Using column generation for gate planning
at Amsterdam Airport Schiphol

G. Diepen
J.M. van den Akker

J.A. Hoogeveen
J. W. Smeltink

Department of Information and Computing Sciences, Utrecht University
Technical Report UU-CS-2007-018

www.cs.uu.nl
ISSN: 0924-3275

Using column generation for gate planning at Amsterdam
Airport Schiphol

G. Diepen'*, J.M. van den Akker'*, J.A. Hoogeveen'*, and J.W. Smeltink?

! Department for Information and Computing Sciences,
Utrecht University, P.O. Box 80089, 3508 TB Utrecht, The Netherlands.
e-mail: {diepen,marjan,slam}@cs.uu.nl
2 National Aerospace Laboratory NLR,

Anthony Fokkerweg 2, 1059 CM Amsterdam, The Netherlands.
e-mail: smeltink@nlr.nl

Abstract. Assigning a set of flights to a set of gates at an airport used to be very easy.
Due to the increased number of flights and the increased number of constraints that have
to be satisfied, the assignment of flights to gates has become very complex nowadays.

In this paper we look at the gate assignment problem as it appears at Schiphol Airport
Amsterdam. Given the expected arrivals and departures for the next 24 hours, we aim at
finding a robust solution, such that the amount of replanning due to deviations from the
expected arrival and departure times is minimum. We solve this problem by a two-phase
procedure. In the first phase, we solve the problem in which we include the single-gate
constraints; in the second phase, we consider the constraints in which multiple gates are
involved. We solve the first-phase problem by formulating it as an integer linear program
(ILP) using a completely new formulation. We find an approximately optimal solution for it
by solving the ILP for a restricted set of variables. We find this restricted set by first solving
the LP-relaxation problem by means of column generation. In every iteration of the column
generation a small number of additional columns are also generated and put into a column
pool. After the LP-relaxation problem has been solved to optimality, the generated columns
and all additional columns from the column pool are used to solve the ILP problem. This
part of the solution is then handed to the planners at Schiphol as an input for the second
phase.

To test the performance of the algorithm we have implemented it, and we have tested this
implementation with real life data provided by Amsterdam Airport Schiphol. The results
are promising and the algorithm is able to solve real-life instances within acceptable running
times.

1 Introduction

Between the time an aircraft lands at an airport and the time it departs again a couple of things
must be done. One of the most obvious things is that the passengers need to (dis)embark the
plane. Moreover, the aircraft needs to be refueled, new supplies have to be put on board, and
the plane has to get cleaned. These latter two actions are taken care of by the so-called ground
handler. All of these actions take place while the aircraft is standing at a gate.

In the ideal situation, the plane lands and taxies to the gate it has been assigned to. This leads
to the gate assignment problem, which is described as follows: we have to assign a set of flights to
a (smaller) set of gates while making sure that certain criteria are met. Examples of such criteria
are:

Gates can handle only flights of certain sizes.

— Gates can handle only flights for certain origins/destinations.

Gates can handle only flights of certain ground handlers.

— Two adjacent gates can not both handle big aircraft at the same time.

* Supported by BSIK grant 03018 (BRICKS: Basic Research in Informatics for Creating the Knowledge
Society)

— Two adjacent gates should not handle flights with equal departure times.

Depending on the airport and its characteristics, many variants of the gate assignment problem
have been researched and multiple solution methods have been suggested. A good overview of
explored methods and models is given in van Orden (2002). In this paper we consider the situa-
tion at Amsterdam Airport Schiphol (AAS). Depending on the time horizon of the planning we
distinguish between the following three planning problems: seasonal planning, daily planning, and
tactical planning. The seasonal planning problem is more of a capacity planning problem, and the
gate planners must decide here to accept or decline new requests from airlines. The daily planning
concerns creating a planning for the upcoming day on basis of the available information about the
flights. Finally, the tactical planning is more like online planning, as it tries to resolve conflicts in
the planned solution due to disturbances.

