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Abstract

We are developing several exercise assistants which give very good feedback. To develop an
exercise assistant, we need three components: a domain description, rules for reasoning about
the domain, and one or more strategies for solving the exercises in the domain. To support
the possibility to adapt the several components, to avoid code duplication and maximize code
reuse, we have developed a generic framework for developing exercise assistants. The generic
framework for developing exercise assistants consists of several components: a component for
determining the difference between two expressions, a component for rewriting terms, etc.

1 Introduction

At the Open University NL and Utrecht University, we are developing several exercise assistants.
We have developed an exercise assistant that supports interactively solving a system of linear
equations [9], and we have developed an assistant that supports calculating a disjunctive normal
form (DNF) of a logical expression [7]. Extensions of the former tool can be used in linear algebra
courses at universities, the second tool will be used in the discrete mathematics course in our
Computer Science curriculum. A minimized screenshot of the assistant that supports calculating
a DNF of a logical expression is shown in Figure 1. More exercise assistants will appear this year.
The distinguishing feature of our assistants is that they give very good feedback. Although giving
good feedback is generally acknowledged to be vital for learning [8], current e-learning systems
that support incrementally solving exercises lack sophisticated techniques for giving feedback. We
hope to improve upon this situation.

To develop an exercise assistant, we need three main components: a domain description (for ex-
ample: systems of linear equations, or logical expressions), together with a concrete representation
of the domain (how are the expressions presented to the student); rules for reasoning about the
domain (for example: multiplication distributes over addition, de Morgan for logical expressions);
and one or more strategies for solving exercises in the domain (for example: first move occurrences
of ¬ in front of logical variables, and then distribute ∧ over ∨ to obtain an expression in DNF).
According to Bundy [2], these three components are the essential aspects when modelling any kind
of intelligence.

For an e-learning tool to be successful, users have to be able to adapt the presentation of
domains, the solving strategy of exercises, the kinds of exercises, and probably even the domains
themselves. Furthermore, when improving our tools in a non-domain-specific way, we do not want
to repeat the same improvements for all the tools we have built. To support the possibility to adapt
the several components, to avoid code duplication and maximize code reuse, we have developed a
generic framework for developing exercise assistants.
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Figure 1: The Online Exercise Assistant

The generic framework for developing exercise assistants consists of several generic components:
for example a component for recognizing strategies, a component for determining the difference
between two expressions, a component for rewriting terms, etc. In this paper we will present the
generic framework for developing exercise assistants and briefly describe the generic components.
Using this framework, teachers can easily adapt the exercise assistant to their needs and wishes.

This paper is structured as follows. Section 2 introduces our exercise assistants. We describe
their characteristics, the user interface, and the main components of the exercise assistants. We
will use our exercise assistant that supports solving exercises about calculating a DNF of a logical
expression as the running example in this paper. Section 3 discusses the functionality that is
different per exercise assistant, but for which we can develop a generic framework that helps in
generating components for this functionality, depending on the domain for an exercise assistant.
Section 4 discusses implementation aspects of these generic components. Section 5 discusses future
work and concludes.

2 The exercise assistants

This section introduces the exercise assistants we are building and using in some of our courses.
Figure 1 shows the on-line exercise assistant that supports transforming a logical expression to
DNF.

2.1 Characteristics

The exercise assistants we are building have the following characteristics [9]:

• An assistant is interactive, so a student solves an exercise step by step and receives semanti-
cally rich feedback after each erroneous step. Using this feedback, students can correct their
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mistakes and adjust their solving strategy.

• A student enters and rewrites expressions in the working area. This approach mimics the
pen-and paper situation as closely as possible; students can make syntactical as well as
semantical mistakes. We envisage that we will provide buttons which a student can click
to let the tool perform rewrites on (a selection of) the expression, but this is part of future
work.

• Feedback is produced for a whole class of problems. For example, the exercise assistant
that supports calculating the DNF of a logical expression, gives feedback about any errors
made in any of the exercises. The feedback need not be specified with every exercise, but
is automatically calculated based on the exercise, the available rewrite rules, possibly the
known “buggy” rewrite rules [1], and the expression entered by the student. Moreover, the
feedback is not hard coded, but is generated algorithmically on the level of rewrite steps.

