
The Valve Location Problem in Simple
Network Topologies

Hans L. Bodlaender

Alexander Grigoriev

Nadejda V. Grigorieva

Albert Hendriks

Department of Information and Computing Sciences,

Utrecht University

Technical Report UU-CS-2007-019

www.cs.uu.nl

ISSN: 0924-3275

The Valve Location Problem
in Simple Network Topologies

Hans L. Bodlaender∗ Alexander Grigoriev† Nadejda V. Grigorieva‡

Albert Hendriks§

Abstract

To control possible spills in liquid or gas transporting pipe systems, the systems
are usually equipped with shutoff valves. In case of an accidental leak these valves
separate the system into a number of pieces limiting the spill effect. In this paper, we
consider the problem, for a given edge-weighted network representing a pipe system
and for a given number of valves, to place the valves in the network in such a way that
the maximum possible spill, i.e. the maximum total weight of a piece, is minimized.
We show that the problem is NP-hard even if restricted to any of the following
settings: (i) for series-parallel graphs and hence for graphs of treewidth two; (ii) if
all edge weights equal one. If the network is a simple path, a cycle, or a tree, the
problem can be solved in polynomial time. We also give a pseudo-polynomial time
algorithm and a fully polynomial approximation scheme for networks of bounded
treewidth.

Keywords: Valve location problem; computational complexity; bounded treewidth;
dynamic programming; binary search.

1 Introduction

In this paper, we consider a combinatorial problem that arose from a number of applica-
tions connected to operations and maintenance of liquid- or gas-transporting pipe systems;
for applications related to the long oil and gas pipelines see e.g. [9]; for applications in
water supply engineering see [14]. A pipeline is the most efficient and environmentally
friendly way to transport hazardous liquids and gases, e.g. crude oil or natural gas, over
land. In normal daily operations, pipelines do not produce any pollution. However, due to

∗Department of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, NL–3508
TB Utrecht, The Netherlands, hansb@cs.uu.nl

†Maastricht University, Quantitative Economics, P.O.Box 616, NL–6200 MD Maastricht, The Nether-
lands

‡Institute of Power Resources Transport (IPTER), 144/3, pr. Octyabrya, Ufa-450055, Russia
§Department of Information and Computing Sciences, Utrecht University. alberthendriks@gmail.com

1

external factors or pipe corrosion, accidents on pipelines sometimes happen and the acci-
dental damage can be substantial. To control possible spills, every pipe system is usually
equipped with special shutoff valves. Whenever the pipe system is depressurized, the valves
automatically and instantly separate the pipe system into pieces. Therefore, the quantity
of hazardous liquid or gas potentially leaving the system equals the total length of the
pipes in the damaged piece of the system separated by shutoff valves. In the application
at hand, there is a given edge-weighted network representing a pipe system and a given
number of valves that can be placed in the vertices of the network. We want to solve the
following problem: find a valve location in the network that minimizes the maximum total
weight of a piece separated by shutoff valves.

This paper is organized as follows. In Section 2, we give a precise graph theoretic
formulation of the problem. In Section 3, we show that using dynamic programming the
problem can be solved in polynomial time on simple network topologies: paths, cycles
and trees. In Section 4, we consider a more general case, namely the graphs of bounded
treewidth. For these graphs, we give a pseudo-polynomial time dynamic programming
algorithm, and then we turn this algorithm into a fully polynomial approximation scheme
(FPTAS). Finally, in Section 5, we discuss the complexity of the problem. Here, we
show that the problem is NP-hard even for series-parallel graphs and hence for graphs
of treewidth at most two. We also show that the unweighted version of the problem, i.e.
the problem where all edge weights equal one, is also NP-hard.

2 Graph Theoretic Formulation

The problem can be formulated in graph theoretic terms in a natural way. Let G = (V, E)
be an undirected graph representing a pipe network. Edges of the graph represent pipes.
Let ωe ∈ Z+ denote the length of pipe e ∈ E. Vertices of the graph represent connection
points between the pipes. Let k be a number of valves to be installed. We assume that a
valve can be located in any vertex v ∈ V .

Consider a set of vertices V ′ ⊆ V . If we use V ′ as valve locations, we use |V ′| valves,
and partition G into pieces as follows. The set of edges E is partitioned into sets with
two edges in the same set of the partition if and only if they are on a path in G that does
not contain a valve. Thus, E is partitioned into subsets E1, E2, . . . , ES where edges in
Es, 1 ≤ s ≤ S, form a connected component in G called a piece, and for any two subsets,
Es and Et, the set of endpoints in Es intersects the set of endpoints in Et only in elements
of V ′. The cost of V ′, denoted Wmax(V

′), is

Wmax(V
′) = max

1≤s≤S

∑
e∈Es

ωe,

i.e., the maximum total length of a piece or the maximum spill.
The valve location problem then is to find a set of valve locations V ′ in G with

minimum cost Wmax(V
′). In other words, we have to find a k-elementary separator in G

2

such that the maximum length connected component is minimized. We consider also the
unweighted version of the problem where ωe = 1 for all e ∈ E.

Throughout the paper, n denotes the number of vertices in G, ωmax the maximum
length of an edge:

ωmax = max
e∈E

ωe,

and ωΣ the total length of all edges:

ωΣ =
∑
e∈E

ωe.

Clearly, the maximum spill is yet another network vulnerability measure. This concept
is very close to many other known vulnerability measures, e.g. vertex integrity of a graph
defined as I(G) = min{|S|+m(G−S) : S ⊂ V }, where m(H) denotes the maximum order
of a component of H, see [2, 3]; minimum balanced separator defined as a minimum order
separator S such that the maximum component in G−S contains at most βn vertices for a
given 0 < β < 1, see [1, 7, 13]; and some other, see e.g. [12]. The key difference between the
maximum spill and the known vulnerability measures is that the maximum spill measures
vulnerability of a graph in terms of the total edge weight (or length) of a component when
all other measures are related to the maximum order (number of vertices) in a component.
Of course, practical suitability of a certain measure depends heavily on applications.

