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Abstract

Diagnosing ventilator-associated pneumonia in mechanically ventilated patients in intensive care
units is seen as a clinical challenge. The difficulty in diagnosing ventilator-associated pneumonia stems
from the lack of a simple yet accurate diagnostic test. To assist clinicians in diagnosing and treating pa-
tients with pneumonia, a decision-theoretic network had been designed with the help of domain experts.
A major limitation of this network is that it does not represent pneumonia as a dynamic process that
evolves over time. In this paper, we construct a dynamic Bayesian network that explicitly captures the
development of the disease over time. We discuss how probability elicitation from domain experts served
to quantify the dynamics involved and how the nature of the patient data helps reduce the computational
burden of inference. We evaluate the diagnostic performance of our dynamic model for a number of real
patients and report promising results.

1 Introduction

Many patients admitted to an intensive care unit (ICU) need respiratory support by a mechanical ventilator;
in addition, many of these patients are affected by severe disease which may result in depression of their
immune system. Both conditions promote the development of ventilator-associated pneumonia (VAP) in
these patients. Because of the wide-spread dissemination of multiresistant bacteria at the ICU, effective and
fast treatment of VAP is seen as an issue of major significance. The difficulty of the diagnosis of VAP is in
the lack of a gold standard; VAP is therefore diagnosed by taking a number of clinical features into account
[13]. To support ICU clinicians in diagnosing and treating VAP, a probabilistic and decision-theoretic
network, representing the uncertainties and preferences involved, was constructed by Lucas et al. [8]. The
network was developed with the help of two infectious disease experts, who assessed both its qualitative
structure and its numerical part. The goal of the network was to prescribe an optimal antimicrobial therapy
for treating patients with VAP.

Two stochastic processes play a prominent role in the domain of pneumonia: thecolonisationof the
laryngotracheobronchial tree by pathogens and the onset and development ofpneumonia. Although both
processes evolve dynamically, these dynamics were not explicitly modelled by means of temporal transi-
tions in the network of Lucas et al. Instead, the dynamics of the processes were modelled implicitly by
additional interactions between the duration of hospital stay and the duration of mechanical ventilation of
a patient with the colonisation by pathogens. The main motivation for this simplification was the large
amount of data needed to specify the probability distribution underlying the stochastic processes and the
increase in computational requirements. The network of Lucas et al. thus constitutes astaticsimplification
of the domain. The static network was used for every patient for each day on the ICU separately, without
taking into account the patient’s characteristics from earlier days. Consequently, its diagnostic performance
was suboptimal and even confusing for patients without VAP. As the development of VAP is a dynamic
process, we feel that time needs to be modelled in a more explicit way to improve the diagnosis.
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In this paper, we alleviate the problems associated with the static representation of the domain by
modelling VAP as a dynamic process. More specifically, we develop a dynamic Bayesian network (DBN)
that explicitly captures the temporal relationships between the variables [9]; our focus thereby is initially
on the diagnostic part of the network. We use the method of Van der Gaag et al. [14, 15] for the elicitation,
from domain experts, of the probability distribution of the underlying stochastic process. This method
transcribes probabilities and uses a scale with both numerical and verbal anchors that allows experts to
assess many probabilities in little time. Moreover, we discuss how the computational burden of inference
with our model can be eased by exploiting the nature of the observations involved and the properties of
the transitional relationships of the model with just a small loss in accuracy. We evaluated our dynamic
network on a group of patients, drawn from the files of the ICU of the University Medical Center Utrecht in
the Netherlands. Our results indicate that the dynamic model is capable of distinguishing between patients
with VAP and without VAP. By exploiting all available past information of a patient, it in fact yields at least
as good or even better predictions than the static model. Specifically for patients without VAP, we noticed
that the use of previous information leads to lower estimates for VAP than the ones obtained from the static
network.

The paper is organised as follows. In Section 2, we briefly describe the static decision-theoretic network
that had been developed before for the management of VAP. In Section 3, we discuss the construction of a
dynamic network for VAP and present computational methods for performing efficient inference with the
model. In Section 4 we present the results of an experimental evaluation of our network. Conclusions and
directions for further research are given in Section 5.