2.2 The user interface

The user interface of the exercise assistant, shown in Figure 1, consists of four text fields and nine
buttons. We have used this interface for the exercise assistant supporting solving linear equations
as well as the one that supports calculating the DNF of a logical expression.

The text fields. The top-left text field shows the exercise, in this case the logical formula which
a student has to transform to DNF. The current formula to be rewritten is ¬((q → p) ∨ q). The
second text field is the working area in which the student stepwise edits the logical formula into
a DNF. The current formula in the working area is: ¬(q ∨ p) ∧ ¬q. The third text field displays
the feedback after a formula is submitted. In the figure it says that the student has incorrectly
applied the elimination of an implication rule. Furthermore, it says which part of the expression
is incorrectly rewritten and shows how the rule is correctly applied. The last text field, on the
right, shows the derivation so far. The formula on top is the original formula of the exercise. In
the figure the student has performed three additional steps: ¬((¬q ∨ p) ∨ q), ¬(¬q ∨ p) ∧ ¬q and
¬(q → p) ∧ ¬q.

The buttons. A student clicks the Check button to submit an edited formula, and the Undo
button to undo the last step (or any amount of steps). If a student wants help, he or she clicks
the Hint or Step button. Clicking the Hint button gives a suggestion about how to proceed,
whereas clicking the Step button gives a detailed next step. If for example the current formula is
¬q ∨ ¬(t ∧ t), clicking the Hint button gives the message: “You can apply the De Morgan rule”,
and clicking the Step button gives the message “Apply the De Morgan rule on: ¬(t ∧ t), giving:
¬t ∧ ¬t”. The Finished button only appears if the expression in the work area is syntactically
and semantically correct. A student clicks the Finished button if he or she thinks the formula is
in DNF. If the formula is not yet in DNF, the exercise assistant gives the massage: “You have
not yet reached a DNF yet”, and otherwise “Your logical formula is in DNF”. If a student has
solved an exercise, but does not click the Finished button, the exercise assistant gives the feedback
“You have already reached a DNF”. If the student clicks the New exercise button a new exercise
is generated and presented in the left top text field and the working area. Clicking the button
Rewrite rules gives a list of all rewrite rules which can be used during the solving process. Clicking
the Help button gives an overview of how the exercise assistant can be used, which symbols are
used, etc. The About button gives high-level information about the exercise assistant.

Feedback messages. A student can make different kinds of mistakes when solving an exercise
in our exercise assistants:

• syntactical mistakes, for example when a student writes ¬(q ∧ (t∧)) instead of ¬(q ∧ (t ∧ t))
(the and operator ∧ needs two arguments) or a formula with a missing parenthesis;
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• semantical mistakes, such as forgetting to change a disjunction into a conjunction when
applying the De Morgans rule. For example ¬(t∧ t) is rewritten to ¬t∧¬t instead of ¬t∨¬t.

2.3 The main components

To model intelligence in a computer program, Bundy [2] identifies three important, basic needs:
• The need to have knowledge about the domain.
• The need to reason with that knowledge.
• The need for knowledge about how to direct or guide that reasoning.

Our exercise assistants take instantiations of these components as input. Each exercise assistant
needs a domain description, rules that tell how expressions from the domain may be rewritten,
and strategies that guide a student toward a solution.

This subsection briefly illustrates these three components for the domain of logical expressions.
Passier and Jeuring [9] describe the components for the domain of systems of linear equations.
We will illustrate the components with small, illustrative pieces of code from the programming
language in which we implemented our tool for this domain.

To implement our tools, we need functionality for parsing, pretty-printing, symbolic evaluation,
several analyses, etc. This functionality builds, traverses or folds abstract syntax trees. Further-
more, the exercise-assistant tools for the different domains (logical expressions, linear equations)
are very similar, and we want to minimize code duplication. The lazy higher-order functional
programming language Haskell [10] is particularly good at manipulating abstract syntax trees,
and the high level of abstraction supported by Haskell minimizes code duplication, so we have
implemented our tools in Haskell.