Throughout the paper, we measure run time of the algorithms using the widely accepted
convention that we can do an addition or multiplication of two integers in O(1) time. If
we want to count bit operations, we must multiply run times by a factor log ωΣ.

3 Simple Networks: Paths, Cycles and Trees

In this section, we give dynamic programming algorithms to solve the problem in simple
network topologies: paths, cycles and trees.

3.1 The Valve Location Problem on a Path

We first consider the valve location problem on a path. This simple case appears fre-
quently in the practical settings of the long oil pipelines, and thus is of practical relevance;
see [9].

We have two different exact algorithms. One uses ‘text book’ dynamic programming,
the other one uses a binary search for the optimum, and a ‘text book’ greedy decision
algorithm.

Proposition 1 The valve location problem on a path can be solved in O(kn2) time.

3

Proof. Without loss of generality, we assume that all vertices in the path are successively
numbered by 1, 2, . . . , n, and the successive edges on the path have lengths ω1, ω2, . . . , ωn−1.

Let f(v, j) denote the min-max spill for the first v edges, if we can use j valves among the
first v vertices, i.e. the minimum over all possible positions of j valves on the path formed
by the first v vertices of the maximum length of a subpath (a piece) with no internal vertices
accommodating a valve. One can directly observe that the following recursive formulation
holds for all v, 1 ≤ v ≤ n, and all j, 1 ≤ j ≤ k:

f(v, j) = min
1≤u≤v

max{f(u, j − 1),
∑

u≤w≤v−1

ωw}. (1)

In addition, we have for all v, 1 ≤ v ≤ n:

f(v, 0) =
∑

1≤w≤v−1

ωw. (2)

As a preprocessing step, we tabulate in O(n2) time all values
∑

u≤w≤v ωw, for all pairs
u and v, 1 ≤ u ≤ v ≤ n − 1. Then, using Equation (2) in the first step and recursively
applying Equation (1) in step j, 1 ≤ j ≤ K, we obtain at step K the optimal min-max
spill f(n− 1, K). Then, in the same amount of time, we can also construct a placement of
the valves that gives the optimal spill. ut

A different algorithm is obtained by using a binary search for the optimal value, checking
each value with a greedy algorithm.

Proposition 2 Given a path and a value L, we can decide in O(n) time if there is a
solution to the valve location problem with k valves with cost at most L.

Proof. The following simple greedy algorithm suffices. Move along the path from left
to right, and put a valve whenever adding one additional edge to the current piece would
create a piece of total length more than L. If the last piece has length at most L after we
placed all k valves, or if we reach the end of the path before using all k valves, we succeed.
Otherwise, there is no solution with cost at most L. ut

The same argument also gives the minimum number of valves needed to guarantee a
cost that is at most L. Using binary search for the optimal value in the range of integers
between 0 and ωΣ, we directly obtain the following result.

Corollary 3 For a given path, we can solve the valve location problem in O(n log ωΣ)
time.

It is also possible to construct a fast 2-approximation algorithm using a greedy strategy
for paths. As with k valves, we divide the path in at most k + 1 pieces, and there always
will be a piece containing the maximum length edge, max{ωΣ/(k + 1), ωmax} is a lower
bound for the optimal value.

4

Consider the following greedy algorithm. Write Ap = ωΣ/(k + 1). Move through the
path from left to right, and put a valve as soon as we have a piece of size at least Ap

since the last valve (or the start of the path, in case we place the first valve). As each
piece, except the last one, has size at least Ap, the length of the last piece is at most
ωΣ − kAp ≤ Ap. For each other piece, its total length is less than Ap plus the size of
the longest edge, hence is at most Ap + ωmax, and hence at most twice the lower bound
max{Ap, ωmax}. Thus, this greedy algorithm is a 2-approximation. It clearly runs in O(n)
time. We summarize the obtained results in the following proposition.

Proposition 4 The valve location problem on a path admits a 2-approximation algo-
rithm that uses O(n) time.

We can sharpen Proposition 4 when ωmax ≥ 3Ap.

Proposition 5 Consider the valve location problem on a path. Let k be the number
of valves. If ωmax ≥ 3ωΣ/(k + 1), then the optimal solution has cost ωmax. An optimal
solution can be found in this case in O(n) time.

Proof. Clearly, ωmax is a lower bound for the optimal value. Again, write Ap = ωΣ/(k+1).
Consider the following algorithm. We visit the vertices on the path from left to right,

and put a valve on a vertex, when the piece since the last placed valve (or, for the first
valve, since the start of the path) has total length at least Ap, or when the next edge has
a length that is at least 2Ap. We end if we placed k valves, or have arrived at the end of
the path.

Note that this effectively means that we put at both endpoints of an edge with length
at least 2Ap a valve (except at the endpoints of the path itself.)

Each piece now has a total length that is at most ωmax. We can see this with case
analysis.

• Suppose we placed k valves. The last piece has total length at most Ap. Consider
the first k pieces. Each of these has total length at least Ap, or has a total length
less than Ap, but then the next piece has length at least 2Ap. So, the total length of
the first k pieces is at least kAp, and hence the last piece has total length at most
ωΣ − kAp = Ap.

• A piece that is not the last piece that contains at most one edge has length at most
ωmax.

• Consider a piece that is not the last piece and that contains at least two edges. The
total length of all edges except the last is at most Ap, and the length of the last edge
is less than 2Ap. So, its total length is less than 3Ap ≤ ωmax.

• If we placed less than k valves, the analysis of the last piece is the same as in the
previous two cases.

