
The Neon DSEL for mining
Helium programs

Jurriaan Hage

Peter van Keeken

Department of Information and Computing Sciences,
Utrecht University

Technical Report UU-CS-2007-023

www.cs.uu.nl

ISSN: 0924-3275

Abstract. Over the years we have collected a large collection of Haskell
programs compiled by students with the Helium compiler. In this paper
we demonstrate a DSEL called Neon written in Haskell, for computing
characteristics of this collection of programs, and presenting the results
visually.

1 Introduction and motivation

When the Helium compiler for learning Haskell was developed in Utrecht [3],
a lot of effort was made to improve error messages. The worth of such
an effort can only be established empirically, based on programs written
and compiled by students. For this reason a logging facility was added to
Helium. Thus far, this has resulted in about 68,000 programs, collected
during various incarnations of a functional programming course.

Besides evaluating the quality of the compiler, there are at least three
more reasons why one would like to query this collection of programs: To
find out how students use the compiler. To discover how students learn to
program (Haskell). To investigate the use of Haskell itself, e.g., are there
parts of Haskell that students avoid.

Central in this paper is the Neon domain specific embedded language
(DSEL), written in Haskell, that helps us deal effectively with the imple-
mentation of queries that address a particular aspect of these four cate-
gories. The main design criteria were the following: Neon should make
writing queries a relatively simple and effective task. It should be based
on a small set of well-understood primitives and combinators, and gener-
ate esthetically pleasing output, supporting multiple output formats, e.g.,
HTML tables and PNG files. We think we have succeeded in finding the
right balance between these criteria. Neon is available for download [2].
It includes a small anonymized excerpt from our collected loggings for
demonstration purposes.

The field we address is largely unexplored: in the early nineties re-
searchers addressed questions similar to the ones we want to address
with Neon, but the method was traditional for empirical research using,
e.g., interviews [5]. More recently, Ryder and Thompson considered the
use of metrics on Haskell programs to predict the location of bugs in pro-
grams [6]; their metrics are good candidates for implementation within
Neon. In the Java world, BlueJ is a promising venture that analyzes the
compilation behaviour of novice students [4].

The paper consists of two parts: in Section 2 we take the reader
through a number of Neon queries. In Section 3 on implementation,
we describe in more detail the combinators and primitives supplied by
Neon. In Section 4 we discuss.

2 Case studies

We consider three case studies to illustrate how Neon can be used to
data mine the collection of logged programs. In each case, we state a
hypothesis to be addressed, show the query implemented with Neon to
find (counter)support, and display and interpret the results of running
the query on a set of loggings. The queries do not seek to address one
particular hypothesis, but were selected with the sole purpose of showing
what Neon offers.

Before we proceed to the analyses themselves, we first describe how
analyses, analysis results and loggings are represented. An analysis result
is simply a list of key-value pairs, [(key , value)]. Here, value is the result
of the computation and key is a description of this value. An analysis
then simply maps between two types of this kind:

type Ana keya a keyb b = [(keya, a)]→ [(keyb, b)]

To be able to compose analyses easily, we have chosen to always map
a list of pairs to a list of pairs, even if an operation like grouping is
involved. For example, suppose we have the following intermediate result:
[("st1", ls1), ("st2", ls2)], in which ls1 and ls2 contain the loggings of
student st1 and st2 respectively. Suppose the next operation is to group
all the loggings for each week together. If st1 has loggings in week 1 and
week 2 and st2 only in week 2, then the result of this operation could
very well be

[("st1; wk1", ls11), ("st1; wk2", ls12), ("st2; wk2", ls22)]

Although we have essentially applied two groupings on the original se-
quence of loggings, this fact is (implicitly) apparent only in the key value.

Neon itself is based on a small set of primitives and combinators
that can be used to implement analyses of the general polymorphic type
given above. As a result, the implementation of these functions is clean
and straightforward. In practice however, these general forms are hard to
use, because the programmer must describe how the key and the analysis
values are to be transformed. Therefore, Neon provides a special (history)
key datatype KH that can faithfully describe all the primitive operations
explictly, and versions of the primitives that use this datatype by default.
As a result the structure of the analysis computation will be explicitly
represented in the key.