Domain description. The domain of the exercise assistant that supports calculating a DNF of
a logical expression is the domain of propositional formulae, which is usually defined as follows in
logic textbooks :

• Each of the two constants true and false is a propositional formula.

• Logical variables, such as p, q, r, ... are propositional formulae.

• If α and β are propositional formulae, then so are (α ∧ β), (α ∨ β), (α → β), (α ↔ β) and
¬α.

• Nothing else is a propositional formula.

This form of the formulae is shown to users of the exercise assistant. It is the concrete represen-
tation of our domain. Internally in our tool we use an abstract syntax. Using Haskell data types
we represent the domain of logical expressions as follows:

data Logic =
T -- true

| F -- false
| Var String -- variable
| Logic :&&: Logic -- and/conjunction
| Logic :||: Logic -- or/disjunction
| Logic :->: Logic -- implication
| Logic :<->: Logic -- equivalence
| Not Logic -- not

A propositional formula is represented using the recursive data type Logic. For example ¬(t ∧ t)
is represented as Not(Var "t" :&&: Var "t").
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Rewrite rules. Each domain has a set of rewrite rules with which terms of the domain can
be manipulated. A rewrite rule consists of a pair (lhs, rhs) of terms, denoted by lhs =⇒ rhs, in
which variable terms may appear. Rewriting a term by means of such a rewrite rule is done by
matching the term with the left-hand side of the rule, and using the resulting bindings obtained
by matching to obtain the resulting term from the right-hand side term.

As an example, some of the rewrite rules for logical expressions are the De Morgan rules:
¬(α ∨ β) =⇒ ¬α ∧ ¬β, and ¬(α ∧ β) =⇒ ¬α ∨ ¬β. When we apply the latter rule to the logical
formula ¬(t∧ t), we bind both α and β to t, and obtain the following rewritten expression: ¬t∨¬t.
Here are some more examples of rewrite rules for logical formulae.

TrueUnitAnd: true ∧ x = x
FalseZeroAnd: false ∧ x = false
AndComm: x ∧ y = y ∧ x
AndAssoc: x ∧ (y ∧ z) = (x ∧ y) ∧ z

Logical expressions form a boolean algebra, and hence there exist a number of rules for logical
expressions, such as true is the unit of ∧, false is the zero of ∧, and ∧ is commutative and
associative. Each rule is given a name.

The complete set of rewrite rules for logical formulae consists of around 15 rules. Internally,
rewrite rules are implemented using pattern matching.

deMorgan :: Formula -> Maybe Formula
deMorgan (Not (a :&&: b)) =

Just (Not a :||: Not b)
deMorgan (Not (a :||: b)) =

Just (Not a :&&: Not b)
deMorgan _ = Nothing

Function deMorganRule takes a formula as argument and produces the rewritten formula as
output. If for example function deMorganRule is applied to Not(Var "t" :&&: Var "t"), the
argument matches the first pattern (Not (a :&&: b)), and the function returns the formula
Just(Not (Var "t") :||: Not (Var "t")). If the argument supplied doesn’t match the first
two patterns, it matches with the wild-card , and the function returns Nothing.

Strategies. For our exercise assistant that supports transforming a logical expression to DNF,
we need a strategy. Informally, the DNF of a logical expression is of the form (. . . ∧ . . . ∧ . . .) ∨
. . .∨ (. . .∧ . . .∧ . . .), where negations only appear in front of propositional variables. To rewrite a
logical expression to DNF, the basic rules for logical expressions have to be combined to describe
how a logical expression is rewritten to DNF. One possible strategy for rewriting logical formulas
to DNF is to

• first eliminate all ¬’s that are not in front of an expression variable by means of any of the
rules for ¬.

• Then bottom-up eliminate all ∨’s that appear below top level, using the rule that says that
∧ distributes over ∨.