It is straightforward that the algorithm uses O(n) time. ut

5

3.2 Cycles

If G is a cycle, then we can obtain exact and approximate solutions for the valve location
by using variants to the algorithms for paths.

If we have k valves, and know the location of one of the valves on a cycle, then the
problem reduces to solving the valve location problem on a path, where we can place
k − 1 valves. Trying each vertex as location for the first valve gives algorithms for cycles
that use n times the time for an algorithm on paths.

A small trick helps to limit the number of choices for the first valve, and thus to reduce
the running time on cycles. We first look at a fast 2-approximation algorithm.

Proposition 6 The valve location problem on a cycle admits a 2-approximation algo-
rithm that uses O(n) time.

Proof. Write Ac = ωΣ/k. Use the following heuristic. Place the first valve at some
arbitrary vertex v. Then, place the other k − 1 valves similar to the 2-approximation
algorithm for paths: starting from the last location where we have put a valve (in the first
round v), walk along the cycle till we have a piece whose total length is at least Ac, and
then place a valve. After we have placed k valves, the remaining piece has total length at
most ωΣ − (k − 1)Ac ≤ Ac. Each other piece has length at most Ac + ωmax. As Ac and
ωmax both are lower bounds for the optimal value, we have a 2-approximation. (With k
valves, the cycle is divided in k pieces, and thus there always will be a piece of total length
at least ωΣ/k.) ut

Proposition 7 Consider the valve location problem on a cycle. Let k be the number
of valves. If ωmax ≥ 3ωΣ/k, then the optimal spill equals ωmax. An optimal valve location
can be found in this case in O(n) time.

Proof. The proof is similar to the proof of Proposition 5. Again, write Ac = ωΣ/k.
Put two valves at both endpoints of the edge with length ωmax. Then, put the other

valves similar as in the proof of Proposition 5, ending a piece when it has total length at
least Ac, or when the next edge has length at least 2Ac.

If we placed k valves, then the last piece has length at most Ac: we have one piece of
length ωmax ≥ 3Ac, and each of the other k − 2 pieces either has total length at least Ac,
or has length at most Ac, but is followed by a single edge piece of length at least 2Ac. So,
the other pieces have total length at least 3Ac + (k − 2)Ac.

An analysis, similar to the proof of Proposition 5, shows that each other piece has
length at most ωmax. ut

Theorem 8 The valve location problem on a cycle can be solved by solving O(n/k)
valve location problems on paths of length at most n.

Proof. Use Ac = ωΣ/k, as before. If ωmax ≥ 3Ac, then by Proposition 7 there is an
optimal valve placement that places two valves on the endpoints of the longest edge. Place

6

these valves, and solve the problem of placing the last k − 2 valves on the remaining path
optimally by one call to the valve location problem on a path.

If ωmax < 3Ac, then there is a solution of value ωmax + Ac < 4Ac. Now, partition the
cycle into bk/4c segments: each segment is a path on the cycle; we do this such that the
number of edges on different segments differ by at least one. So, each segment has O(n/k)
edges. At least one of these segments must have total length at least 4ωΣ/k = 4Ac, which
is larger than the optimal value. So, for the segment with the largest total length, we know
that at least one of its interior vertices has a valve in an optimal solution.

Thus, our algorithm runs as follows: find the heaviest segment, and try all O(n/k)
placements of a valve on an interior vertex of the segment. For each such placement, the
remaining problem is equivalent to placing k − 1 valves on a path. ut

Corollary 9 The valve location problem on a cycle can be solved in O(n·min{log ωΣ, n/k})
time.

3.3 Trees

In this section, we show that the problem on trees can be solved in polynomial time. More
specifically, we show:

Theorem 10 The valve location problem on a tree can be solved in O(nk2 log(nωmax))
time.

The global structure of the algorithm is a binary search on the optimal value in the
range of integers between 0 and nωmax. Thus, we directly obtain Theorem 10 as a corollary
of the next result.

Proposition 11 Given a tree, and an integer L, we can decide in O(nk2) time if we can
place k valves with maximum piece size at most L.

Proof. We choose an arbitrary vertex vr as root of the tree. For rooted subtrees T ′, and
integers i, 0 ≤ i ≤ k, we define

AT ′,L(i) = the minimum over all possible ways to put at most i valves in T ′

such that no piece in T ′ has a total length of more than L, of the total
length of the piece that contains the root node of T ′.

AT ′,L(i) = 0, if there is a way to put at most i valves in T ′ such that no piece
in T ′ has a total length of more than L, such that there is a valve in the
root node of T ′.

AT ′,L(i) = ∞, if there is no possible way to put at most i valves in T ′ such that
no piece in T ′ has a total length of more than L.

PT ′,L(i) = true if and only if AT ′,L(i) = 0, i.e. if we can put at most i valves
in T ′ such that no piece in T ′ has a total length of more than L, such that
there is a valve in the root node of T ′.

7

We will compute tables AT ′,L and PT ′,L for several subtrees of T :

• For each vertex v in T except vr, we compute a table for the subtree, consisting of
the parent of v in T , v, and all the descendants of v. The root of this subtree is the
parent of v. Call this subtree T+

v .

• For each vertex v in T : if v has i children w1, w2, . . . , wi, then for each j, 0 ≤ j ≤ i,
we compute a table for the subtree, consisting of v, w1, . . . , wj, and all descendants
of w1, w2, . . . , wj. Vertex v is the root of this subtree. Call this subtree Tv,j. For the
case j = i, write Tv = Tv,i; this is the tree consisting of v and all its descendants.

The following two lemmas give recursive formulations that show how to compute these
tables.

Lemma 12 Let T be obtained by taking the union of trees T ′ and T ′′ such that the root r
of T ′ and T ′′ is the only vertex that belongs to both trees. Let 0 ≤ i ≤ k.