2 A static network for VAP

Ventilator-associated pneumonia is a low-prevalence disease occurring in mechanically-ventilated patients
in critical care and involves infection of the lower respiratory tract [2]. In contrast to infections of more
frequently involved organs (such as the urinary tract), for which mortality is low, ranging from 1 to 4%,
the mortality rate for VAP ranges from 24 to 50% and can reach 76% for some high-risk pathogens. VAP
therefore has been associated with increased morbidity, attributable mortality and increased health care
costs. Important causes related to the development of VAP include the duration ofhospitalisationand of
mechanical ventilationof the patient; important symptoms that indicate the presence of VAP include an
increasedbody temperature, an abnormal amount of colouredsputum, signson the chest X-ray, an abnormal
ratio between the amount of oxygen in the arterial blood and the fractional inspired oxygen concentration,
that is,pO2/FiO2, and an abnormal number ofleukocytes.

As diagnosing VAP and deciding upon treatment can be a hard task for clinicians, a decision-theoretic
network had been constructed as part of a decision-support system to assist clinicians in their task in
the ICU [8, 13]. Figure 1(left) illustrates the global structure of the network, which we call the static
VAP network, or sVAP network for short. Dashed arcs denote temporal probabilistic relationships; solid
arcs represent stochastic dependency without a special temporal meaning. Boxes in the figure indicate
collections of stochastic variables, where the collection of therapy variable is shown by thick lines; ellipses
indicate single stochastic variables. Clear shapes refer to hidden variables, while shaded shapes mark
observable ones. As an example, colonisation by pathogens is modelled as a biological process, in which
it is assumed that colonisation by different pathogens occurs independently. The relationship between the
colonisationby different pathogens and the development ofpneumoniais captured in the sVAP as shown
in Figure 2. The seven groups of microorganisms that appear most frequently in critically ill patients
and cause colonisation, are modelled in the diagnostic part of the network. Only a small percentage of
pathogens colonising a patient can cause an actual infection. Therefore, there exists a relation in the
network between colonisation and pneumonia. The figure now depicts the probabilistic relation between
the seven groups of microorganisms from colonisation to pneumonia. Information about which bacterium
or bacteria are currently present in a patient in combination with the current signs and symptoms constitute
the basis for choosing optimal antimicrobial treatment on resistant bacteria and is considered best practice.
The signs and symptoms included in the sVAP network are shown in more detail in Figure 1(right). In the
sVAP network, the temporal nature of the processes is expressed by the interaction between the duration
of the stay (hospitalisation) at the ICU and the duration of the mechanical ventilation: both the duration
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Figure 1: (left) Global structure of the sVAP network. The dashed box indicates the network’s diagnostic
part. (right) Symptoms and signs of pneumonia.

Figure 2: Detailed structure of the influence of colonisation on pneumonia. Abbreviations: PA: Pseu-
domonas aeruginosa, AC: Acinetobacter, Ent1: Enterobacteriaceae1, Ent2: Enterobacteriaceae2, SA:
Staphylococcus aureus, HI: Haemophilus influenzae, SP: Streptococcus pneumoniae.

of the stay and the duration of the ventilation are correlated to the process of colonisation by pathogens.
Hence, time is modelled implicitly by these two variables; for example, the mechanical ventilation variable
can take one of the six values{0, 0 − 24, 24 − 48, 48 − 96, 96 − 144, > 144} which indicate the number
of hours that the patient has been mechanically ventilated. The model thus hides the temporal nature of the
development of the processes of colonisation and pneumonia in conditioning variables, instead of handling
time explicitly.

In the present sVAP network, no history is captured and possible changes in a patient’s condition cannot
be taken into consideration. Since the network constitutes a rough representation of time, only rough
estimates can be obtained upon diagnostic evaluation. For a patient without VAP for instance, a positive
symptom observed at a specific day can increase the probability of VAP significantly even though on the
previous days only negative symptoms were observed. A fine-grained and meticulous representation of the
processes underlying the development of pneumonia can considerably improve the diagnostic performance
of the network, as will be demonstrated in the next section.