The kind of problem we consider in this paper is the daily planning. When looking at this
planning, different objectives can be taken into account. Examples are minimizing total waiting
time of aircraft or minimizing total towing actions. Another objective that is used very often
in the literature is to minimize the walking distance of the passengers (Bihr 1990, Haghani and
Chen 1998, Xu and Bailey 2001). Moreover, it is also possible to consider multi criteria objectives.
Dorndorf, Drexl, Nikulin, and Pesch (2007) both present a state-of-the-art of the gate assignment
problem in general and discuss recent developments with regard to the multi criteria objectives.

Since an airport is a very dynamic environment, the actual day will hardly ever go completely
as planned; flights are subject to arrive either earlier or later than planned due to all kinds of
reasons. The objective we are concerned with is to create a schedule that is able to cope with such
small perturbations without having the need to replan big parts of the schedule. The number of
changes should be minimal, because every change needed during the actual day has an effect on
a very broad range of parties: the ground handler, security personnel, and passengers will have
to go to a different location, etc. Therefore, creating a schedule that needs fewer changes during
the tactical planning is beneficial to a variety of parties. We will call a schedule that leads to a
minimum number of changes in the tactical planning a robust schedule. During meetings we had
with the gate planners at AAS, finding a robust schedule was identified as the main target. The
same objective has been considered by Bolat (2000) and van Orden (2002).

One problem is how to measure the robustness of a schedule. The probability that a conflict
arises between two consecutive planes at the same gate depends on the ‘reliability’ that the planes
will stick to their assumed departure and arrival times and on the time between these two con-
secutive flights. We cannot do anything about the first part, and hence we must divide the total
available idle time, which amount is constant, optimally by optimizing the choice of the pairs of
flights that we put consecutively. One approach for optimizing the individual idle times, and thus
finding a robust schedule, is by minimizing the variance of the idle time between successive flights.
This is the approach used in Bolat (2000) where the problem is formulated as an Integer Linear
Program (ILP) using binary decision variables that link flights to positions at a gate. Based on this
research a similar approach was followed in van Orden (2002) for modelling the gate assignment
problem for AAS. Although the suggested model showed promising results, a big downside of this
model was that it was not possible to solve problems with more than 80 aircraft and 20 gates in
a reasonable amount of time.

In this paper we also aim at finding a robust schedule by trying to optimize the idle time
between all consecutive flights. We do not minimize the variance, but a function based on the arc
tangent, and we make some adjustments to this function to take the ‘reliability’ of the flights into
account. We formulate this problem as an ILP, but we use a completely different representation
based on the one used in Freling, Wagelmans, and Paixao (2001) for the vehicle and crew schedul-
ing. We present an algorithm based on column generation to find a good approximation for the
optimum of this model. Since the cost function is not based on actual costs, a good approxima-
tion for the optimum will suffice. Therefore, techniques as branch-and-price (Barnhart, Johnson,
Nemhauser, Savelsbergh, and Vance 1998) to solve the problem to optimality are not considered.

The outline for the rest of this paper is as follows: In Section 2 we formulate the problem as
an ILP and present our algorithm to find an approximate solution. Here we aggregate identical

gates. In Section 3 we discuss the solving of the second phase, in which we undo the aggregation
of identical gates. In Section 4 we will present the experimental results, and finally in Section 5
we draw some conclusions and indicate some future research topics.

2 First phase

2.1 Problem formulation

As mentioned in the previous section, the objective we are interested in is maximizing the robust-
ness of a solution. To maximize the robustness we want to maximize a function of the idle times
between all of the consecutive flights, ensuring that each flight can arrive either a bit too early or
too late without the need for replanning the schedule.

There are several options to reward the idle time between two consecutive flights. Bolat (2000)
considers minimizing the variance of the idle time. Here the idle times before the first flight and
after the last flight on a gate are taken into account as well, which implies that the total idle time
is a constant. As a result, minimizing the variance becomes equivalent to minimizing the sum of
the squared idle times.