Moreover, by means of a Haskell type class, DescrK, the changes to
the key values can be described once and for all in the instance declaration

for KH. Another reason for using KH, is that it can also be used on the
presentation side, for example in the automatic generation of legends and
captions. Because in any transformation the key type will be the same,
we typically use a simplified version of Ana:

type AnaF key a b = Ana key a key b

Finally then, a Log is a record that contains all the general information
associated with a particular logging: a username, the heliumVersion, the
phase in which the compilation ended, the logPath that takes us to the
logged sources, and a time stamp for the logging called logDate.

2.1 Phase analysis

The Helium compiler may terminate in one of a number compiler phases
(due to a programming error of some kind), or it may terminate due to an
internal error (of the compiler), or it is a successful compilation and code
is generated (the CodeGen phase). The four most interesting compiler
error phases are Lexical, Parsing, Static (simple static errors such as un-
defined or multiply defined identifiers) and Typing (for a type error). We
hypothesize that students get more experienced in programming Haskell
during the course:

Claim: Over the course of time, the ratio of successful compiles increases.

Analysis design To find support for such a claim, the analysis calculates
the number of loggings per phase, per week, and the ratio between the
number of loggings per phase and the total number of loggings in each
week. The ratios tell us what we want to know, while the absolute numbers
are useful to get an impression of the significance of such a ratio. We
present the results as stacked bar charts.

We first define groupPerPhase to group together loggings that ended
in the same phase, using the groupAnalysis primitive. It uses the auxiliary
groupAllUnder :: Eq b ⇒ (a → b) → [a] → [[a]] that takes a function
f and list xs and partitions xs into lists, in which two values x1 and x2
end up in the same list if f x1 equals f x2 . The duplication of phase in
both arguments to groupAnalysis is due to the fact that the second of
these is responsible for actually grouping the arguments, while the first
of these handles the automatic update of the KH value associated with
a sequence of loggings.

groupPerPhase :: DescrK key ⇒ AnaF key [Log] [Log]
groupPerPhase = groupAnalysis phase (groupAllUnder phase)

The loggingsPerPhase analysis first selects the loggings that are asso-
ciated with phases in which we are interested (as determined by mainPhasesAnalysis),
applies groupPerPhase and then simply tallies the number of loggings for
each phase. Note that � denotes analysis composition.

loggingsPerPhase :: AnaF KH [Log] Int
loggingsPerPhase = countNumberOfLoggings

� groupPerPhase
� mainPhasesAnalysis

mainPhasesAnalysis :: AnaF KH [Log] [Log]
mainPhasesAnalysis = basicAnalysis "" (filter (anyfrom mainphases.phase))

where
mainphases = [Lexical ,Parsing ,Static,Typing ,CodeGen]
anyfrom = flip elem

countNumberOfLoggings :: DescrK key ⇒ AnaF key [a] Int
countNumberOfLoggings = basicAnalysis "number of loggings" length

Composing loggingsPerPhase with groupPerWeek , which groups the
loggings based on the week numbers obtained from the logDate of each
logging, yields the information we are after. The function renderBarChartDynamic
then generates a ploticus file [1] which can then be used to generate Fig-
ure 1(left). (After computing the ratios, the picture on the right can be
generated in a similar fashion.)

phaseResearch :: FilePath → [(KH, [Log])]→ IO ()
phaseResearch dir input = do

renderBarChartDynamic dir ((loggingsPerPhase � groupPerWeek) input)
return ()

Interpretation Figure 1 shows that the absolute numbers vary strongly
per week. For example, week 9 is in fact a holiday week, and due to
small number of loggings we can decide to ignore the ratio computed for
this week. The values presented in Figure 1 reveal that the number of
correct compiles seem to increase up to week 10, when ignoring week 9.
The increase is mostly due to a decrease in the number of parse incorrect
programs. In week 11, when students start working on a new (graded)
assignment, the fraction of correct compiles seems to ”reset” back to
week 6.

Fig. 1. Absolute and relative number of compiles per phase, given per week from
2003/2004.

2.2 A refined line count analysis

By rewarding well-documented code with a higher grade, students are
stimulated to write documentation for the graded assignments as com-
ments in the source. The idea is that writing documentation increases the
understanding of the problem and the solution. However, students may
decide to write the documentation at the very end. We hope for the best
and state the following:

Claim: Students document their programs throughout the development
process.

Analysis design To find support for this claim, we split the source code
into lines (or segments) of code, comments, and empty lines. We assume
that comments are mainly used to document a program, providing us a
metric for the level of documentation of a program. Correctly analyzing
the source is not as easy as it may sound. There are several details to
take care of and it is essential to correctly detect the start and ending of
comments. Helium supports single line and (multi line) nested comments.
Nested comments may appear in the middle of code segments and are also
allowed inside other comments. Furthermore, we regard lines filled with
spaces and tab characters as empty lines.

