Haskell program
we would like to use the Helium parser (itself implemented in Haskell),
preferrably directly. Also, many of our analyses are built from smaller anal-
yses by means of some form of composition, and this we felt is most easily
expressed with higher-order functions.

Taken together, Haskell is a natural choice. Given that choice, the
option to use a Haskell library for interfacing with a database management
system is still open, but for now, we kept the number of dependencies on
other libraries as low as possible.

8



4 Coherence

In this section we consider a number of abstractions that we have found
useful, essential even, for building analyses on sequences of loggings. In
a sense, they can all be mapped back to concepts from Section 3 and the
notion of clustering in data mining, but their importance warrants a separate
description.

The programs logged by the compiler originate from students. Usually,
the students work in teams of two, or alone. Each logging comes with
the name of the student on whose account the compilation was performed
(whether he works alone or with someone else). To put the discussion on a
more general footing we abstract away from this, referring to an entity of
whom we have obtained loggings as a loggee.

Analyzing a large collection of programs is pretty easy when all one is
interested in is to compute some value (metric) for (a subset of) the programs
logged by the compiler, and afterwards computing some aggregate over these
values (for conciseness of presentation). Examples of these are the average
number of lines of code, the maximal nesting depth of lets and wheres, and
the ratio of lines of comments with lines of code averaged over all loggees
per week.

Things become more complicated when one wants to consider the re-
lation between loggings related in time or content. Here we use the term
coherence to denote that two loggings are in some sense related. Based on
the notion of coherence a sequence of subsequent loggings can be partitioned
into a list of sequences by taking the reflexive and transitive closure of this
coherence relation.

Two subsequent loggings are time coherent if they are apart at most k
time units for some k, i.e., thirty minutes or 24 hours. The actual choice of
k depends very much on situation, so it is a parameter of the definition. We
call two subsequent loggings content coherent if the contents of the compiled
modules are similar (to an extent which is a parameter of the definition).
Various instantiations of the term similar are likely to be of use: the modules
must be exactly the same, the modules differ in at most a single line, the
modules have the same name, or the modules differ in at most one top-level
definition.

The need for these notions become apparent when one considers the
Type Error Repair Analysis discussed in Section 2. During error repair, it
might well be that after some attempts the loggee gives up, and goes home.

9



Two days later, he proceeds with the task, but in the meantime he probably
spent only little time on the problem. Thus, it is unlikely that we want
to consider these 48 hours as time spent on solving the mistake. When
one considers the time to correct an error, one would like to apply these
to a subdivision of the loggings, those that are time coherent for a suitable
time limit. The notion of content coherence also plays a role here, because
when one breaks the sequence of loggings (for a particular loggee) up into
subsequences based on time, then such a subsequence may contain loggings
that deal with different programming problems. Here the notion of content
coherence can be used to distinguish between these different programming
tasks, so that a type error in module A.hs is not considered “solved” because
the loggee compiles an unrelated, correct module B.hs.

Since our notion of coherence only considers subsequent loggings, the
following situation might occur: a loggee is working on a module A.hs which
after compilation gives a type error. He then remembers that he had a
similar problem before. He then loads a module B.hs into the interpreter.
This module happens to need compilation and the compilation is logged.
The loggee considers his solution in B.hs and goes back to A.hs to continue
his work on it. The above notion of content coherence is not flexible enough
to deal with the situation that we want to obtain a partitioning into sessions
in which a loggee works on a certain module. Essentially, what we want to
allow is some kind of look-ahead: two (possible non-subsequent) loggings are
k-content coherent if they are content coherent and the number of loggings
between the two (for this loggee) is at most k. Clearly, content coherent is
the same as 0-content coherent. Although more time-consuming, this can
be implemented straightforwardly. There is one detail left out: what do we
do with the logging of B.hs? Do we drop it? Does it become part of a
subsequent part of the division? (When the latter option is taken, it should
be noted that the concat of the list of logging sequences is not equal anymore
to the original sequence.) Which option we choose depends very much on
the analysis being undertaken, so we leave this up to the programmer.