We have considered working with this objective function too, but we have decided to look for
a cost function that reflects the natural appreciation of a solution. First of all, it should penalize
very small idle-times with very high cost and it should only mildly penalize rather large idle times.
Second, the function should be steep in the beginning (for small idle times) and then flatten out,
to reflect that for small idle times any improvement is very beneficial, whereas for already large
idle times an extra increase is of minor importance. Third, it should be possible to combine this
with a refinement reflecting the ‘reliability’ of a flight, which is discussed below. We found that a
cost-function based on the arc-tangent fulfills the desired properties best. This function is defined
as follows:

c(t) = 1000 arctan(0.21(5 — ¢) + g),

where ¢ is the amount of idle time. Experimental tests showed that it was not beneficial to make
use of a cut-off value (i.e. a threshold after which any increase in idle time will not result in a
decrease of the costs). Such a cut-off value resulted in longer running times for the ILP, which can
be explained by the fact that the cut-off value introduces a lot of symmetry in the problem.

One of the things that must be taken into consideration during the gate assignment process
at AAS is whether two consecutive flights, which are assigned to the same gate, are executed by
the same airline or share the same ground handler. Such a situation is more convenient, since the
airline and the ground handler respectively will have an incentive to make the first flight leave on
time. Furthermore, some airlines are known to be unreliable, meaning that if a flight of such an
airline is due to depart at a certain time, then there is a big chance that it is delayed.

To model such a relation we introduce a convenience multiplier conv(i,j). To compute the
cost of placing flight j immediately after flight ¢ at the same gate, the cost corresponding to the
idle time will be multiplied by this multiplier. If putting flight j after flight ¢ is desirable (e.g.
flight ¢ and j are executed by the same airline or handled by the same ground handler), then
the convenience multiplier gets a value less than 1, thus decreasing the cost. On the other hand
inconvenient situations (e.g. the first flight is operated by an unreliable airline) can be penalized
by giving the multiplier for these situations a value greater than 1, thus increasing the cost of
such an assignment. An advantage of this approach is that the convenience multiplier is computed
beforehand for all possible pairs of successive flights, while during run-time only one multiplication
is needed.

There are several hard constraints in the gate assignment problem. Obviously, each plane must
be assigned to a gate, and two planes cannot be assigned to the same gate at the same time. But
there are many more hard constraints, concerning the properties connected with the flights and
the gates. The properties that are known for each flight are:

— The region of the origin of the flight

— The region of the destination of the flight
— The size category of the flight
— The ground handler for the flight.

The region can be either Schengen (which refers to a certain group of Western European countries),
European Union (EU) or Non-EU. Often the region of the origin and the region of the destination
of a flight are the same, but there are some exceptions. With respect to the size category of the
flight, there are 8 categories at AAS: category 1 for the smallest aircraft up to category 8 for
the biggest aircraft. Finally, the ground handlers are divided into two groups at AAS: flights are
handled either by the KLM Ground Services, or by any other company.

For each of the gates it is also known which regions, which size categories, and which ground
handlers it can serve. When assigning flights to a certain gate, we need to satisfy the following
three essential properties:

— The regions of the flight must match the possible regions of the gate.
— The size category of the flight must match the possible size categories of the gate.
— The ground handler of the flight must match the possible ground handlers of the gate.

Since the complete gate assignment problem consists of around 600 flights and 120 gates, we would
like to see if we can decompose the problem into a set of smaller sub problems based on one of
the above properties. Unfortunately for each of the above properties gates exist that are multi-
purpose for that particular property. This means that a strict division into multiple independent
sub problems based on any of the properties is not possible. It is still possible to create a division
into multiple sub problems by statically dividing the multi-purpose gates over the different sub
problems, but the big disadvantage of this approach is that available capacity is discarded.

Another important feature is that some of the flights stay at AAS for a longer time; for
example, they arrive early in the morning and leave again late in the afternoon. If there are many
such long-stay flights that stay at the gate, then the number of available gates quickly decreases.
To circumvent this problem, the gate planners at AAS have the possibility of splitting the stay of
such long-stay flights into three different parts:

— Arrival part. After the aircraft lands, it will stay at the gate for 65 minutes, after which it will
be towed to some buffer stand.

— Intermediate part. During this part the aircraft resides on a buffer stand, where it does not
use up precious gate capacity.