1. PT,L(i), if and only if there are i′, i′′ with i′ + i′′ = i− 1, 0 ≤ i′ ≤ k, 0 ≤ i′′ ≤ k, such
that PT ′,L(i′) and PT ′′,L(i′′).

2. If PT,L(i), then AT,L(i) = 0.

3. If not PT,L(i), then

AT,L(i) = min
i′,i′′,i′+i′′=i,0≤i,i′

AT ′,L(i′) + AT ′′,L(i′′)

if this term is at most L, otherwise AT,L(i) = ∞.

Proof. 1. If PT,L(i), then consider a placement of the valves in T , with a valve in r such
that each piece has total length at most L. Suppose i′ of these valves are in T ′, and i′′ of
these valves are in T ′′. As exactly one valve belongs to both T ′ and T ′′ (namely, the valve
in r), i = i′ + i′′ − 1. The placement of the valves in T ′ shows that PT ′,L(i′), and similarly,
PT ′′,L(i′′).

Suppose there are i′ and i′′ with i′ + i′′ = i − 1, 0 ≤ i′ ≤ k, 0 ≤ i′′ ≤ k, such that
PT ′,L(i′) and PT ′′,L(i′′). Combine the placement of i′ valves in T ′ (with pieces of length at
most L) with a placement of i′′ valves in T ′′ (with pieces of length at most L), each with
a valve in the root vertex. As these placements share the root vertex, we have exactly
i′ + i′′ − 1 = i valves, and each piece has a total length at most L. Hence PT,L(i).

2. It is trivial that if PT,L(i), then AT,L(i) = 0.
3. Suppose that PT,L(i) is false. Suppose we have a placement of i valves in T such

that each piece has total length at most L, and the length of the piece containing r is
minimized. Now, we cannot have placed a valve in r (otherwise PT,L(i) holds). Suppose i′

of the valves are in vertices of T ′, and i′′ in vertices of T ′′. As there is no valve in r, we have
that i′ + i′′ = i. Consider the piece that contains r. Suppose α is the length of all edges

8

of this piece in T ′, and β is the length of all edges of this piece in T ′′. Now, α ≥ AT ′,L(i′),
β ≥ AT ′′,L(i′′), and AT,L(i) = α + β. So,

min
i′,i′′,i′+i′′=i,0≤i′,i′′

AT ′,L(i′) + AT ′′,L(i′′) ≤ L

and
AT,L(i) ≥ min

i′,i′′,i′+i′′=i,0≤i′,i′′
AT ′,L(i′) + AT ′′,L(i′′).

Consider some i′, i′′ with i′+ i′′ = i. Suppose there is a placement of i′ valves in T ′ with
each piece of total length at most L, and the piece containing r of total length AT ′,L(i′).
Similarly, suppose there is a placement of i′′ valves in T ′′ with each piece of total length at
most L, and the piece containing r of total length AT ′′,L(i′′). Neither of these placements
can put a valve in r; otherwise, the union of the placements gives PT,L(i) since we place at
most i valves, have a valve in r, and each piece has total length at most L. Hence, in the
union of the placements, the resulting piece that contains r contains edges in T ′ and edges
in T ′′; its total length equals AT ′,L(i′) + AT ′′,L(i′′). Thus, if AT ′,L(i′) + AT ′′,L(i′′) ≤ L, we
have

AT,L(i) ≤ AT ′,L(i′) + AT ′′,L(i′′).

Hence,
AT,L(i) ≤ min

i′,i′′,i′+i′′=i,0≤i′,i′′
AT ′,L(i′) + AT ′′,L(i′′),

if this term is at most L. The result now follows. ut

Lemma 13 Let T be a tree with root r, and let T+ be obtained by adding an edge {r, r′}
to a new vertex r′ with length `. Let r′ be the root of T+. Let 0 ≤ i ≤ k, and L be an
integer.

1. PT+,L(i) holds if and only if i > 0 and AT,L(i− 1) + ` ≤ L.

2. If PT+,L(i), then AT+,L(i) = 0.

3. If not PT+,L(i), then AT+,L(i) = AT+,L(i)+`, if this term is at most L, and AT+,L(i) =
∞ otherwise.

Proof. 1. Suppose PT+,L(i) is true. As we place a valve in r′, we have i > 0. Consider
the placement of the (at most) i − 1 remaining valves in T . If it has a valve in r, then
AT,L(i−1) = 0 and ` ≤ L. Otherwise, the piece in T ′ containing r has total length at most
L, so if we take the edge {r, r′} out of this piece, we obtain a placement of i− 1 valves in
T with the piece containing r of total length at most L− `. Hence AT,L(i− 1) ≤ L− `.

Suppose i > 0 and AT,L(i − 1) + ` ≤ L. Consider a placement of i − 1 valves in T
such that each piece has total length at most L, and the piece containing r has length
AT,L(i− 1) ≤ L− `. Take these valves in T ′, and add a valve in r. Observe now that each
piece has total length at most L.

2. Trivial.

9

3. Suppose PT+,L(i) is false. If there is also no placement of i valves in T such that
each piece has total length at most L, then AT+,L(i) = AT+,L(i) = ∞. Otherwise, take
a placement of i valves such that each piece has total length at most L, and the piece
containing r has length AT,L(i), or AT,L(i) = 0 and there is a valve in r. Taking the same
valves in T+ gives a placement of valves with each piece except the piece containing r′

having total length at most L, and the piece containing r′ having total length AT,L(i) + `.
So AT+,L(i) ≤ AT+,L(i) + `, in case AT+,L(i) + ` ≤ L.