3 A dynamic network for VAP

In this section, we describe the construction of a DBN that explicitly represents the development of pneu-
monia in mechanically ventilated patients.
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3.1 Preliminaries

A DBN is a graphical model that encodes a joint probability distribution on a set of stochastic variables,
explicitly capturing the temporal relationships between them. More formally, letVn = (V 1

n , . . . , V m
n ),

m ≥ 1, denote the set of variables at timen. Then, a DBN is a tuple(B1, B2), whereB1 is a Bayesian
network that represents the prior distribution for the variables at the first time sliceV1, andB2 defines the
transitional relationships between the variables in two consecutive time slices, so that for everyn≥2

p(Vn | Vn−1) =
m∏

i=1

p(V i
n | π(V i

n))

whereπ(V i
n) denotes the set of parents ofV i

n, for i = 1, . . . , m.
We distinguish between two types of relationship in a DBN:transitionalrelations that capture a depen-

dence among variables between different time slices, andlocal relations that capture a dependence between
variables within the same time slice. If a relationship exists between the same variable over different time
slices, this variable is calledpersistent. Based on the two types of relationship, per time slice, the set of
variablesVn is split into three mutually exclusive and collectively exhaustive setsIn,Xn,Yn, where the
setsIn,Yn constitute the input and observable variables andXn consists of the hidden variables for the
time slice under study. Usually,In includes observable variables that affect the probability distribution of
Xn, whileYn includes observable variables whose probability distribution is affected byXn. The setXn

includes the variables that represent the stochastic processes of the network and whose values are never
observed. Later in the paper, we will need the notion offorward interfaceof a dynamic network, which is
the set of variables at timen that affect some variables at timen + 1.

DBNs are usually assumed to be time invariant, which means that the topology and the parameters of the
network per time slice and across time slices do not change. Moreover, the Markov property for transitional
dependence is assumed, which means thatπ(V i

n) can include variables either from the same timen or from
the previous timen−1, but not from earlier time slices [9]. Then, by unrollingB2 for N time slices, a joint
probability distributionp(V1, . . . ,VN ) is defined for which the following decomposition property holds:

p(V1, . . . ,VN ) =
N∏

n=1

m∏

i=1

p(V i
n | π(V i

n))

Applying a DBN usually amounts to computing the marginal probability distributions of the hidden
variables at different times. The computations involved constitute theinference. Three types of inference
are distinguished.Monitoring is the task of computing the probability distribution forXn at timen given
the observations that are available up to and including timen. Smoothingis the task of computing the
marginal probability distribution forXn at timen given the observations available up to timeN where
N > n. Finally, forecastingis the task of predicting the probability distribution ofXn at timen given the
observations that are available about the past up to timeN whereN < n.

For this purpose, we use theinterface algorithmwith the dVAP network [9]. The interface algorithm is
an extension of thejunction-tree algorithmfor inference with Bayesian networks in general [5], efficiently
exploiting the forward interface of a dynamic network. The complexity of the algorithm is exponential
in the number of variables belonging to the forward interface and can thus be infeasible for large net-
works. Furthermore, the algorithm is linear in the total number of time slices and for large time scopes, the
computation time can prove to be prohibitive for practical purposes.

3.2 Constructing the dynamic network

A natural extension of the diagnostic part of the sVAP network is a network that represents time explic-
itly [8]. Figure 3 gives an overview of the structure of the dynamic network that we constructed for the
diagnosis of VAP, which we call the dVAP network. The major difference with the sVAP network is the
explicit representation of two processes that evolve over time. The dVAP network includes two interact-
ing dynamic hidden processes, modelled by the compound variablescolonisationandpneumonia. There
are no transitional influences between these variables, but both are persistent and hence belong to the for-
ward interface of dVAP. The process of colonisation is influenced by three input variables,hospitalisation,
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Figure 3: The dVAP network for the diagnosis of VAP; clear nodes are hidden, shaded nodes are observable.
The dashed boxes indicate the hidden processes of the network.