— Departure part. The aircraft is taken from the buffer to the appropriate gate, 95 minutes
before the aircraft will depart.

At AAS only flights that stay longer than three hours are considered for such splitting. The
advantages of such splitting are three-fold. First, there is the obvious extra capacity that becomes
available for the assignment of other aircraft. The second advantage concerns flights with different
regions for the origin and destination: such flights normally would have to be assigned to a gate
that is multi-purpose with respect to the region property, and these gates are quite scarce. When
such a flight is split into two parts, the separate parts do not have to be assigned to the same gate
and thus can be assigned to two single region gates. Third, the decoupling of the two parts yields
additional flexibility.

Currently the process of splitting the flights is done manually. First the gate planners try to
solve the gate assignment problem without splitting any flights. If the available capacity is not
sufficient to accommodate all flights, the gate planners determine which flights should be split and
then resolve the problem. This step is repeated several times until sufficient capacity is available.
We will incorporate the possibility of splitting the flights that remain at AAS for more than three
hours as an automated option in our approach, which we describe now.

The standard approach for modelling the problem as an ILP model uses variables that denote
whether a flight is assigned to a certain gate (van Orden (2002)). One major disadvantage of this
formulation is that many additional variables are needed to determine the order of the flights,
which is necessary to compute the idle time between two consecutive flights and hence the cost

of a solution. Moreover, the number of constraints grows rapidly when relations between multiple
gates and flights are present in the problem. This rapid growth of both variables and constraints
makes it impossible to solve a gate assignment problem of the size of Amsterdam Airport Schiphol.
Therefore, a new approach is needed. We split the problem in two phases and solve the first phase
using a new representation, which resembles the one applied by Freling et al. (2001) for the single-
depot vehicle scheduling problem. We model series of flights that are to be assigned to the same
gate; we call such a series a gate plan. A major advantage of this new formulation over the one
stated before is that feasibility can be checked easily. Furthermore, calculating the cost of a gate
plan is also very easy. Now the first phase of the solving consists of finding for each group of
gates with equal properties as many feasible gate plans as there are gates in that group. In the
second phase the selected gate plans will be assigned to the real, physical gates matching these
requirements.
For each gate plan j we introduce a decision variable x; as follows:

v 1 if gate plan j is selected
771 0 otherwise.

Let m denote the number of flights, let H denote the number of gate types, and let n denote the
number of gate plans. Now the basic model is as follows:

Minimize chmj s.t. (1)
j=1
Zgijmjzl fori=1,...,m (2)
j=1
thhl‘j:Th forhzl,...7H (3)
j=1
z; € {0,1} forj=1,...,n (4)

where

~_ J 1if flight 4 is in gate plan j;
95 =0 otherwise,

b = 1 if gate plan j is of type h;
3" 71 0 otherwise.

We will extend this basic model to cover more possibilities. One important issue not addressed
by the above model is the fact that it should be possible to give preference to placing a flight at
a certain gate. Such preferences can be used to ensure that certain flights are always assigned to
the same gate due to security measures or to model that airlines have their “own” gates where at
least a certain percentage of their flights have to be assigned to.

The addition of preferences can be modelled in the ILP by adding the following constraints to
the model:

n m

H
Z Zpihrtjhgijl‘j >P. forr=1,...,R (5)

j=11i=1 h=1

where

- _ J 1if flight ¢ has preference on gate type h in preference 7;
Pirh =\ 0 otherwise

and R denotes the total number of preferences.

We further need to extend the above model to deal with the case that there is not enough capac-
ity to accommodate all flights. To solve this problem we add a penalty variable U; to constraint (2)
in the following way

Zgijxj—l—Ui:l fori=1,....,m (6)
j=1
U; >0 fori=1,...,m.

The extra variables are added with a very high cost coefficient in the objective function. Now it
is possible to have flights not being assigned to gates, but this option comes at a high price. The
unassigned flights present in the final solution are then assigned to gates manually by the gate
planners, who have the ability to overrule some of the constraints, if necessary. We can select the
cost coefficients of the U; variables to model the effort it takes to assign a flight manually; for
example, in general it is easier to assign a small flight somewhere manually than a large flight.