The final concept we introduce is that of a trace. In our situation we
will often be interested in all the compiles made by the loggees for a given
programming assignment. However, such an assignment usually takes more
than a single programming session. Furthermore, the loggee might write and
compile other programs during this period, for instance as part of exercise
classes being followed. A trace refers to a sequence of loggings that deal
with a single programming task: it consists of loggings that are content
coherent with arbitrarily large look-ahead. In this case it often pays off to

10



consider modules to be similar if and only if they have the same name or
if they have similar contents. Even if someone takes his work home and
returns later with a considerably modified version, we can still consider the
subsequent compiles part of the same trace as long as he did not also change
the filename. Note that obtaining a trace does not mean that we have all
the loggings for all the compiles of the program (see our discussion earlier),
but having the traces is a good starting point for finding out whether this
happens to be the case.

Traces can be computed by pairwise content coherence comparison of
all loggings for a logger, but it can be done more efficiently. First, compute
content coherent sequences (for some notion of similarity), resulting in a
list of sequences of loggings. Then we lift the notion of content coherence
on loggings to sequences of loggings: two (possibly non-adjacent) sequences
of loggings are content coherent if the final logging in the temporally ear-
liest sequence is content coherent with the first logging of the (temporally)
later sequence. Such content coherent sequences will then be merged. By
repeatedly applying this operation to potentially all pairs of non-adjacent
sequences of loggings, the set of traces for a given sequence of loggings can
be obtained. Note that some care must be taken, because the end-result
might depend on the order in which pairs of sequences are considered, and
this also depends to some extent on the actual notion of similarity between
loggings that is being used.

5 The Neon library

With a plethora of potentially interesting analyses, it is essential to offer sup-
port for implementing these analyses. Therefore, we implemented a library
to support building them, which can also export the resulting information
to various tools for (graphical) presentation. In this section, we describe
the basic types and components of this library and how they can be used
to compute one of the examples of Section 2. A more detailed explanation,
and the code for the examples of Section 2 that we do not consider here,
can be found in Chapter 6 of the master thesis of the second author [11].

An analysis result is represented by a list of key-value pairs, [(key , value)].
Here, value is the result of the computation and key is a description of this
value. An analysis then simply maps between two types of this kind:

type Ana keya a keyb b = [(keya, a)] → [(keyb, b)]

11



To be able to compose analyses easily, we have chosen to always map a
list of pairs to a list of pairs, even if an operation like grouping is in-
volved. For example, suppose we have the following intermediate result:
[("st1", ls1 ), ("st2", ls2 )], in which ls1 and ls2 contain the loggings of stu-
dent st1 and st2 respectively. Suppose the next operation is to group all
the loggings for each week together. If st1 has loggings in week 1 and week
2 and st2 only in week 2, then the result of this operation would typically
be

[("st1; wk1", ls11 ), ("st1; wk2", ls12 ), ("st2; wk2", ls22 )]

Although we have essentially applied two groupings on the original sequence
of loggings, this fact is apparent only in the key value.

Although Neon is built on combinators that abstract away from any
particular kind of key , the library also contains versions for instances of a
particular type class, so that the key transformation functions are provided
by the instance, once and for all.

Analysis combinators

We shall now describe the primitives and combinators of our library. The
primitives derive from the area of descriptive statistics, while the combina-
tors are higher-order functions that build an analysis out of others. We give
only the types of the combinators. Their implementation is straightforward
(usually one line of code) and can be found Chapter 5 of [11].

The basic operation for calculating a new value from a previously com-
puted value, can be implemented by the basicAnalysis primitive. There are
slightly different variants available, but a typical one is the following:

basicAnalysis :: (keya → keyb) → (a → b) → Ana keya a keyb b

The first function argument specifies how the key values describing the
values a are transformed into the key values describing the result after per-
forming the analysis. The transformation of a to b is, not surprisingly,
handled by the second function argument.

To count the number of loggings from a sequence of loggings, define:

countLoggings = basicAnalysis (++"; Number of loggings") length

In this definition the key type is String and the description simply appends
a piece of text to describe the operation that is performed, here computing
the length of a sequence of loggings.

12



To specify a grouping, we define the groupAnalysis combinator which
has the following type:

groupAnalysis :: (a → key1 → key2 ) → ([a ] → [[a ]]) → Ana key1 [a ] key2 [a ]

Implementation is slightly different from the basicAnalysis since the result
of applying the value transformation (second argument) is a list of lists,
that is flattened before it is returned as the result of the analysis. In this
case the key transformation function is a bit more complicated. To be
able to compute a value that describes the outcome, we pass the old key
(describing the computations done so far) and an element (in our case the
first) of the list. Usually a grouping collects together the loggings that share
a given property, say the week in which a logging was collected. The key
transformation function can now obtain the week number of the group from
its first argument, and reflect this value in the newly computed key.

