
Morph Endo!
Task Description of the Tenth Interstellar
Contest on Fuun Programming

Eelco Dolstra

Jur Hage

Bastiaan Heeren

Stefan Holdermans

Johan Jeuring

Andres Löh

Arie Middelkoop

Alexey Rodriguez

John van Schie
Clara Löh

Department of Information and Computing Sciences, Utrecht University

Technical Report UU-CS-2007-027

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University

Tenth Interstellar Contest on Fuun Programming

Morph Endo!
Task Description

1 Background

Endo is an alien life form, belonging to the species of the Fuun. Endo needs your help!
Earth’s environmental conditions can be harsh for a life form not properly adapted. Endo
had the bad luck of being dropped on Earth by an Interstellar Garbage Collector. Both
the life form and its faithful space ship Arrow were severely hurt in the crash, and even
worse, after leaving the damaged space craft Endo was hit by a cargo container that was
also dropped by the Garbage Collector.

Endo is now in serious trouble. It cannot survive on planet Earth in its present form, and
Arrow is running low on power. According to Arrow, who was the one to have contacted
us, the only hope for Endo is to change its DNA and thereby adapt it to the conditions of
our planet. To this end, Arrow has been able to come up with a form in which Endo will
survive. Unfortunately, given its current condition, Arrow lacks the resources for coming
up with proper DNA modifications itself.

Your task is therefore to help us find such a DNA sequence within 72 hours. Shortly
thereafter, Arrow’s power will run out for good, and since only Arrow can perform the
genetic modification on Endo, this would mean Endo’s definite end.

Admittedly, we are partially responsible for the current state of urgency. It took us a
long time before realizing the nature of Arrow’s emergency message and decoding the
information that was provided to us. We are sorry but nevertheless hope that you, the ICFP
programming contest audience, have the proper expertise to solve this problem within the
harsh time constraints.

Fortunately, there’s also good news. When we weren’t yet aware of the complete story
of Endo and its struggle for life, we have been working on decoding the specification of
Fuun DNA. We now know that Fuun DNA works significantly different from human DNA,
and that the process of DNA resequencing can be properly described as an algorithm. The
main purpose of this document is to describe this algorithm.

2

DNA
execute−−−−→ RNA

build−−→ image

Figure 1: Running DNA

2 Fuun DNA

Fuun DNA can be represented as a finite sequence consisting of four bases, denoted by the
four letters I (infinine), C (continuine), F (functorine), and P (polymorphine).

On Earth, DNA is a program that encodes a build plan. Execution of such a program
produces RNA, which in turn directs building proteins. Proteins are the building blocks for
all life forms.

For the Fuun, the situation is similar, but there are a few exceptions:

1. Besides producing RNA, executing Fuun DNA also manipulates the DNA itself. As in
humans, Fuun RNA directs protein biosynthesis, resulting in a living being.

2. Fuun DNA can also transform one being into another. This is achieved by using a
piece of DNA as a prefix to another piece. So prepending a piece of Fuun DNA to
another piece of Fuun DNA may well lead to a living Fuun that looks rather different.

3. Fuun DNA has the special property that it not only affects itself, but also its immediate
environment.

4. It is hypothesized that, contrary to life on Earth, the Fuun are a result of intelligent
design. We believe this because Arrow hints at the fact that there may be “messages”
from the creators in the DNA, and that there may be genes already present that could
help with the plan to transform Endo.

We know how to simulate both the creation of the build plan and its execution. We
lack, however, the ability to assemble Endo ourselves—only Arrow is capable of doing
so. Fortunately, Arrow has explained to us a way to simulate the result of applying Fuun
DNA visually, as a two-dimensional picture of the life form and its surroundings. We have
Endo’s DNA, and we have a picture that is the visual representation of Endo’s current state.

We have also been provided with a “target” picture which Arrow thinks visualizes an
optimal modification of Endo that would allow it to live. While it might not be necessary
to match this target completely, we will at least have to come close if we want to improve
its chances of survival.

DNA resequencing is a risky business, and the longer the prefix, the higher are the
chances that the transformation will fail, or that Endo’s mind will be irreparably damaged.
We are therefore looking for a DNA prefix that not only matches the target as closely as
possible, but also is as short as possible. DNA resequencing also consumes a lot of energy,
which given the damaged state of Arrow is a scarce resource as well, and leads to further
constraints.

Figure 1 shows the two-phased structure of the DNA transformation process. We describe
the two phases as a pipeline of two programs.