Suppose we have a placement of i valves in T+ such that each piece has total length
at most L, and the length of the piece containing r′ is minimized. By assumption, there
is no valve in r′. If there is a valve in r, then AT,L(i) = 0 and AT+,L(i) = `. Otherwise,
we get a minimum total length piece containing r′, if the restriction of this piece to T has
minimum total length, i.e., has length A + T, L(i). Hence, AT+,L(i) = AT+,L(i) + `. ut

Using Lemmas 12 and 13, we can compute all desired tables. Recall that L is fixed
during the computation. Now, for all vertices in the tree, in postorder, we compute all
values ATv ,L(i), and PTv ,L(i), for all i, 0 ≤ i ≤ k. This is done in the following way. If v
is a leaf of T , then computing these values is trivial. Otherwise, suppose v has s children,
say w1, w2, . . . , ws. For all j, 1 ≤ j ≤ s, we compute all values ATv,j ,L(i), and PTv,j ,L(i) for
all i, 0 ≤ i ≤ k. In case j = 1, we note that Tv,1 is the same subtree as T+

w1
. Thus, using

Lemma 13, we can compute the values ATv,1,L(i), and PTv,1,L(i) from the already earlier
computed tables ATw1 ,L and PTw1 ,L. For 2 ≤ j ≤ s, we note that Tv,j is the union of Tv,j−1

and T+
wj

. Thus, we first compute the tables AT+
wj

, L and PT+
wj

, L given the tables ATwj ,L and

PTwj ,L using Lemma 13. Then, we compute the tables ATv,j ,L and PTv,j ,L from the tables
AT+

wj
,L, PT+

wj
,L, ATv,j−1,L and PTv,j−1,L, using Lemma 12. Finally, note that Tv,s = Tv. When

we have the tables ATvr ,L and PTvr ,L, we can easily decide whether we can place k valves
in T with maximum piece size at most L, using the following simple observation.

Proposition 14 Let vr be the root of T . There is a solution to the valve location
problem with k valves and cost at most L if and only if ATvr ,L(k) < ∞.

If T has n vertices, then we compute O(n) tables: O(1) per edge in T . Each table can
be computed in O(k2) time. This can be easily observed from Lemmas 12 and 13. Simply,
iterate over all possible values of k and k′, and compute the necessary value of k′′. Each
step involves O(1) computations. Actually, the step that uses Lemma 13 needs only O(k)
time. ut

For trees, a result similar to Propositions 5 and 7 holds. However, in this case, this
does not lead to an approximation algorithm with constant performance guarantee.

Proposition 15 Consider the valve location problem on a tree. Let k be the number
of valves. If ωmax ≥ 3ωΣ/k, then the optimal spill equals ωmax.

10

Proof. Write AT = ωΣ/k. We give an algorithm that realizes a spill of ωmax. During
the algorithm, we place some valves and allocate the not yet placed valves to pieces, i.e.
maximal subtrees without an already placed valve. Initially, we have no valves placed and
allocate all valves to the entire tree. As an invariant, a piece of total length ` has at least
b`/AT c valves allocated to it, or has total length at most ωmax. This clearly holds initially.

If a piece with at least two edges contains an edge e with length at least 2AT , then we
place a valve at each endpoint of this edge. Suppose the piece has length `. Thus, b`/AT c
valves were allocated to this piece, of which we used two. Hence, we can allocate remaining
b`/AT c−2 valves to the created subpieces, except the piece with the single edge e. To each
subpiece i with total length `′i, we allocate b`′i/AT c valves. As

∑
i `

′
i ≤ b(`− 2AT)/AT c =

b`/AT − 2c = b`/AT c − 2, we have sufficient number of valves for the allocation.
Now, suppose each piece with at least two edges only has edges with length less than

2AT . If a piece has total length at most ωmax, then we place the valves allocated to the
piece arbitrarily. Consider now a piece p whose total length ` is more than ωmax. Take an
arbitrary vertex in the piece vr, and look at the piece as a rooted tree, with root vr. For
each vertex x in the piece, let w(x) be the total length of all edges ‘below’ x, i.e. in the
subtree rooted at x. Note that w(vr) = `.

First, suppose there is a vertex z, with AT ≤ w(z) ≤ ωmax. Now, place a valve at z.
This splits the piece in one or more pieces, containing edges with a descendant of z, and
one other piece, containing amongst others vr. We allocate no valves to the first collection
of pieces, and all remaining b`/AT c − 1 valves to the latter subpiece, whose total length is
at most `− AT . So, the invariant is kept intact.

Now, suppose for all vertices z, either w(z) < AT or ωmax < w(z). Take the following
walk in the piece. Start at w(vr), and always move to the child y with maximal value w(y).
Stop when we arrive in a vertex y with w(y) < AT . Let z be the parent of y. We must
have w(z) > ωmax. Now, we place a valve at z. Again, we allocate all remaining b`/AT c−1
valves to the subpiece that contains vr. Possibly, vr = z, and then we do not need to
allocate additional valves. This piece has total length `−w(z) ≤ `−w(z) < `−AT , so we
allocated sufficiently many valves to it. Consider a resulting subpiece that contains child y′

of z. As y was the child with maximal value w(y), we have that w(y′) ≤ w(y) < AT . Hence,
the total length of the edges in this subpiece is at most w(y′)+ω{y′,z} ≤ AT +2AT ≤ ωmax.

We repeat this process until all valves are placed. Then, no piece has a total length
more than ωmax. ut

4 Algorithms for Graphs of Bounded Treewidth

In practice, the pipe systems are more complicated than trees. This makes the problem
more difficult from algorithmic perspective. Fortunately, most of the real-life pipe networks
are outerplanar or, taking this more generally, the corresponding graphs have bounded
treewidth; see e.g. [5, 6, 10]. For this type of networks we have the following results.

Theorem 16 The valve location problem on graphs of treewidth q admits a dynamic
programming algorithm running in time (nωmax)

O(q).

11

This dynamic programming algorithm follows the lines of several algorithms for other
problems on graphs of bounded treewidth. For easier description, we use a nice tree
decomposition of width at most q; for definition see below.