Input variablesIn Hidden variablesXn Observable variablesYn

hospitalisation aspiration symptoms-signs(8)

mechanical ventilation colonisation* (7)

previous antibiotics pneumonia* (8)

immunological status* (3)

Table 1: The variables and compound variables (boldface) per time slice, with their number of variables
included in parenthesis, of the dVAP network. The variables marked with an asterisk∗ belong to the
forward interface.

mechanical ventilationandprevious antibiotics, which in essence control its dynamics. The process of
pneumonia is influenced by the hidden yet not persistent variableaspirationand by the input compound
variableimmunological statusthat is persistent and represents the current condition of the patient. We note
that both the variableshospitalisationandmechanical ventilationare observed for a period that is longer
than the transition interval of the model. The variables thus are modelled as affecting adjacent time slices.
The variableprevious antibioticsis an additional variable with respect to the sVAP network and represents
the effect of previous medication to the patient on the process of colonisation. Finally, similarly to the
sVAP network, the compound variablesymptoms-signsrepresents the observable variables whose values
influence probabilistically the two hidden processes.

The model includes 30 variables per time slice, 6 of which are input variables, 16 are hidden variables
and 8 are observable variables; the model thus includes one additional variable (previous antibiotics) per
time slice in comparison to the diagnostic part of the sVAP network. Table 1 gives and overview of the
variables. The number of values per variable ranges between two and thirty, with an average of 3.2. The
number of incoming arcs per variable ranges between zero and eight with an average of 2.6. In total, the
model includes 1637 parameter probabilities, 1044 of which concern the transitional relationships.

One of the first difficulties in constructing the dVAP network was to define the length of the transition
interval. It may seem trivial in general to decide upon an interval length, but in our case it proved to
be rather difficult since there was noa-priori commonly acknowledged interval length that appropriately
represents the evolution of the unobserved disease. Also, there was not a standard interval over which
observations were collected in our data files. The latter can be attributed to most of the measurements
being collected by nurses; for example, observable variables such asbody temperatureandsputum colour
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Suppose a patient has been mechanically ventilated for
48 hours and now has pneumonia caused bys.aureus.
If this patient after 24 hours isnot mechanically venti-
lated, but iscolonized with s.aureusand hasphagocyte
dysfunction, then how likely is it that the patient will
still have pneumonia caused by s.aureus ?

100

85

75

50

25

15

0

fifty-fifty
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certain

impossible
(almost)

improbable

expected

probable

(almost)

Figure 4: The fragment of text and probability scale for the assessment of a conditional probability.

were measured frequently (approximately every two or three hours), while variables such asradiological
signsand leucocytosiswere measured once per day. In cooperation with the expert, we decided to use a
transition interval of one day (24 hours) for the dVAP network. Within this interval, the networkaggregates
the observations in a way similar to the previously constructed static network. For each observable variable,
the value most frequently observed during the day was chosen as representative for that day; in cases where
there was no prevalent value in the data, the worst value observed for the patient was chosen, to allow for
conservativeconclusions from the network. The chosen transition interval appeared to be compatible with
the application characteristics and admissible by the domain experts.

A subsequent issue in building the dVAP network was the acquisition of all conditional probabilities
required. We recall that the difficulty in acquiring all probabilities involved was one of the reasons that
Lucas et al. initially chose to build a static model [8]. Although the three ICUs that acted as a setting for this
study used the same shared computer-based patient record system, it appeared very hard to select relevant
patient cases from the collected data. The main reason was that VAP is always a concomitant disease. As
a consequence, clinicians tend to not report the presence of VAP in a patient. We thus found that only in
a very small proportion of cases, a patient was reported as having VAP. Also, for the same reason, hardly
any results reported in the literature were usable for our model. Since we could not exploit the data for
estimating the probabilities for our network, the single remaining source of probabilistic information was
the knowledge and personal clinical experience of the domain expert involved in this study.