The group selecting combinator, applies a filter to the groups and has
the following form:

selectGrpAnalysis :: (key1 → key2 ) → (a → Bool) → Ana key1 a key2 a

The selectGrpAnalysis function selects only the groups that fulfill the predi-
cate function, and is rather like HAVING in SQL. The key transfer function
can transform the old key to reflect which filter has taken been applied.

The group aggregator combinator creates an aggregating analysis:

aggregateGrpAnalysis :: ([a ] → [keya ] → keyb) → ([a ] → b) → Ana keya a keyb b

This function aggregates over all the values (in all groups) in the analy-
sis sets, and returns a single aggregated outcome. Again the key can be
transformed to reflect this fact.

Although these analysis functions serve well to illustrate the basic in-
gredients, we have a number of slightly more general versions. The added
generality takes the form of a more general key transformation function.
More details can be found in Chapter 5 of [11].

To compose two analyses, we can use the � combinator, similar to func-
tion composition.

(�) :: Ana keyb b keyc c → Ana keya a keyb b → Ana keya a keyc c

The (×) operator tuples two analyses, in case they are to be applied inde-
pendently to the same input.

(×) :: Ana ka a kb1 b1 → Ana ka a kb2 b2 → Ana ka a (kb1 , kb2 ) (b1 , b2 )

Other useful combinators like mapAnalysis, splitAnalysis, isolateAnalysis

13



and • are omitted for reasons of space.

Specializations of the primitive functions

The above described primitives are easy to implement, but not so easy to
use. This is mainly due to the flexibility in the choice of the key datatype,
and the fact that this type may change during analysis. In practice, changes
during an analysis are not likely to be necessary, and additionally, it is not
very likely that a programmer would like to use a key datatype other than
the ones provided by the library itself, especially since these also make it
easier to generate informative pictures for the analysis results.

The first step towards specialization is the Key type class, which handles
some of the administration of keys, by specifying a start key for a given type
of key, and by specifying how keys can be combined into new keys. Implicit
in the Key class is that the input and output key are of the same type. This
already implies a simplification to the earlier functions, by replacing the old
Ana type with a new one in which the key type is fixed:

type AnaF key a b = Ana key a key b

The most important type class is DescriptiveKey that encapsulates the fixed
key transformation function for each primitive analysis on the instance data
type. By making a type an instance of this type class, special primitives
can be used in which it is unnecessary to specify how the key should be
transformed.

For an instance of DescriptiveKey we can use the following alternative
to compute a grouping analysis:

groupAnalysis :: (DescriptiveKey key ,DataInfo b) ⇒
(a → b) → ([a ] → [[a ]]) → AnaF key [a ] [a ]

The first argument a → b describes the property on which grouping takes
places, while the second tells us how the grouping should be performed. In

groupPerPhase = groupAnalysis phase (groupAllUnder phase)

we want to collect all loggings in the same phase together, whether they are
adjacent in the original sequence or not (this is what groupAllUnder does). If
we can assume that these are already adjacent, we can use Haskell’s groupBy .

14



Presentation issues

Continuing our discussion of groupAnalysis, the additional DataInfo class
encapsulates information necessary to automate the generation of presen-
tations. For example, it encapsulates information to generate titles for the
axes of a graphical display, but also deals with the tricky problem of comple-
tion. Consider for example the Phase datatype which represents the phases
of the compiler. After performing an analysis, computing some value for
each phase, it may happen that one of these phases is not present. For some
presentations, we should add these missing phases to the result, and choose
a measured value (for example, 0 in the case of integers). This is tiresome,
and it would be nice to automate also this aspect of generating presentations
as much as possible. Indeed, this is the reason that the function a → b and
the class constraint DataInfo b are part of the type of groupAnalysis at all.

A lot of the actual work in building the library has been to generate
suitable graphical and textual presentations of the analysis results. To be
able to do this effortlessly is essential for the economic use of the library and
obtaining new results quickly. The library caters for this need by providing
means of generating textual data in the form of one and two dimensional
tables in LATEX and HTML, and to support (a number of) graphical plots by
generating plot files for a tool called ploticus. At this moment, we support
a variety of bar charts and box plots. From the ploticus files we can easily
generate Portable Network Graphics files (such as those found in Section 2).
More details on can be found in Section 5.2.6 of [11].