As a first step, we must find a tree decomposition of width at most q. This can be done
in O(n) time for fixed q; see [4]. At this point, we would like to make a remark concerning
practical implementations. The algorithm in [4] has such a large hidden constant, that
it is not of use in a practical setting. Fortunately, there are several heuristics that often
give good bounds. Also, there are fast algorithms that construct tree decompositions of
optimal width for graphs of treewidth at most three (including outerplanar graphs), see
e.g. [6] for a discussion.

Given a tree decomposition, in O(n) time one can transform it to a nice tree decompo-
sition [11] with the same width. We now give the definition of a nice tree decomposition.

A nice tree decomposition of a graph G = (V, E) is a rooted binary tree T = (I, F),
where each node i ∈ I is a subset Xi ⊆ V , called bag, such that

1.
⋃

i∈I Xi = V .

2. For all {v, w} ∈ E, there exists an i ∈ I, with v, w ∈ Xi.

3. For all v ∈ V , the set {i ∈ I | v ∈ Xi} forms a subtree of T .

4. If i ∈ I has two children j1, j2, then Xi = Xj1 = Xj2 (Join Node).

5. If i ∈ I has one child j, then either there is a v ∈ Xi with Xj∪{v} = Xi (Introduce
Node) or there is a v ∈ Xj with Xi ∪ {v} = Xj (Forget Node).

6. If i ∈ I is a leaf in T , then |Xi| = 1 (Leaf Node).

The width of a nice tree decomposition is maxi∈I |Xi| − 1.
In our dynamic programming algorithm, we compute in postorder for each node of T

a table. Associate to node i ∈ I the subgraph Gi = G[Vi], induced by the set of vertices
in Xi or a bag Xj with j a descendant of i: Vi =

⋃
Xj, with the union taken over all j in

the subtree of T rooted at j.
A placement of valves on the vertices of Gi has a characteristic, which is a 5-tuple

(j, Z, L, f,∼), consisting of

• The number j of used valves in Gi.

• The subset Z ⊂ Xi of the vertices in Xi that contain a valve.

• The maximum length of a piece in Gi.

• A function f : Xi → N, giving for each vertex v ∈ Vi the total length of the piece
that contains v; if there is a valve on v, then f(v) = 0.

• An equivalence relation ∼ on Xi, with for all v, w ∈ Xi, v ∼ w, if and only if there
is a path from v to w in Gi that does not contain a vertex with a valve.

12

In the table of i, we store all possible characteristics of all placements of valves in Gi.
Note that in this way, tables have a size that is bounded by (nωmax)

O(q).
A somewhat tedious case analysis, typical for dynamic programming algorithms on

graphs of bounded treewidth, shows that we can compute for each of the four types of
nodes the table of all characteristics for a node, given such a table for each of the children
of the node, in time polynomial in the table size.

Then, computing these tables for all nodes in postorder gives an algorithm computing
the table for the root node, and as Gr for the root node r equals G, we obtain the optimal
valve location from this table.

We remark that the described dynamic programming is only a pseudo-polynomial time
algorithm for the weighted version of the valve location problem on graphs of bounded
treewidth. Using standard scaling arguments, we derive the following corollary.

Corollary 17 The valve location problem on graphs of bounded treewidth admits a
fully polynomial approximation scheme.

5 Complexity Results

In this section, we show that two restricted versions of the valve location problem are
NP-hard. For general networks it is strongly NP-hard as even the unweighted version of the
problem is NP-hard, while for series-parallel graphs (a special case of graphs of treewidth
at most two) the problem is weakly NP-hard. Note that this complements the result that
the problem is solvable in pseudo-polynomial time on graphs of bounded treewidth.

Theorem 18 The valve location problem is NP-hard even if ωe = 1 for all e ∈ E.

Proof. The proof of this theorem uses a reduction from the strongly NP-hard problem
3-partition, see e.g. [8], where, given a set A of 3m elements, a bound B ∈ Z+, and a size
s(a) ∈ Z+ for each a ∈ A such that B/4 < s(a) < B/2 and such that

∑
a∈A s(a) = mB,

the questions is: Can A be partitioned into m disjoint sets A1, A2, . . . , Am such that, for
1 ≤ i ≤ m,

∑
a∈Ai

s(a) = B?

Given an instance of 3-partition, we construct an instance of the unweighted valve
location problem as follows. For each element a ∈ A we create a subgraph Ha in G, for
illustration see Figure 1:

• First, let Ha contain a clique Kξ(a) on ξ vertices where ξ is large enough, e.g. ξ =
9m2smax.

• Add to Ha an apex-vertex va adjacent to any s(a) ·φ ≤ ξ vertices in the clique Kξ(a).
Here, φ is also large enough, e.g. φ = 9m2.

• In addition, for the entire graph G introduce 3m(3m− 1)/2 transit-vertices v{a,b} for
each pair of distinct elements a and b from A. For each such a pair, make vertex

13

v{a,b} adjacent to all vertices in cliques Kξ(a) and Kξ(b). Let vertex v{a,b} belong to
both subgraphs Ha and Hb. Let all edges connecting v{a,b} to clique Kξ(a) belong to
Ha and all edges connecting v{a,b} to clique Kξ(b) belong to Hb.

Kξ(a)

va

v{a,b}

v{a,c} v{a,d}

v{a,...}

Figure 1: Subgraph Ha, a ∈ A

Notice that, by construction, the subgraphs are intersecting only in the set of transit-
vertices. Now, when graph G = (V, E) is constructed, we complete specification of the

instance of the valve location problem defining the number of valves k = 3m(3m−1)
2

−
3m = 9m(m − 1)/2 and the edge weights ωe = 1 for all e ∈ E. Clearly, under unary
encoding of sizes s(a), a ∈ A, the presented reduction is polynomial.