One thing not addressed in the model yet is the fact that flights with a long stay can be split
into two parts. To model this possiblity, for each long stay flight i we create two extra flights i 4
and 7g, which refer to the arrival and departure part of flight ¢, respectively.

Since these three flights are related, we must ensure we model their dependency. This can be
achieved by splitting the original constraint 2 for flight ¢ into two separate constraints

n

> (gii + 9iag)zi +Uin =1 and > (gij + gipj)2j + Uiy = L.
j=1 j=1

Here U, , and U;,, indicate the possibility of not assigning (a part of) flight 4; their cost coefficients
get value half of the value of the original cost coefficient Uj;.

Furthermore, we have to include the extra flights in the preference constraints (5). Since the
extra flights only represent half of the entire flight, they get coefficient 0.5 by redefining p;,, as
follows

1 if flight ¢ has preference on gate type h in preference r;
pirn = { 0.5 if the unsplit version of flight ¢ has preference on gate type h in preference r;
0 otherwise

The ILP formulation presented above models the problem correctly, but unfortunately the size
of the problem is enormous, since the number of possible gate plans is huge. Therefore we try
to approximate the optimal solution by taking only “presumably useful” gate plans into account.
To identify these, we first relax the integrality constraints (4) and then solve the resulting LP-
relaxation with column generation. We use the generated gate plans and some additional gate
plans that resemble the generated ones as the columns in the ILP formulation. As a side-effect, we
can use the value of the LP-relaxation to measure the quality of the obtained ILP formulation.

2.2 Pricing problem

After we have solved the LP-relaxation for a given set of columns, we find a dual multiplier 7; for
the constraint (2) corresponding to flight 4, a dual multiplier A;, for the constraint (3) corresponding
to type h, and a dual multiplier v, for the constraint (5) corresponding to preference r. Therefore,
the reduced cost for a gate plan j is equal to

m

H H
¢ — thh)\h - Z(gijﬂ'i + Z Z(gijtjhpihr'(/)r))'
h=1

i=1 r=1h=1

It is well-known from the theory of linear programming that we have solved the LP-relaxation to
optimality if the reduced cost of each gate plan is greater than or equal to zero. To check this, we
compute the minimum reduced cost over all feasible gate plans; this is called the pricing problem.

We solve this problem by composing a network such that each feasible gate plan corresponds to
a path in this network, and vice-versa. Moreover, we choose the lengths of the arcs such that the
length of the path equals the reduced cost of the gate plan. Hence, we can then solve the pricing
problem by solving a shortest-path in this network.

We solve the pricing problem for each gate type separately. For each type of gate h we introduce
a Directed Acyclic Graph (DAG) G, = (Vi,, Ep,). We add a vertex to this graph for every flight 4
that is allowed to be assigned to a gate of type h. Furthermore, we add vertices s and ¢, denoting
the source and sink respectively. If two flights ¢ and j are allowed on a gate of type h and the
arrival time a; of flight j is greater than or equal to the departure time d; of flight ¢ plus the
minimum idle time m; required after flight ¢, then a directed edge from vertex i to j is added to
the graph. Furthermore, a directed edge from the source vertex s to every vertex ¢ is added, as
well as a directed edge from every vertex i to the sink vertex t. Hence,

Ep = {(i,)la; = di +mi} U{(s,4), (i, 1)[Vi}.

It can be easily seen that every path from s to t in G} represents a feasible gate plan of type h
and vice-versa. What is left is to set the lengths of the arcs. If we look at the reduced cost, then
we see that, if a flight 7 is selected and succeeded by flight j in a gate plan of type h, then the
contribution of flight ¢ to the reduced cost of the gate plan is

R
conv(i, j)c(a; — d;) — m; — Zpihr"/)r-
r=1

Therefore, we put the cost of the arc (i,7) in G} equal to the contribution of flight ¢ to the
reduced cost. The additional arcs (s,7) get length 0, and the additional arcs (i,t) get length equal
to —m; — Zle Pihr¥r-. Note that the cost of putting flight 7 immediately after flight ¢ in the gate
plan is constant; after each iteration, we only have to update the cost terms containing the dual
multipliers.