Compared to the sVAP network, the new parameters to be assessed for the dVAP network concerned the
dynamics of the stochastic processes of colonisation and pneumonia. To estimate those probabilities from
the domain expert we used the elicitation method proposed by Van der Gaag et al. [14, 15]. This method
is tailored to eliciting a large number of probabilities in a short time. Its main characteristic is the idea of
presenting conditional probabilities as fragments of text and of providing a scale for marking assessments
with both numerical and verbal anchors; for every conditional probability that needs to be assessed the
domain expert is provided with a separate figure with the text and associated scale. Figure 4 shows, as an
example, the figure pertaining to the conditional probability

p(pneum.aureus=yes|pneum.aureus=yes, mech.ventilation=no,

colonisation.aureus=yes, phagocytes.dysfunction=yes)

for the dVAP network. On the left of the figure is a fragment of text that transcribes the conditional
probability to be assessed. Using a fragment of text to denote a probability circumvents the need to use
mathematical notation. The fragment is stated in terms of likelihood rather than in terms of frequency to
forestall difficulties with the assessment of a conditional probability for which the conditioning text is quite
rare. To facilitate the assessment of a required probability, a vertical scale is depicted to the right of the text
fragment. Indicated on this scale are various different numerical and verbal anchors. With this method,
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we elicited in a few hours from the domain expert the conditional probabilities required for the part of the
dVAP network that pertains to the transitional relations of the two hidden processes.

3.3 Computational issues

The practicability of the dVAP network depends to a large extent on the computational burden of inference
with the network. For diagnosing patients with VAP, we monitor them at each time slice. In total, there are
17 variables that belong to the forward interface of the model and there are also 17 binary hidden variables
per time slice. The runtime complexity of the interface algorithm for exact inference can therefore be quite
time consuming if not infeasible. We recall that this problem was one of the reasons why Lucas et al. [8]
preferred to use a static model instead of a dynamic one. In our application, however, and in fact in many
other applications, the nature of the observations obtained may help reduce the computational requirements
involved. More specifically, in case consecutive similar observations are obtained, the probability distri-
bution of the hidden process converges to a limit distribution within a given level of accuracy [4]. After
some number of time slices, therefore, there is no need for further inference as long as similar observations
are obtained. The phenomenon of consecutive similar observations was particularly evident for several
patients in the ICU files. For example, for many patients we found that the same combination of values
was observed for all or almost all of the observable variables for a number of consecutive days.

As an example, we consider a patient who has been mechanically ventilated for six days and is observed
with ahighbody temperature, anabnormalamount of sputum, anabnormalratio pO2/FiO2, and anormal
number of leukocytes. These observations cause the probability of VAP to be at that dayp(VAP6) =
0.4321. The same values for these observable variables are obtained for the next three days. According
to our model, we find thatp(VAP7) = 0.5516, p(VAP8) = 0.7301, p(VAP9) = 0.8341. If we continue
to obtain similar observations for the following three days we find thatp(VAP10) = 0.8658, p(VAP11) =
0.8734, p(VAP12) = 0.8751. We notice that the probability distribution for VAP does not change much
after a number of time slices and further inference can be forestalled.

Using therelative entropydistance measure for distributions, we can show that it suffices to use just the
most recent data for monitoring [3]. Based upon this result, we define thebackward acceptable window
ωφ

n,εfor the present timen given a specified level of accuracyε, to be the minimal number of time slices that
we need to use from the past to compute the probability distribution of the hidden variable at the present
time within the level of accuracyε. The scheme below illustrates the concept of the backward acceptable
window : {1, . . . , nφ, . . . , n}︸ ︷︷ ︸

total time scope

−→ {nφ, . . . , n}︸ ︷︷ ︸
ωφ

n,ε

We now perform inference for timen by considering only the backward acceptable windowωφ
n,ε without

losing too much in accuracy. Note that by doing so, we perform inference forn−nφ time slices instead of
for then slices that would be taken into consideration by an exact algorithm. In the next section we report
promising results from applying the backward acceptable window to speed up inference with our model.
The main conclusion from the above considerations is that monitoring in the dVAP network can be eased
considerably by exploiting the characteristics of the observations for a patient and by using the backward
acceptable window.