Our analysis reuses the lexer of the Helium compiler, that splits the
source into a sequence of lexical tokens. A modification of this lexer ana-
lyzes the source according to the following rules: first, lines that contain
both code and comments are split into separate lines, so that each split
line contains only code, or only comments. For example

display str {-string to display -} = putStrLn str -- displayed

counts as two lines of code, one line of single line comment and one
line of nested comments. Then we tally the number of code lines and
comment lines, the remainder being considered empty lines. Note that due
to reasons of anonymity, the contents of comments have been replaced by
white space. Otherwise, the query could be refined a bit more by counting
the number of non-empty comment lines.

The function getSegments lexes the source code and maps each line
to a list of SegmentTypes.

data SegmentType = CodeLn | CommentLn | EmptyLn

The function lineSegmentMetric obtains the sourcecode for each logging,
computes the code segments, and turns this into a list of SegmentTypes.

lineSegmentMetric :: AnaF KH Log [SegmentType]
lineSegmentMetric =

basicAnalysis "Lines of source" (getSegments.sourcecode)
countSourceSegmentsMetric :: AnaF KH Log [(SegmentType, Int)]
countSourceSegmentsMetric =

basicAnalysis "" countOrdValues
� lineSegmentMetric

countOrdValues :: Ord a ⇒ [a] → [(a, Int)] computes, for each value
in the list, the number of times it occurs, pairs this with the value, and
orders the resulting list according to the standard ordering for its type.

We use this analysis to construct segmentDistribution, an analysis to
calculate the number of segments for a set of loggings.

segmentDistribution :: ([Int]→ b)→ AnaF KH [Log] [(SegmentType, b)]
segmentDistribution aggregatefun =

basicAnalysis "" (map aggregateList .(groupAllUnder fst).concat)
�mapAnalysis countSourceSegmentsMetric

where
aggregateList list = (fst (head list), aggregatefun (map snd list))

The segmentDistribution analysis is parametrized by the aggrega-
tion function. Here we use the median, since this is considered to be
a better measure to describe the central tendency of calculated values.
To present the analysis results of segmentDistribution, we also need to
compute the relative amounts. This can be done straightforwardly by
relmedianSourceLineDistribution that applies the general relativeCount
function to the segment distribution:

Wk CodeLn CommentLn EmptyLn
6 7 (29.2%) 13 (54.2%) 4 (16.7%)
7 17 (47.2%) 9 (25.0%) 10 (27.8%)
8 40 (54.8%) 17 (23.3%) 16 (21.9%)
9 66 (62.3%) 18 (17.0%) 22 (20.8%)
10 68 (63.6%) 15 (14.0%) 24 (22.4%)
11 36 (55.4%) 14 (21.5%) 15 (23.1%)
12 42 (58.3%) 12 (16.7%) 18 (25.0%)
13 61 (55.0%) 28 (25.2%) 22 (19.8%)
14 62 (53.9%) 28 (24.3%) 25 (21.7%)

Fig. 2. Median and relative sizes of source program segments for all students, given
per week from 2004/2005.

relmedianSourceLineDistribution =
basicAnalysis "relative" relativeCount
� segmentDistribution median

relativeCount :: (Real b,Real c,Fractional c)⇒ [(a, b)]→ [(a, c)]
relativeCount pairs =

let total = sum (map snd pairs)
in map (updateSnd (flip percentage total)) pairs

Interpretation The functions renderStackedBarChart and showAsTable2D
can now be used to generate the table (with median and relative values)
and figure (just the relative values) in Figure 2.

The median values show an increase in the total (median) program
segmentation for the weeks in which an assignment was to be handed
in, week 9, 10 and 14. Overall we see that comments, assumed to be
documentation, is present in the logged programs in each week. In the
first week, when programs are rather small, comments take more then
50% of the total source size. For the rest of the week the level of comments
ranges between 15% and 25%.

2.3 Type error repair analysis

Type errors are the most occurring errors as shown by the phase analysis
in Section 2.1. A more complicated analysis can be developed to investi-
gate how long students take to repair a type incorrect program. We may
expect that due to experience, this decreases over time. On the other
hand, we also expect that programs become more complex, which may

result in type errors that are harder to resolve. We want to address the
following claim:

Claim: The time (expressed in seconds spent) needed to solve a type
error, decreases over time.