Now, to prove the theorem, we show that, given an instance of 3-partition, there is a
solution to that instance if and only if there exists a solution to the corresponding instance
of the valve location problem with maximum spill at most 3ξ(ξ−1)

2
+ 3(3m− 1)ξ + Bφ.

For ‘only if’ direction, assume that there is a partition of A into m disjoint sets
A1, A2, . . . , Am such that, for 1 ≤ i ≤ m,

∑
a∈Ai

s(a) = B. Put the valves in all ver-
tices v{a,b} of G such that a and b are not from the same set Ai. Thus we partition the edge
set of G into m pieces corresponding to three elementary sets A1, A2, . . . , Am. Consider
a piece corresponding to a set Ai = {a, b, c}, see Figure 2. This piece consists of a union
of subgraphs Ha, Hb and Hc. More precisely, it consists of (i) three cliques on ξ vertices

Kξ(a), Kξ(b) and Kξ(c) that is 3ξ(ξ−1)
2

edges; (ii) three sets of edges from the cliques to
apex-vertices va, vb, and vc that is s(a)φ + s(b)φ + s(c)φ = Bφ edges; and three sets of
edges connecting the cliques to the valves and to vertices v{a,b}, v{a,c} and v{a,b} that is
3(3m− 1)ξ edges. The claimed maximum spill follows straightforwardly.

14

va vb

vc

v{a,c}

v{a,b}

v{b,c}

Kξ(a) Kξ(b)

Kξ(c)

Figure 2: A piece of the partition of G

For ‘if’ direction, assume that to the constructed instance of the valve location
problem there is a solution with maximum spill 3ξ(ξ−1)

2
+3(3m−1)ξ+Bφ. First, we observe

that in any optimal solution to the constructed instance the valves will be installed only in
transit-vertices of G and only in such a way that G is partitioned into m pieces where each
piece consists of three subgraphs corresponding to some three elements of A. For otherwise,
since ξ ≥ φ � k, there is a piece containing roughly four subgraphs that contradicts to the
assumed upper bound on the maximum spill. Then, similarly to the analysis above, we
arrive to the conclusion that each piece has the number of edges connecting the cliques to
the apex-vertices equal to s(a)φ + s(b)φ + s(c)φ = Bφ. This yields that three elementary
subsets A1, A2, . . . , Am of the corresponding partition of A have the same size B that
completes the proof. ut

For the second complexity result, let us remind a definition of a series-parallel graph.
A series-parallel graph is a graph G = (V, E) with two special vertices, called its terminals,
often denoted s and t, that can be formed with the following operations:

• A graph consisting of a single edge {s, t} between its terminals is a series-parallel
graph.

• If G and H are terminal graphs, with terminals sG, tG, and sH and tH , then the
series composition of G and H is a series-parallel graph. In the series composition,

15

we take the disjoint union, then identify tG and sH , and take sG and tH as terminals
of the resulting graph.

• If G and H are terminal graphs, with terminals sG, tG, and sH and tH , then the
parallel composition of G and H is a series-parallel graph. In the parallel composition,
we take the disjoint union, then identify sG and sH and identify tG and tH . The two
vertices obtained by identification are the terminals of the resulting graph.

Theorem 19 The valve location problem is weakly NP-hard for series-parallel graphs.

Proof. We show that the valve location problem is weakly NP-hard for the following
graphs: we have two vertices s and t, and a number of internally disjoint paths from s to
t of length exactly five.

We use a reduction from partition; see e.g. [8]. Suppose we are given positive integers
a1, a2, . . . , an. The partition problem asks if these integers can be partitioned into two
sets with equal sum, i.e. we look for two sets, each of sum B =

∑n
i=1 ai/2. We may assume

B is integer, as if
∑n

i=1 ai is odd, the partition problem trivially has no solution.
As the corresponding instance for the valve location problem, we take n disjoint

paths from s to t. Each of these paths has length five, i.e., four intermediate vertices,
which we call vi,1, vi,2, . . . , vi,4. The successive lengths of the edges on the ith path are 1,
ai, B − ai + n, ai, 1. Call the resulting graph G, see Figure 3.

s

t

v1,1

v1,2

v1,3

v1,4

v2.1

v2,2

v2,3

v2,4

v3,1

v3,2

v3,3

v3,4

vn,1

vn,2

vn,3

vn,4

11

1
1

a1

a1

B − a1 + n

an

an

B − an + n

1
1

1 1

a2 a3

a3a2

B − a2 + n
B − a3 + n

Figure 3: The series-parallel graph constructed in Theorem 19

Proposition 20 Set A = {a1, a2, . . . , an} can be partitioned into two sets, both of sum B,
if and only if we can place at most 2n valves in G such that each part has total length at
most B + n.

16

Proof. Suppose set A can be partitioned into sets S1 and S2, both of sum B. Now,
for each i, 1 ≤ i ≤ n, ai ∈ S1, put valves on vi,2 and vi,4. Otherwise, i.e., ai ∈ S2, put
valves on vi,1 and vi,3. Each piece has total length at most B + n. We have some pieces,
consisting of two edges on a path; these all have total length exactly B + n. The piece
containing s has n edges of length 1, and for all ai ∈ S1, an edge of length ai, and hence
has total length n +

∑
ai∈S1

ai = B + n. Similarly, the piece containing t has total length
n +

∑
ai∈S2

ai = B + n.
Suppose we can place 2n valves such that each piece has total length at most B + n.

First, note that for each i, at least two valves must be placed on vertices vi,1, . . . , vi,4: if
we use at most one, then at least three edges on the ith path belong to the same piece,
and each part of three successive edges on this path has a total length that is more than
B+n. As we have 2n valves in total, we must use exactly two valves on each set of vertices
vi,1, . . . , vi,4, and cannot place a valve on s or on t. In addition, we cannot place a valve on
both a vertex vi,1 and a vertex vi,4 for some i, as this would give a piece with length more
than B + n.