4 Diagnostic performance

Monitoring a patient on an ICU ward is performed as follows. The clinician examines the results of
diagnostic tests and the symptoms observed during the day and, taking into account the number of days
the patient is hospitalised and mechanically ventilated, assess whether or not the patient has VAP. Based
on this assessment, the clinician can prescribe antibiotic treatment for a series of days, while continuing
to monitor the patient. The primary goal of the dVAP network is to assist the clinician in this process by
explicitly considering the history of the patient. The clinician can of course be aware of the past diagnostic
observations, but the effect of those observations on the current diagnosis is hard to assess. The dVAP
network serves to explicitly model this effect via its transition probabilities.
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VAP no VAP
symptoms n = 5 n = 15

abnormal temperature 60% 7%
mech. ventilation (mean) 10d 10d
abnormal leukocytes 80% 53%
abnormal pO2/FiO2 60% 27%
abnormal sputum 80% 73%
coloured sputum 60% 60%
colonised 40% 13%
antipyretic drugs 100% 87%
positive X chest 40% 0%

Table 2: Data summary

We evaluated the performance of the dVAP network, focusing on its diagnostic prediction per day.
At our disposal we had a temporal database with data from2410 patients. Each record contains data
collected for a patient during a one day stay in the ICU. The source of these data is the clinical management
system used at the Intensive Care Units of the University Medical Center Utrecht in the Netherlands. The
conclusions obtained from the dVAP network were examined on a group of20 patients in total,5 of which
were diagnosed with VAP as established by two infectious-disease specialists. This group of patients was
chosen from a total of487 patients who were admitted for a period of10 days or longer. For these5 patients
we used the data from the day of admission to the ICU until the day they were diagnosed with VAP, which
was confirmed to be at day10. For each of these5 patients, we selected from the database three patients
for whom it was known that they did not develop VAP over time. These patients were matched on three
criteria: gender, number of mechanically ventilated days, and ICU ward. Table 2 summarises the data for
the5 patients with VAP and for the15 patients without VAP on the tenth day of admission.

To compare the diagnostic performance of the dVAP network to that of the original sVAP network, we
used the Brier score best known from the field of statistical forecasting [10, 16]. We illustrate the Brier
score for our dVAP network. For each patienti, the network yields a probability distributionpi over the
two valuesj = 1, 2 (yes, no) of VAP. The Brier scoreBi for this distribution is defined as

Bi =
∑

j=1,2

(pij − sij)2

wheresij = 1 if the medical record of the patient states the valuej, andsij = 0 otherwise. If the network
would yield the correct value with certainty for a patient, then the associated Brier score would be equal
to 0. Conversely, if the network would yield an incorrect value for a patient, then the associated Brier
score would be equal to2. For the probability distribution computed for any patient, therefore, the Brier
score ranges between0 and2, and the better the prediction is, the lower the score. The Brier scores for all
patients on day10, for the dVAP and the sVAP networks respectively, are shown in Table 3. We note that
for 15 patients of the total of 20, the computed Brier score was lower with the dVAP network than with the
sVAP network. The overall quality of the two networks can be expressed in an overall score

B =
1
m

∑

i=1,...,m

Bi

wherem is the number of patients. The overall Brier score for the sVAP network can be readily computed
from Table 3 and equals0.3370, while the overall Brier score for the dVAP network is0.2376. Although
the lower score suggests that the dVAP network is better informed, the number of patients is too small to
arrive at valid statistical conclusions concerning which of the two models performs better. One way to gain
additional insight into the comparative quality of the two networks is to apply bootstrapping. The bootstrap
technique performs sampling with replacement from the original data set to create replicates of this data set
[6]. We generated different patient groups by bootstrapping, computed the overall Brier score for each one
of these groups for both models and subsequently computed equi-tailed 95% confidence intervals. Using
100 replicates, the confidence interval for the sVAP network was computed to be[0.026, 0.680]; for the
dVAP network, it was[0, 0.517]. This result now demonstrates the ability of the dVAP network to obtain
on average lower Brier scores than the sVAP network.
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Figure 5: A confusion matrix.
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Figure 6: Accuracy vs threshold for the dVAP and
sVAP networks.