Since exactly one of the outgoing edges of vertex i will be used if vertex i occurs in the path,
the length of the path equals the reduced cost of the corresponding gate plan, except for the dual
multiplier corresponding to the type of gate. We simply correct the length of the shortest path in
G, by subtracting \p, since we have a different graph for each gate type.

For solving the pricing problem we need to find the gate plan with minimal reduced cost. Since
each path in the graph corresponds to a possible gate plan and the path length corresponds to the
reduced cost of the represented gate plan, finding the gate plan with minimal reduced cost comes
down to finding the shortest path in the presented graph. Without loss of generality we assume
that all of the flights are sorted on their arrival times. This assumption results in a topological
order on the vertices in the graph, namely the order of the flight indices. Because we now have
a DAG with a topological order it is possible to find the shortest path in O(|V| + |E|) (Cormen,
Leiserson, and Rivest 1990).

When a gate plan with minimum reduced cost has been found, there are two possibilities:

— The new gate plan has negative reduced cost. This means that by adding this gate plan to the
master problem, the objective value of the master problem might decrease and thus we add
this gate plan to the master problem.

— The gate plan has zero reduced cost in which case there exists no gate plan with negative
reduced cost.

For each of the gate types, we need to check whether a gate plan with negative reduced cost exists.
If for none of the gate types a gate plan with negative reduced cost exists, then the master problem
has been solved to optimality.

2.3 Solving the restricted ILP

After the master problem has been solved to optimality we only have a solution for the LP-
relaxation. If this solution happens to be integral, then it solves the original ILP formulation

of the gate assignment problem, too. If the solution is fractional, then we have to convert it to
an integer solution. One possibility for this is to make use of branch-and-price. But since this is
computationally infeasible, and since there is no financial incentive involved, we decided to go for an
approximate solution. To this end, we use the ILP-solver CPLEX to solve the ILP with the limited
set of columns. In our initial computations, we only used the restricted set of columns generated
by the column generation. It turned out that this took too much time and memory. Moreover, if
solutions were found within reasonable running time, then the quality of these solutions was really
bad.

The long running time and memory consumption could be explained by the fact that the
restricted set of columns generated for solving the LP is too restrictive for the ILP: if flight ¢ is
part of a selected column, then none of the other columns containing i can be used anymore. Hence,
if our ‘first-choice’ column contains a flight that is included in one of the already selected columns,
then we need a ‘second choice’ column that does not contain this already covered flight. As the
first-choice column was generated once, when solving a pricing problem, we decided to create a set
of additional second-choice columns each time when solving the pricing problem. Here we followed
the following procedure. We first solve the pricing problem, that is, we find the shortest path. We
then take out the nodes in the shortest path one by one and solve the shortest path problems
for each of the resulting graphs. These additional columns are added to a column pool. After the
master problem has been solved to optimality, we determine the set of unique columns from the
ones that are in the column pool. This set of unique columns is then added to the restricted ILP
problem. After these unique columns were added to the ILP problem, the ILP solver was able to
solve the problem in a matter of minutes and sometimes even seconds. A second reason that we
can think of for this tremendous speed improvement is that, since the number of unique gate plans
that are in the column pool is quite large, it might be easier for the branch-and-bound subroutine
of CPLEX to find a good lower or upper bound more quickly and thus speeding up the process.

3 Second phase

In the first phase of the problem we have generated a gate plan for every physical gate such that
the total schedule is as robust as possible against small variations caused by for example delays
of flights. After solving the first phase, we have a set of gate plans with just as many gate plans
of type h as there are physical gates of type h. In the second phase of the problem we have to
determine which gate plan is assigned to which physical gate.

In the first phase we have considered constraints dealing with just one independent gate or
with a group of independent gates only. We did not consider relations between specific physical
gates, like the constraint that two flights having the same departure time can not be put directly
opposite of each other due to the impossibility of a simultaneous push-back of both flights. The
reason for not addressing these constraints is that in the first phase all the gate plans are created
for anonymous gates of a given type, and it is not known which gate plan will be assigned to which
physical gate. We will consider these types of constraints when we assign the gate plans to the
physical gates in the second phase.