Analysis design First, we must specify how we can detect the process
of correcting a type incorrect program from the logging sequence of a par-
ticular student. We take a simple approach in which we consider the first
type error, and consider the sequence of loggings up to the first success-
ful compilation, a so-called type correcting sequences, and we repeat. For
example, denoting a lexical error, parse error, type error and successful
compile with L, P, T and C respectively, we obtain [T T T P T C] and
[T C] from [C P T T T P T C L L P P T C P].

There are two important issues here that should not be forgotten:
the compiles should all deal with the same program (approximated by
only looking at subsequent compiles of modules with the same name),
and we want to avoid overly long in between compile times: if a student
makes a type error on Tuesday, and correctly compiles for the first time
on Thursday, then we do not want to take that period into account. In
other words, subsequent compiles in a type correcting sequences should
be coherent in time and content: they are not spaced too far apart (a
parameter to the function that computes the coherent sequences) and
they should refer to the same module.

With this established, the remainder is quite easy: for each student, di-
vide the complete sequence of loggings into type correcting sequences and
compute the differences in time between the first and last compile in each
sequence. calcT imeAndFilenameCoherentSeqs breaks up the logging
sequence into subsequences that deal with the same source filename, in
which subsequent loggings are no more than a certain number of minutes
apart. It is based on the use of generally applicable groupByCoherence
that uses two simple functions to turn a list of loggings into a list of list
of loggings: sameSourceFile determines whether two loggings deal with
the same filename, and logTimeDiff which determines the time between
two loggings.

calcT imeAndFilenameCoherentSeqs :: Int → AnaF KH [Log] [[Log]]
calcT imeAndFilenameCoherentSeqs min =

basicAnalysis ("coh.: filename and time (" ++ show min ++ ")")
(groupByCoherence

(λl1 l2 → sameSourceFile l1 l2
∧
logTimeDiff l1 l2 < minutesOfTD min

))

To calculate the time needed to correct a type incorrect program,
we construct the timeTCSequences analysis. This calculates the differ-
ence in time between the first logging and the last logging of a sequence
of loggings. The call to concatMapAnalysis is responsible for comput-
ing the type correcting sequences, as illustrated earlier. The function
timeToCompile gathers all the ingredients together.

timeTCSequences :: AnaF KH [Log] TimeDiff
timeTCSequences = basicAnalysis "" (uncurry logTimeDiff .headlast)
timeToCompile :: Int → [(KH, [Log])]→ [(KH, [Integer])]
timeToCompile mintime =

(mapAnalysis timeDiffToSecAnalysis
�mapAnalysis timeTCSequences
� concatMapAnalysis (basicAnalysis "" calculateTCSequences)
� calcT imeAndFilenameCoherentSeqs mintime
� groupPerWeek)

The analysis just described works on a sequence of loggings for a
particular student. To apply the analysis to each student, we split up
the loggings into subsequences (one for each student) and then apply
the above analysis to each subsequence. This is captured generically by
analysisPerStudent below to which we should pass timeToCompile.

analysisPerStudent :: AnaF KH [Log] a → [(KH, [Log])]→ [[(KH, a)]]
analysisPerStudent ana input =

map ana.splitAnalysis $ groupPerStudent〈$〉input
timeToCompilePerStudent :: Int → OutputFormat → FilePath
→ [(KH, [Log])]→ IO ()

timeToCompilePerStudent mintime format outputpath input = do
let

name = researchname
researchdir = joinDirAndFileName outputpath (stringToFilePath name)

++ [pathSeparator]
analysis = timeToCompile mintime

createDirectoryIfMissing True researchdir
mapM (renderBoxPlot researchdir) (analysisPerStudent analysis input)

Fig. 3. Time (in seconds, 10 minutes time coherence) needed to repair a type incorrect
program for a particular student, from 2003/2004.

The main difference in presenting the results of analysisPerStudent is
that mapM maps the presentation function over the results.

Interpretation In Figure 3 one of the pictures generated by
timeToCompilePerStudentMain is shown. We can see that during the
second assignment period (week 10 and later) the time to solve a type
error decreased. Week 6 and 9 are included in the picture, because they
are part of the course, but for this particular student no type correcting
sequences were found. Neon has special capabilities for dealing with such
missing values (omitting them from pictures is usually not what the user
wants) by means of the DataInfo type class. Dealing with such “missing”
values can make the generation of large collections of related presentations
(in this case, one for each student) an arduous task.