An example

As an illustration of how the above primitives and combinators can be used
to obtain the results depicted in Section 2, we present here the code for
computing Figure 2(left), which contains for each phase the absolute number
of compiles. In this analysis we use the specialized forms which use the
KeyHistory datatype, but note that this is only noticeable from the type
signatures.

loggingsPerPhase :: AnaF KeyHistory [Logging ] Int
loggingsPerPhase = countNumberOfLoggings

� groupPerPhase
�mainPhasesAnalysis

groupPerPhase = groupAnalysis phase (groupAllUnder phase)

15



mainPhasesAnalysis :: AnaF KeyHistory [Logging ] [Logging ]
mainPhasesAnalysis = basicAnalysis "" (filter ((∈ mainphases).phase))

where
mainphases = [Lexical ,Parsing ,Static,Typing ,CodeGen ]

loggingsPerPhasePerWeek = loggingsPerPhase � groupPerWeek

To generate Figure 2(left) that displays the number of compiles for each
week, we can use the renderBarChartDynamic function provided by Neon
to generate a ploticus file (which can then be used to generate the left
hand side of Figure 2(left).

phaseResearch :: FilePath → [(KeyHistory , [Logging ])] → IO ()
phaseResearch researchdir input = do

renderBarChartDynamic researchdir (loggingsPerPhasePerWeek input)
return ()

We have omitted the details for the function groupPerWeek , but the imple-
mentation is straightforward. What is important, is that in the analyses we
have implemented these (grouping) functions are used over and over.

6 Related work

The analysis of Haskell programs to obtain information about how Haskell
is used is still very much in its infancy, and as far as we have been able to
determine, the same holds for other programming languages. Scouring the
Internet we found only a few papers that consider issues related to ours, and
relatively scattered throughout time.

Starting in the seventies, a number of studies considered the program-
ming behaviour for various imperative languages: Moulton and Muller [9]
evaluated the use of a version of FORTRAN developed especially for educa-
tion, Zelkowitz [12] traced runs of programs written by students to discover
the effects of a structured programming course, and Litecky and Davis [8]
considered 1,000 runs from a body of 50 students and classified their mis-
takes.

A related track of research is the investigation in which way language
features influence how easily students learn to program and/or internalize
certain aspects of a programming language. These studies usually do not
concern themselves with actual feedback provided by programming environ-
ments. This type of study goes back to the work of Gannon and Horning [1]
in which they compare two syntactically different but similar programming

16



languages. Also in this case, there does not seem to be much recent activ-
ity in this field, and our work can surely contribute to this area, e.g., by
examining interference or synergy between languages. For example, do stu-
dents who know how to program in Java make the same kind and number
of mistakes as students who do not?

Work was done in the early nineties at Universiteit Twente on teaching
the functional programming language Miranda [7] to first-year students. The
study was performed empirically by following and interviewing a subset of a
group of students enrolled in their first-year functional programming course.
The outcomes are of various kinds: they identify problems when learning
Miranda, they discovered interferences with a concurrent exposure to an
imperative language, and they even went as far to compare problem solving
abilities of students who only did the functional programming course with
those who did only the imperative programming course.

A more recent study was performed by Jadud by instrumenting BlueJ (a
Java programming environment) to keep track of the compilation behaviour
of students [6]. In his study he determines for various types of errors how
often they occur. The similarity with our work is that he also considers com-
pilation behaviour as the subject for analysis. Since imperative languages
usually do not have a complex type system, the focus in this work is, like
its predecessors from the seventies, on syntactic errors in programming.

A recent study and quite close to “home” was made by Ryder and
Thompson [10]. They discuss the application of metrics (defined on Haskell
programs) to investigate correlations between these metrics and bug fixes
made to the program at a later stage. The application of their work is to
identify positions in a program that are likely to benefit most from refactor-
ing. Their experimental data consists of two program development histories,
based on commits to a CVS repository. The main problem, as they identify
themselves, is the fact that they simply do not have enough experimen-
tal data to validate their conclusions. Also, they do not have all compiles
available, only what was committed, and is thus not suited for the kind of
questions we are interested in. We can, however, reuse their metrics and ex-
amine correlation with, for example, the final grade for the program or some
measure of the effort it took to write the program (the number of compiles
for example). It would be very time consuming however, to determine corre-
lation between the metrics and bug fixes, because like Ryder and Thompson
we would have to resort to manual inspection to find out which modifica-
tions are bug-fixes and which aren’t (in this case bug-fix refers to changing a

17



program that correctly compiles, but that does not fulfill its specification).