patient VAP sVAP sBrier dVAP dBrier

1 yes 0.9969 1.9059 · 10−5 0.9987 3.3801 · 10−6

2 no 0.0203 8.2432 · 10−4 0.1395 0.0389

3 no 0.1672 0.0559 0.0558 0.0062

4 no 0.0028 1.5276 · 10−5 0.0002 8.0002 · 10−8

5 yes 0.0097 1.9613 0.0002 1.9992

6 no 0.4309 0.3713 0.0316 0.0019

7 no 0.0203 0.0008 0.0003 1.8002 · 10−7

8 no 0.1934 0.0748 0.0309 0.0019

9 yes 0.9999 3.3620 · 10−9 0.9987 3.3801·10−6

10 no 0.0227 0.0010 0.0015 4.5001·10−6

11 no 0.0457 0.0042 0.0005 5.0001 · 10−7

12 no 0.2977 0.1772 0.0325 0.0021

13 yes 0.0348 1.8632 0.0033 1.9868

14 no 0.0203 0.0008 0.0005 5 · 10−7

15 no 0.4364 0.3809 0.099 0.0196

16 no 0.0099 2.2231 · 10−5 7.0001 · 10−8 9.8001 · 10−15

17 yes 0.9966 2.2231 · 10−5 0.9035 0.0186

18 no 0.1752 0.0614 0.0218 0.0009

19 no 0.0740 0.0109 0.0013 3.3801 · 10−6

20 no 0.9421 1.7750 0.5810 0.6751

Table 3: Brier scores for the sVAP network and for the dVAP network, respectively.
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Figure 7: Average ROC curves for the dVAP and sVAP networks.

To further compare the performance of both models, we computed their accuracy in distinguishing
between patients with VAP and without VAP, using various threshold probabilities. More formally, if
the probability of VAP for a patient is greater than a specific threshold probability, we decide that this
patient has VAP; otherwise we decide that this patient does not have VAP. A patient who has been actually
diagnosed with VAP and is classified as having VAP, then is called atrue positive(TP); a patient who has
been diagnosed as not having VAP and is also classified as being negative for VAP, then is atrue negative
(TN). Similarly, patients can be classified asfalse positives(FP) orfalse negatives(FN). Based upon the
counts TP, TN, FP and FN, a two-by-two confusion matrix can be computed [7] as shown in Figure 5. The
accuracy now for each model can be computed as

TP + TN

TP + FP + TN + FN

Using again100 replicates and various thresholds, we computed the average accuracy for each threshold for
both models. Figure 6 illustrates the results. We observe that the accuracy of the dVAP network is higher
than the one of the sVAP network for all thresholds except for threshold0.5 where both models show the
same performance. Finally, using200 replicates we plotted the average receiver operating characteristics
(ROC) curve for both models as shown in Figure 7. These results again support the observation that the
dVAP network is more informed than the sVAP network and can arrive at relatively good estimates for
diagnosing VAP.

Observing in more detail the results from Table 3, we notice that for the patients6,12,15,18 and20
for example, who were diagnosed not to have VAP, the dVAP network derived low probabilities for the
presence of VAP. It arrived at these low probabilities by exploiting all previous information. The sVAP
network, in contrast, used just the current information and produced much higher probabilities. For the
patients diagnosed with VAP, the two models behave more or less similarly, with the highest absolute
discrepancy observed in patient17, to whom the sVAP network assigned a probability of VAP of0.997
and the dVAP network assigned a probability of VAP of0.904.

To study the performance of the dVAP network over time, we computed the probability of VAP for
each day and compared it to the respective probability established from the sVAP network. In Figure 8 we
plot, for two separate groups of four related patients, the probability of VAP for patient9 and the mean
probability of VAP for the matched patients10,11,12 (left), and for patient with VAP17 and matched
patients18,19,20 (right), from both networks. We observe in the first group that for the patient with
VAP the trend in both networks is more or less the same for all days considered. However, for the second
group the trend is similar only after the fifth time slice; in fact, we notice that the dVAP network assigns
a low probability of VAP for the first five time slices for patient17 and then assigns a higher probability
of VAP confirming the diagnosis by the expert. In contrast, the sVAP network assigns a high probability
of VAP throughout the whole period of ten days. Although it may be argued that for this patient the sVAP
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Figure 8: The dVAP and sVAP performance over time for two groups of matched patients; dnVAP and
snVAP represent the average performance for the three patients without VAP.