3 The Neon internals

This section describes the primitives and combinators, for building analy-
ses of the kind described in Section 2. A more detailed explanation can be
found in Chapters 5 and 6 of the master thesis of the second author [7].
As discussed earlier, Neon contains basic combinators that abstract away

from the particular types of key and value, and as a result their implemen-
tation is simple and clean; these are the functions that do the actual work.
On top of that we have a layer of functions with similar functionality, but
restricted to a single type of key, and, by means of class constraints, in
some cases to particular types of key. Foremost among these is KH, that
was used throughout Section 2. These functions are meant to be used by
the analysis programmer.

Analysis combinators

We shall now describe some of the primitives and combinators of our
library, including those that were used in Section 2. The primitives derive
from the area of descriptive statistics 1, while the combinators are higher-
order functions that construct analyses out of other analyses.

The basic operation for calculating a new value from a previously com-
puted value, can be implemented by the basicAnalysis primitive. There
are slightly different variants available, but a typical one is the following:

basicAnalysis :: (ka → kb)→ (a → b)→ Ana ka a kb b
basicAnalysis kf vf = map (λ(k , v)→ (kf k , kf v))

The first function argument specifies how the key values should be
updated, while the second actually describes the operation performed on
the experimental data.

In the following definition the key type is String and the description
simply appends a piece of text to describe the operation that is performed,
here computing the length of a sequence of loggings.

countLoggings = basicAnalysis (++"; Number of loggings") length

To specify a grouping, we define the groupAnalysis combinator that
takes a function that determines which value belong together in a group,
and a function that actually performs the grouping:

groupAnalysis :: (a → k1 → k2)→ ([a]→ [[a]])→ Ana k1 [a] k2 [a]

Implementation is different from basicAnalysis since the result of applying
the value transformation is a list of lists, that is flattened before it is
returned as the result of the analysis. In this case the key transformation
function is a bit more complicated. To be able to compute a value that
1 http://en.wikipedia.org/wiki/Descriptive statistics

describes the outcome, we pass the old key (describing the computations
done so far) and an element (in our case the first) of the list. Usually a
grouping collects together the loggings that share a given property, say the
week in which a logging was collected. The key transformation function
can now obtain the week number of the group from its first argument,
and reflect this value in the newly computed key.

Although these analysis functions serve well to illustrate the basic
ingredients, we have a number of slightly more general versions, see Ap-
pendix D of [7].

To compose two analyses, we can use the � combinator, similar to
function composition.

(�) :: Ana kb b kc c → Ana ka a kb b → Ana ka a kc c

The (×) operator tuples two analyses, in case they are to be applied
independently to the same input.

(×) :: Ana ka a kb1 b1 → Ana ka a kb2 b2 → Ana ka a (kb1 , kb2) (b1 , b2)

Finally, we have splitAnalysis to run an analysis on all elements of an in-
termediate analysis result, as illustrated in the type error repair analysis,
and mapAnalysis that lifts an analysis from a to b to an analysis from
[a] to [b].

splitAnalysis :: [(key , a)]→ [[(key , a)]]
splitAnalysis anaresult = [[x] | x ← anaresult]
mapAnalysis :: Ana keya a keyb b → Ana keya [a] keyb [b]
mapAnalysis ana =

map (λ(key , value)→ (head $ (getKeyTransf ana) key
, concat $ map (getAnalysisFun ana) value))

Specializations of the primitive functions

The first step towards specialization is the Key type class, which handles
some of the administration of keys, by specifying a start key for a given
type of key, and by specifying how keys can be combined into new keys.
Implicit in the Key class is that the input and output key are of the same
type.

type AnaF key a b = Ana key a key b

The most important type class is DescrK that encapsulates a fixed (but
possibly parameterized) key transformation function for each primitive
analysis on the instance data type. By making a type an instance of this

type class, special primitives can be used in which it is unnecessary to
specify how the key should be transformed.

For example, the groupAnalysis primitive now becomes:

groupAnalysis :: (DescrK key ,DataInfo b)⇒
(a → b)→ ([a]→ [[a]])→ AnaF key [a] [a]

The first argument a → b describes the property on which grouping takes
places, while the second tells us how the grouping should be performed.
In

groupPerPhase = groupAnalysis phase (groupAllUnder phase)

we want to collect all loggings in the same phase together, whether they
are adjacent in the original sequence or not (this is what groupAllUnder
does). If we can assume that these are already adjacent, we can use
Haskell’s groupBy . Note that in this case the type a is Log and b is
the type Phase. The DataInfo b constraint is used to automatically deal
with missing values: it can make sure a value for each possible phase is
present in the output, even if no compile for a particular phase is present
in the input. This is essential if we easily want to generate graphical pic-
tures of this kind over a population of students: in that case we want all
the pictures to show exactly the same values on the x-axis (in this case,
the possible phases), and in the same order. This information is captured
by the DataInfo type class, and is used by presentation functions such as
render1DTableSmart .