Now we define sets S1 and S2 as follows. For each i, 1 ≤ i ≤ n, place ai in S1 if there is
no valve on vi,1, otherwise place ai in S2. The piece containing s contains n edges of length
1, and for each ai ∈ S1 an edge of length ai. Hence, n+

∑
ai∈S1

ai ≤ B+n, so
∑

ai∈S1
ai ≤ B.

For each ai ∈ S2, we have a valve on vi,1, and hence no valve on vi,4, and hence the piece
containing t contains the edge {vi,3, vi,4} with length ai. So, n +

∑
ai∈S2

ai ≤ B + n, by
considering the total length of the piece containing t, and hence

∑
ai∈S2

ai ≤ B.
As we now have a partition of A into two disjoint sets S1, S2 with

∑
ai∈S1

ai ≤ B, and∑
ai∈S2

ai ≤ B, we have
∑

ai∈S1
ai =

∑
ai∈S2

ai = B =
∑n

i=1 ai/2. ut

The NP-hardness of the valve location problem on series-parallel graphs now follows,
by noting that G is series-parallel: a path can be constructed by a sequence of series
compositions, and by parallel compositions, we can identify the endpoints of the paths.

ut

As series-parallel graphs have treewidth two, the results of the previous section show
that (unless P=NP), the problem on series-parallel graph cannot be strongly NP-hard.

6 Conclusions, extensions and open questions

In this paper we presented fast algorithms for several practically relevant classes of instances
of the valve location problem. Moreover, applying literally the same techniques to the
well known vertex integrity problem, we can tackle this later problem as well. For the vertex
integrity problem we have to redefine the spill as the maximum number of vertices in a
component instead of the maximum number of edges in a component. Given a number of
valves 1 ≤ k ≤ n, to find the redefined spill we can straightforwardly adjust the algorithms
above. Finally, to find the vertex integrity it is sufficient to find a minimizer of the the
sum of k and the corresponding optimal spill over all possible values for k : 1 ≤ k ≤ n.

17

This means that at additional cost of factor n in the running time we can solve the vertex
integrity problem.

A number of interesting problems, however, remains open:

• Can we apply somewhat similar techniques to more complicated cost and network
vulnerability measures, see e.g. [9, 14]?

• What is an approximability status of the valve location problem on general planar
graphs?

• Consider a continuous, purely geometric, version of the valve location problem.
Given is a set of rectilinear curves in a plane, possibly intersecting each other. We
allow to place a valve in any point of any curve. The cost (the spill) of a piece is
defined now as the total Euclidean length of a piece. The same question arises: how
to place k valves on this continuous network such that the maximum piece length
is minimized? Complexity and approximability of this very natural problem is also
open.

Acknowledgments

We thank Alexandr Kostochka for pointing on several very useful references on graph
integrity.

References

[1] N. Alon, P. Seymour and R. Thomas. A separator theorem for graphs with an excluded
minor and its applications. In Proc. of the 22nd Symposium on Theory of Computing,
STOC’80, pages 293-299. ACM Press, 1980.

[2] C.A. Barefoot, R. Entringer and H.C. Swart. Vulnerability in graphs: a comparative
survey. J. Comb. Math. Comb. Comput., 1:12-22, 1987.

[3] C.A. Barefoot, R. Entringer and H.C. Swart. Integrity of trees and the diameter of a
graphs, Congressus Numerantium, 58:103-114, 1987.

[4] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25:1305–1317, 1996.

[5] H.L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor.
Comp. Sc., 209:1–45, 1998.

[6] H.L. Bodlaender. Treewidth: Characterizations, applications, and computations. In
F. V. Fomin, editor, Proceedings of the 32nd International Workshop on Graph-
Theoretic Concepts in Computer Science, WG’06, pages 1-14. Springer Verlag, Lecture
Notes in Computer Science, vol. 4271, 2006.

18

[7] U. Feige and M. Mahdian. Finding small balanced separators. In Proceedings of the
37th Annual Symposium on Theory of Computing, STOC’06, pages 375-384. ACM
Press, 2006.

[8] M.R. Garey and D.S. Johnson. Computers and intractability: A guide to the theory
of NP-completeness. W. H. Freeman, San Francisco, 1979.

[9] N.V. Grigorieva and A. Grigoriev. Optimal valve location in long oil
pipelines. Research Memorandum RM/07/007, Maastricht Research School
of Economics of Technology and Organizations (METEOR), Maas-
tricht University, Maastricht, The Netherlands, 2007. World Wide Web:
http://ideas.repec.org/p/dgr/umamet/2007007.html

[10] I.V. Hicks, A.M.C.A. Koster, and E. Kolotoglu. Branch and tree decomposition tech-
niques for discrete optimization. In J.C. Smith, editor, TutORials 2005, INFORMS
Tutorials in Operations Research Series, chapter 1, pages 1-29. INFORMS Annual
Meeting, 2005.

[11] T. Kloks. Treewidth. Computations and Approximations. Lecture Notes in Computer
Science, Vol. 842. Springer-Verlag, Berlin, 1994.

[12] D. Kratsch, T. Kloks and H. Müller. Measuring the vulnerability for classes of inter-
section graphs. Discrete Applied Mathematics, 77(3):259–270, 1997.

[13] D. Marx. Parameterized Graph Separation Problems. In R.G. Downey, M.R. Fellows
and F.K.H.A. Dehne, editors, Proceedings of the First International Workshop on
Parameterized and Exact Computation, IWPEC’04, pages 71–82. Springer Verlag,
Lecture Notes in Computer Science, vol. 3162, 2004.

[14] S. Ozger and L.W. Mays. Optimal location of isolation valves: A reliability approach.
In Water Supply Systems Security, Digital Engineering Library, McGraw-Hill, 2004.
World Wide Web: http://dx.doi.org/10.1036/0071455663.CH13

19