patient 9 10 11 12

exact 0.9987 0.0015 0.0005 0.0325

ωφ
10,0.003 0.9987 0.0013 0.0005 0.0347

Table 4: Exact and approximate probabilities for VAP for a group of matched patients.

network outperforms the dVAP network, a plausible explanation is as follows. This specific patient was
diagnosed by the expert as having VAP at the tenth day of observation. The findings for the first days do
not advocate the presence of VAP, which was developed later and finally diagnosed. We see that the dVAP
actually confirms this scenario by assigning a low probability of VAP in the first days; in contrast, the sVAP
network performed wrongly for these time slices. Concerning the patients without VAP, we note that the
dVAP network assigns consistently lower probabilities than the sVAP network for both groups.

A preliminary conclusion from our experiments is that the dVAP is better able to distinguish between
VAP and non-VAP patients. In the dVAP network, the transition model carries the information of the
patient from previous time slices into the current time slice, where diagnosis is performed. For a patient
who has constantly been monitored throughout time not to have VAP, the dVAP network will reduce the
effect of new positive findings on the current diagnosis. On the other hand, if a patient has been monitored
to have VAP with high probability, then he/she will continue to do so but with lower probability even if new
observations are negative. The dynamic nature of the model is thus responsible for conveying the history
of the patient to the present and thereby increases the diagnostic performance of the model. In the sVAP
network, in contrast, diagnosis is merely performed on the current observations of the patient disregarding
past knowledge from previous time slices.

To conclude, we performed the computations in the dVAP network using different values for the back-
ward acceptable windowωφ

n,ε. For a particular group of matched patients, the computed exact and approx-
imate probabilities of VAP are shown in Table 4. We conclude that instead of using the observations for
all 10 days in the ICU to compute the probability of VAP, we can use the observations for just the last5
days with an average error for all patients smaller thanε = 0.003. We can thus use this backward accept-
able window to decrease the computational burden involved in inference and obtain results with an almost
negligible error.

5 Discussion

In this paper, we discussed the construction of a probabilistic model that is aimed at assisting ICU clini-
cians in diagnosing ventilator-associated pneumonia. In contrast to previous approaches that used a static
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decision-theoretic network for this low-prevalence disease [8, 13], we focused on its dynamic evolution and
used a dynamic Bayesian network as the primary tool for representation and inference. We detailed various
modelling steps in the construction of our dynamic network and described the use of an efficient proce-
dure for expert elicitation of the probabilities required. We further argued that a number of convergence
properties of dynamic Bayesian networks can be exploited to arrive at feasible algorithms that restrict the
computational burden of inference with such a model. In this way, we ameliorated two important prob-
lems that were considered impervious in the past [8]: the specification of the probabilities underlying the
stochastic process modelled in the network and the computational burden of inference.

In the past, a number of dynamic models have been developed for medical applications, that accord
with the basic theoretical framework underlying the dVAP network. Examples of such models include a
dynamic network for insulin adjustment by Andreassen et al. [1], an influence diagram for diagnosis and
treatment of acute abdominal pain by Provan [12], and a decision-theoretic network for therapy planning in
the domain of paediatric cardiology by Peek [11]. The referenced articles focus primarily on the structure of
the model and its performance but do not address in detail such issues as the determination of the transition
interval to be used, the estimation of the transition probabilities, and the development of algorithms for
inference that exploit various characteristics of the model at hand. In developing the dVAP network, we
found that these issues also needed careful attention.

We evaluated our dVAP network on a set of ICU patients to examine its diagnostic performance. The
lower overall Brier score of the dynamic network in comparison to the static one, indicated that representing
time explicitly and taking into consideration the history of the patient, increases diagnostic performance. In
our experiments, the dynamic network proved to exhibit better performance at distinguishing between VAP
and non-VAP patients than the static network, especially by assigning lower probabilities of VAP to the
non-VAP patients. Future research includes improvement of the dVAP network by use of the available data
for parameter learning of the conditional tables for the observable variables of the model, and an extensive
evaluation study using data from more patients. The overall aim is to ultimately embed it in the clinical
information system of the ICU.
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