Neon has presentation functions that assume the use of the KH
datatype. Some of these generate textual output, in the form of a MarkUpDoc
that abstracts away from a particular textual representation such as Latex
or HTML (the table in Figure 2 was generated in this way).

showAsTable2D :: (Show a,Ord a,Show b)⇒
[(KH, [(a, b)])]→ MarkUpDoc

Furthermore, a small number of functions are provided that turn an anal-
ysis result into a ploticus file, that can then be transformed into a graph-
ical format such as PNG, PS or GIF. At this moment, bar charts, stacked
bar charts, relative stacked bar charts, dynamic bar charts and box plots
are supported.

renderBoxPlot :: (Show ,Num b,Ord b)⇒
FilePath → [(KH, [b])]→ IO (FilePath,String)

4 Discussion and future work

In this paper we have introduced the Neon DSEL, developed for analyz-
ing logged Helium programs. We have shown part of what Neon offers,
and have given a number of examples to show that it can be used to ef-
fectively query our collection of logged programs. Neon has the potential
of yielding a large amount of information on how, e.g., students learn to
program, whether hints of solving type errors actually improve program-
ming effectiveness, or how knowledge of an imperative language helps or
impedes learning Haskell.

Many of the concepts around which Neon has been built are not
new. They come from the area of descriptive statistics which deals with
how to summarize data. Specifically, we have made provisions for dealing
with the following issues: To group loggings (repeatedly) into groups of
related loggings. To compute statistical or computational characteristics
of the loggings in each group. To select individual loggings or groups of
them based on some computed characteristic. To present the results of
our analyses in various ways.

Since many of these operations are available in database query lan-
guages such as SQL, the question is then why we did not use databases.
Since we sometimes need to run compilers and other tools over the logged
programs, it is easier to have the sources in an ordinary file system. Also,
operations like comparing two programs or applying regular expressions
occur often, and these are easier to express in general programming lan-
guages. A major reason for choosing Haskell is that we want easy access to
Helium, in order to reuse parts of it. Also, many of our analyses are built
from smaller analyses by means of some form of composition, and this we
felt is most easily expressed with higher-order functions. This is appar-
ent in all the queries we discussed. Taken together, Haskell is a natural
choice. Using a Haskell library to interface with a database management
system is possible, but, for now, we kept the number of dependencies on
other libraries as small as possible.

One of the obvious candidates for future work, is to perform detailed
studies of a particular hypothesis. Before we actually undertake such de-
tailed analyses, a simple, but very useful extension is the use of student
characteristics. For example, one would like to distinguish between stu-
dents that do the course for the first time, and those that have done
the course before, or to have some indication of the background of the
students.

Acknowledgments We thank Stefan Holdermans, Bastiaan Heeren and
Michael Stone for their kind support.

References

1. S. Grubb. Ploticus website. http://ploticus.sourceforge.net.
2. J. Hage and P. Keeken. Neon website. http://www.cs.uu.nl/wiki/Hage/Neon.
3. B. Heeren, D. Leijen, and A. van IJzendoorn. Helium, for learning Haskell. In ACM

Sigplan 2003 Haskell Workshop, pages 62 – 71, New York, 2003. ACM Press.
4. M. C. Jadud. A first look at novice compilation behaviour using BlueJ. Computer

Science Education, 15(1):25 – 40, March 2005.
5. S. Joosten, K. van den Berg, and G. van der Hoeven. Teaching functional pro-

gramming to first-year students. Journal of Functional Programming, 3(1):49–65,
1993.

6. C. Ryder and S. Thompson. Software metrics: measuring haskell. In M. van Eekelen,
editor, 6th Symposium on Trends in Functional Programming, TFP 2005: Proceed-
ings, pages 119 – 134, Tallinn, 2005. Institute of Cybernetics.

7. P. van Keeken. Analyzing Helium programs obtained through logging. http://

www.cs.uu.nl/wiki/Hage/MasterStudents.