In van Orden (2002) some additional constraints have been formulated that need to be ad-
dressed in the second phase. These are

— Avoid putting two flights next to each other that have an overlapping wingspan.

— Avoid putting two flights with equal departure time next to each other because of conflicting
push-back.

— Avoid putting two flights that have the same departure time on opposite gates because they
cannot have a push-back at the same time.

— Flights from United States carriers need some extra facilities (e.g. possibility of closing parts
of the waiting room at the gates they are assigned to).

— Minimize the walking distance for the passengers. This concerns both arriving or departing
passengers and transfer passengers.

Although the first one of these constraints at first sight seems to be a good example of a second
phase constraint, it turned out to be not important at all. After receiving detailed information of
the gates at AAS from the gate planners it turned out that this constraint did not exist for any
gate at AAS. But there does exist a strongly related constraint at AAS though, which decrees
that it is possible to combine two gates of a small category to one gate of a bigger category. This
constraint cannot be addressed in the first phase, since we do not know then which two gate plans
will be next to each other in the final solution. In theory it could be possible to take this constraint
in consideration when solving the first phase by creating a new category of gates consisting of the
two smaller gates. The pricing problem for this gate type would then consist of two paths that
both contain the selected vertices corresponding to the planes of a bigger category. This problem
is harder to solve, which increases the running time. Moreover, increasing the number of gate
types will result in longer running times. Therefore, and also since there are not so many of these
possibilities, we have decided not to take this constraint into consideration. After the second phase
has finished it will be known which gate plans and thus which flights will be assigned to the gates
that can be combined. When there are flights left that are still not assigned the gate planner will
be able to manually combine a set of these smaller gates into one gate of a bigger category and
assign a bigger flight to this combined gate.

One of the currently important objectives is to maximize passenger comfort including minimum
walking distance. This is achieved by putting flights with a large number of passengers at the best
stands. Since we are assigning entire gate plans to gates now, we have less flexibility, but we
can use the same principle. Gates that are closer to the beginning of the pier are considered to
be better stands. So also in this case the number of passengers will be an important factor in
the decision: when there are more gate plans to choose from the one with the largest number of
departing passengers will be assigned to the better stand.

3.1 Solving the second phase

The full assignment problem of the second phase can be decomposed into a number of smaller
assignment problems for each type of gate that has been introduced. Most of these sub problems can
be solved independently, but some are dependent, since they involve gates that have a neighboring
or opposite gate of a different type. The dependent sub problems need more attention.

Since we did not get all rules the gate planners use at AAS, we could only use one rule to solve
the second phase. This rule states that flights having more departing passengers should be placed
more at the beginning of a pier. So solving the second phase is now done by applying the following
to all gate types

— Sort the gates based upon the quality (i.e. gates close by the beginning of the pier are better
than gates more to the end).

— Sort the gate plans on the total number of departing passengers that are on the flights in that
gate plan.

— Assign the gate plan with the highest number of departing passengers to the best gate, assign
the next gate plan to the next-best gate, and so on.

It is also possible to allow more rules in the second phase. Also, sometimes it might turn out to be
beneficial to swap two flights from two gate plans, resulting in a situation where a better solution
for the second phase is possible. If more complex rules are applicable, another possibility is to add
a local search approach that allows swapping flights within the gate plans for a certain type of
gate to find better solutions. Presumably, the best option is to present the gate planner with the
results from the first phase and have him assign the gate plans to the physical gates. This can still
be done manually since the size of these problems is rather small; generally the maximum number
of gates within one gate type is around eight. Only for the remote stands this number is higher,
but the flexibility for assigning gate plans to these platforms is really high.

4 Experimental results

To test the presented algorithm we have written an implementation in C++. All of the tests
were conducted on a Pentium 4 2.8 GHz with 1GB of RAM. For solving the LP problems and for
solving the ILP problem from the LP problem solution by branch-and-bound the Concert interface
of CPLEX 9.1.2 (Ilog 2005) was used.