Both of these two parts have to be applied until they cannot be applied anymore. This is an
informal description of the strategy for transforming a logical formula to DNF, in the exercise
assistant we need an explicit representation of this strategy. It is beyond the scope of this paper
to give this formal definition [6].

3 The framework

As described in the previous section, the main components of our exercise assistants are the do-
main, rewrite rules on the domain, and strategies on the domain. We do not want to implement a
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separate exercise assistant for each domain, since there are many of these domains (in mathemat-
ics, logic, computer science, physics, biology, statistics, etc). Furthermore, the implementation
of the different exercise assistants is very similar: the user interface, the web application, the
communication between the different components, etc, are all exactly the same. The difference
between the different assistants only depends on the description and structure of the domain. We
want to generate an exercise assistant given the description of the main components, in particular
the domain. This section describes the generic framework we use for building exercise assistants.
The generic framework

• makes it much easier to build exercise assistants, by minimizing programming effort and
maximizing code reuse,

• forces developers to be explicit about the essential components of an exercise assistant, and
• makes it possible to produce high quality tools, by focussing implementation efforts on the

essential components.
We will focus the description on the components that differ per exercise assistant. These compo-
nents deal with:

• rewriting expressions,
• determining the distance between two expressions,
• traversing expressions,
• selecting within expressions.

We will introduce each of these components by means of some examples. In the next section we
will discuss implementation issues for these components.

Rewriting. After a student has rewritten and submitted a logical formula, the exercise assistant
analyses this rewriting. It tries to determine if the formula has been correctly rewritten, and if
so, which rewrite rule has been applied. The result of this analysis is a feedback message. For
example, a student may rewrite (in the working area) the formula ¬q∨¬(t∧ t) into ¬q∨ (¬t∨¬t))
using the De Morgan rule. And the feedback would then be something like ”This rewrite step is
a correct application of the De Morgan rule”. If the rewrite step is incorrect, we try to determine
the most likely mistake, and give that as feedback. For example, if a student rewrites the formula
¬q ∨¬(t∧ t) into ¬q ∨ (¬t∧¬t), we give as feedback that the student probably tried to apply the
De Morgan rule, but has applied it incorrectly.

At the moment we assume a student applies only one rewrite rule per submitted formula.
In practice, this will not always be the case. We are working on recognizing the application of
multiple rewrite rules.

The rewrite analysis consists of a number of steps. First we determine whether or not the
rewritten expression is correct, that is, whether its solution is the same as the solution of the
exercise. If it is correct we try to determine the rewrite rule that has been applied, by calculating
the subexpressions that have been deleted from the old expression, and the expressions that have
been inserted in the new expression. We try to find a rewrite rule that rewrites the deleted subex-
pressions into the inserted subexpressions, by trying all rewrite rules on the deleted expressions,
and comparing the results of these rewrites with the inserted expressions. If there is a match, we
report the rule, if there is no match, we give as feedback that the current expression is correct,
but that we cannot find the rule that has been applied. If the rewritten expression is incorrect,
we try to find a likely rewrite rule the student tried to apply. We do this by rewriting the old
expression in all possible ways, and by calculating the edit distance between the resulting terms
and the new expression submitted by the student. We report the rule that returns an expression
with minimum edit distance to the new expression. The next paragraph explains the minimum
edit distance.

Continuing our example in which ¬q∨¬(t∧t) is rewritten into ¬q∨(¬t∨¬t), the subexpression
deleted is ¬(t ∧ t) and the subexpression introduced is ¬t ∨ ¬t. Only the De Morgan rewrite rule
succeeds on the argument ¬(t∧t), and applying it gives ¬t∨¬t. All other rewrite rule applications
return Nothing. This rule explains the introduced subexpressions from the deleted subexpressions.
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Minimum edit distance. When a student makes a semantical mistake, the exercise assistant
takes the deleted subexpressions from the old expression and tries to rewrite these using all rewrite
rules, giving a list of successful rewritings. The exercise assistant determines an expression in the
list of successful rewritings that is closest to the introduced subexpressions in the new expression
from the student. The exercise assistant gives feedback about the rule that leads to this expression.
A closest rewriting is determined by using a technique called minimal-edit-distance, which we will
briefly explain.