7 Discussion and future work

In this paper was have introduced the Neon library we have developed
for analyzing a large collection of logged Helium programs, based on an
understanding of the particular problem area. We have based our library on
notions from descriptive statistics, and described the notion of coherence as
an important part of the type of queries we would like to pose. We did not
provide a coherent study of a particular subject, but have tried to give an
idea of the capabilities of the library by means of a number of illustrative
examples.

One of the obvious candidates for future work, is to perform a detailed
study of a particular hypothesis. Before we actually perform such detailed
analyses, a simple, but very useful extension is the use of student charac-
teristics. Although we insist on anonymity, many interesting questions can
be posed to our collection based on such characteristics. For example, do
non-Java programmer make the same kind and the same amount of mis-
takes as do Java programmers? Did the student pass the course in that
course instance? Did he work together with somebody else on the program
or did he work alone? Did he do the course before? This kind of information
can help increase the external validity of results: if groups of students with
widely different backgrounds yield comparable results for a query, then it is
likelier that these transfer to the programming population as a whole.

The fact that the analysis tool and the compiler are written in the same
language, allows us to reuse large parts of the compiler to “easily” compute
and compare quite a bit of information about programs between students.
Performing diffs between abstract syntax trees of subsequent compiles can
tell us a lot about how much students change between compiles, and also
whether they tend to stick to solving one problem at the time. Although
it will take some work, we think the rewards of taking our work further
can be of help in many areas: to improve and determine the quality of
exisiting compilers (and related tools), to investigate how students (learn
to) program, and even to identify weak spots in the programming language.
The logging facility can then be used to examine the effects of measures
taken based on this first evaluation. Every compiler should have one!

Acknowledgments We thank Stefan Holdermans, Bastiaan Heeren and
Michael Stone for their kind support.

18



References

[1] J. D. Gannon and J. J. Horning. The impact of language design on
the production of reliable software. In Proceedings of the international
conference on Reliable software, pages 10–22, New York, NY, USA,
1975. ACM Press.

[2] S. Grubb. Ploticus website. http://ploticus.sourceforge.net.

[3] J. Hage and B. Heeren. Heuristics for type error discovery and recovery.
In Z. Horváth, V. Zsók, and A. Butterfield, editors, Implementation
of Functional Languages – IFL 2006, volume 4449, pages 199 – 216,
Heidelberg, 2007. Springer Verlag.

[4] B. Heeren, J. Hage, and S. D. Swierstra. Scripting the type inference
process. In Eighth ACM Sigplan International Conference on Func-
tional Programming, pages 3 – 13, New York, 2003. ACM Press.

[5] B. Heeren, D. Leijen, and A. van IJzendoorn. Helium, for learning
Haskell. In ACM Sigplan 2003 Haskell Workshop, pages 62 – 71, New
York, 2003. ACM Press.

[6] M. C. Jadud. A first look at novice compilation behaviour using BlueJ.
Computer Science Education, 15(1):25 – 40, March 2005.

[7] S. Joosten, K. van den Berg, and G. van der Hoeven. Teaching func-
tional programming to first-year students. Journal of Functional Pro-
gramming, 3(1):49–65, 1993.

[8] C. R. Litecky and G.B. Davis. A study of errors, error-proneness, and
error diagnosis in Cobol. Communications of the ACM, 19:33 – 38,
1976.

[9] P. G. Moulton and M. E. Muller. Ditran: a compiler emphasizing
diagnostics. Communications of the ACM, 10:45 – 52, 1967.

[10] C. Ryder and S. Thompson. Software metrics: measuring haskell. In
M. van Eekelen, editor, 6th Symposium on Trends in Functional Pro-
gramming, TFP 2005: Proceedings, pages 119 – 134, Tallinn, 2005.
Institute of Cybernetics.

[11] P. van Keeken. Analyzing Helium programs obtained through logging.
http://www.cs.uu.nl/wiki/Hage/MasterStudents.

19



[12] M. V. Zelkowitz. Automatic program analysis and evaluation. In Pro-
ceedings of the 2nd International Conference on Software Engineering,
pages 158 – 163. IEEE Computer Society Press, 1976.

20