AAS has provided us with six different sets of data, three of which were rather busy high season
days, and three low season days. The sizes of the different instances are given in Table 1.

Instance Flights Gate types Gates
High-Season-1 608 43 128
High-Season-2 595 43 128
High-Season-3 592 43 128
Low-Season-1 518 43 128
Low-Season-2 530 43 128
Low-Season-3 523 43 128

Table 1. Sizes of the provided instances

In Table 2 the time needed to solve the LP-relaxation and the restricted ILP are given. It can
be clearly seen that the time needed for solving the LP is considerably bigger for the high-season
datasets than for the low-season datasets. For both the high season and the low season sets, there
was one instance that could not be solved within 90 seconds by Cplex with the default settings.
After 90 seconds, the solution process was aborted and more aggressive parameters settings were
used for Cplex, resulting in more time spent on preprocessing the problem which led to acceptable
running times for solving the restricted ILP.

Instance Runtime LP-Relaxation (sec.) Runtime ILP (sec.)
High-Season-1 161 334
High-Season-2 234 23
High-Season-3 146 5
Low-Season-1 77 261
Low-Season-2 72 13
Low-Season-3 69 12

Table 2. Running times for solving LP-Relaxation and ILP

Instance Iterations # Generated Columns # Columns in column pool (Unique)
High-Season-1 555 13067 84284 (56337)
High-Season-2 559 14370 89501 (54730)
High-Season-3 517 13173 83004 (53459)
Low-Season-1 682 10874 64436 (43744)
Low-Season-2 594 10915 63500 (42853)
Low-Season-3 615 11193 64691 (41938)

Table 3. Generated columns.

Finally, in Table 3 the number of iterations, number of generated columns, and the number
of columns in the column pool are given. Again, a clear difference can be seen between the high
season datasets and the low season datasets for both the number of generated columns and the
number of columns in the column pool.

5 Conclusion and further research

We have presented a new way of formulating the gate assignment problem as an ILP. This model
is based on realistic constraints that are actually used for solving the gate assignment problem
at AAS. Furthermore, we have described a method to find an approximate solution for this new
formulation. We have implemented it in C4++, where we use Cplex 9.1.2 for solving the (I)LP’s.

The implementation was tested with real life input data, provided by AAS, and these instances
could be solved in a matter of minutes to near-optimality and sometimes even to optimality. The
time needed for solving the total problem for the given data is comparable to the time taken by
the planning software currently in use, which is based on a greedy algorithm that assigns planes
to gates on basis of an optimal point score per plane.

Further research possibilities are to try and implement more rules from what the gate planners
use now.

References

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., and Vance, P. H. (1998). Branch-
and-price: column generation for solving huge integer programs, Operations Research 46: 316-329.

Bihr, R. A. (1990). A conceptual solution to the aircraft gate assignment problem using 0,1 linear program-
ming, Proceedings of the 12th annual conference on Computers and industrial engineering, Pergamon
Press, Inc., Elmsford, NY, USA, pp. 280—284.

Bolat, A. (2000). Procedures for providing robust gate assignments for arriving aircrafts, European Journal
of Operational Research 120: 63—80.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990). Introduction to Algorithms, The MIT Electrical
Engineering and Computer Science Series, MIT Press/McGraw Hill.

Dorndorf, U., Drexl, A., Nikulin, Y., and Pesch, E. (2007). Flight gate scheduling: State-of-the-art and
recent developments, Omega 35: 326—-334.

Freling, R., Wagelmans, A. P. M., and Paixao, J. M. P. (2001). Models and algorithms for single-depot
vehicle scheduling, Transportation Science 35(2): 165-180.

Haghani, A. and Chen, M.-C. (1998). Optimizing gate assignments at airport terminals, Transportation
Research Part A: Policy and Practice 32: 437-454.

Tlog (2005). Tlog Cplex v9.1, http://www.ilog.fr.

van Orden, A. (2002). Gate assignment: Methods and models, Master’s thesis, Utrecht University.

Xu, J. and Bailey, T. G. (2001). The airport gate assignment problem: Mathematical model and a tabu
search algorithm., HICSS.