The difference between two values can be expressed as a sequence of edit steps that transforms
one value into another. For example, the difference between the two lists [1,2,3] and [1,2,4] can
be expressed as ”delete the third value in the input and insert 4 at the same position”. An edit
step inserts or deletes a certain subtree at a certain position. If we assign a cost to each of the
edit steps (probably also based on the size of the inserted or deleted tree), then we can define
the minimum edit distance between two values as the cost of the cheapest edit sequence that will
transform one value into another. This technique is called minimum-edit-distance.

For example, if a student rewrites the formula ¬q ∨ ¬(t ∧ t) into ¬q ∨ (¬t ∧ ¬t), we apply all
rewrite rules for logical expressions to the deleted subexpressions in the old expression, ¬(t ∧ t).
Only the De Morgan rule on the right argument matches, giving ¬t ∨ ¬t. Since there is only one
possible rewrite, this is by definition the closest expression to the new expression entered by the
student, so we report this as the rule we think the student intended to apply.

Term traversals. As mentioned in the previous section, a strategy for rewriting logical formulas
to DNF is to first eliminate all ¬’s that are not in front of an expression variable by means of any
of the rules for ¬, and then bottom-up eliminate all ∨’s that appear below top level, using the
rule that says that ∧ distributes over ∨. To perform a rewrite rule bottom-up, or top-down, we
first have to traverse to the lowest level in the term, try the rewrite rule, and then move up. It
follows that we need functions for traversing terms. Here we use the usual strategic combinators
for term transformations [11].

Selections. One of the extensions to the exercise assistant that we foresee is that students
may select a subexpression, and ask for possible transformations for that subexpression. In the
web-enabled version of the exercise assistant, the validity of a subexpression should preferably be
checked at the client-side.

The web-enabled version of the exercise assistant uses exactly the same source code as the
desktop variant. An application server in Haskell [5] offers light-weight web services: a service
without an input parameter, offering a new exercise, and a service with an expression and a
rewriting of that expression as input parameters, offering semantically rich feedback. The client-
side of the web-enabled version uses Javascript to use these light-weight web services, using the
Ajax approach [3] for an optimal response-time.

We want to develop a third web service, which offers a set of possible transformations for a given
subexpression within in expression. It will try the rewrite rules for the domain of the expressions
on the subexpression, and return the rwrite rules that match. With respect to response time,
it is desirable to let a client check whether or not a given selection of an expression is a valid
subexpression. In that case, the client will also need to check for syntax errors before sending a
step in the solution process to the server.

Because Javascript is a language that treats functions as first-class elements, we are able to
evaluate the validity of a subexpression in a given domain using the same generic techniques as
the framework in Haskell.

4 Implementing generic components

The four components described in the previous section are functions that are different for each
domain on which they are instantiated, but they only depend on the structure of the domain.
A function that only depends on the structure of a domain is called a generic function. Such a
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generic function is written once, and an instance of a generic function on a particular domain can
be automatically generated. Generic programming techniques are widely available for Haskell [4].

We have implemented all the components from the previous section as generic functions.

5 Future work and conclusions

We have introduced a generic framework for developing exercise assistants that give semantically
rich feedback. Exercise assistants are useful in many, different domains. Implementations of the
different exercise assistants can reuse a lot of code, for example for the user interface and the
web application. We have distinguished four components that need to be reimplemented for each
exercise assistant. We have implemented each of these components as a generic function, and we
now have the tools to automatically generate exercise assistants from domain descriptions.

Although all the tools for generating exercise assistants have been implemented, we still have
to test the generation process, and put all the different components together.

Acknowledgments. Thomas van Noort and John van Schie implemented a generic rewriting
library. Eric Bouwers and Mark Snyder implemented a first version of a generic minimum edit
distance library. Martijn van Steenbergen and Jeroen Leeuwestein implemented a generic selection
library.
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