The rest of this document provides information on how to

3

1 Base ::= I | C | F | P
2 DNA ::= Base∗

3 RNA ::= DNA∗

Figure 2: DNA data type

4 X∗ type of sequences with elements of type X
5 ε empty sequence
6 x C xs prepend an element x to a sequence xs
7 xs B x append an element x to a sequence xs
8 xs � ys concatenate two sequences xs and ys
9 xs[m . . n] subsequence of xs, from position m to before position n, never fails

10 xs[m . .] subsequence of xs, starting at m (abbreviation of xs[m . . len xs])
11 xs[n] the nth element (the single element in xs[n . . (n + 1)]) or ε
12 len xs length of sequence xs

Figure 3: Sequence type

• turn DNA into RNA (program execute, Section 3),

• simulate biosynthesis from RNA by generating an image (program build, Section 4),

• estimate the chances of Endo’s survival given a particular DNA prefix, and submit
such prefixes to us (Section 5),

• get started on the original DNA string, based on a tiny bit of experimentation we were
able to perform ourselves while assembling this description (Section 6).

3 From DNA to RNA

If exposed to the right enzymes, Fuun DNA starts to transform itself and to produce RNA in
the process. We call this process executing a DNA string. The chemical background is dealt
with by Arrow, we focus here on the algorithmic aspects of running DNA. The following is
based on descriptions that Arrow has given us. We have tried to understand, analyze, and
rewrite the process in a style that should be understandable to programmers on Earth.

As mentioned before, a DNA string is a sequence of bases, defined in Figure 2. There
are four possible bases: I, C, F, P. We write DNA strings (as opposed to a single base)
surrounded by quotes, for instance ‘ICFP’. The resulting RNA is a sequence of DNA strings.

Sequences play a big role in executing DNA. A sequence consists of zero or more elements
of a certain type. The notation we use as well as common operations on sequences are
explained in Figure 3. Note that none of the operations ever fail and that indices are zero-
based. The subsequence operation returns the empty sequence ε whenever the specified
range has length 0 or less, or if the range is outside the boundaries of the sequence. If
the specified range is only partially within the boundaries of the sequence, then that part

4

13 ‘ICFP’[0 . . 2] returns ‘IC’
14 ‘ICFP’[2 . . 0] returns ε
15 ‘ICFP’[2 . . 2] returns ε
16 ‘ICFP’[2 . . 3] returns ‘F’
17 ‘ICFP’[2] returns F
18 ‘ICFP’[2 . . 6] returns ‘FP’
19 ‘ICFP’[2 . .] returns ‘FP’
20 ‘ICFP’[6] returns ε

Figure 4: Examples of subsequence operations

21 global dna : DNA← ε
22 global rna : RNA ← ε

23 proc execute () =
24 dna← read
25 repeat
26 let p← pattern ()
27 let t ← template ()
28 matchreplace (p, t)
29 end repeat
30 proc finish () =
31 write rna
32 exit

Figure 5: Executing DNA

of the sequence is returned. We also use ε as an exceptional return value in the case of
the subscript operation. Figure 4 shows a few examples of substring operations on DNA
strings.

Let us now look at the overall structure of executing DNA, which is given in Figure 5.
The algorithm works with a global DNA sequence (line 21). At the start, the initial DNA is21

read as input (line 24). This initial DNA consists of a prefix (that is to be provided by you),24

followed by Endo’s DNA that can be downloaded from the contest pages. The rest of the
execution process is repeated until an exceptional condition arises (when the DNA string is
fully consumed). In each iteration, there are three steps:

• decode a prefix of the current DNA into a pattern (line 26),26

• decode a prefix of the remaining DNA into a template (line 27),27

• match the pattern against the remaining DNA (line 28) and perform the match on it28

using the template, possibly generating new DNA.

In the following, we consider each of the steps in detail.
Sooner or later, during one of the iterations, the procedure finish is called. This proce-

dure outputs the final contents of rna (line 31) and terminates the program (line 32); the31
32

5

33 Pattern ::= PItem∗

34 PItem ::= Base
35 | !N
36 | ?DNA
37 | (
38 |)

Figure 6: Patterns

produced RNA string is then fed to the build program described in Section 4.

3.1 Decoding patterns

Figure 6 describes the syntax of patterns. A pattern is a sequence of pattern items (line 33).33

There are five different sorts of pattern items:

• an item for a single base, written I, C, F, or P (line 34),34

• an item to skip n bases, written !n (line 35),35

• an item to search for a DNA sequence s, written ?s (line 36),36

• two items to open and close a group, written (and), respectively (lines 37 and 38).37
38

Recognition of patterns is performed by function pattern, which is presented in Figure 7.
The function pattern traverses the global dna and consumes part of it, building up a pat-
tern in the local variable p (line 40) along the way. The current grouping level (a natural40

number) is stored in the local variable lvl (line 41). After initializing the variables, a loop41

is entered. In each iteration, we branch depending on the current prefix of dna. Only one
branch is executed per iteration!

The first four cases produce constant items (lines 44–47).44–47

The fifth case produces a ‘skip’ item (line 48). After consuming the initial ‘IP’, the func-48

tion nat is called to decode a natural number n from the following piece of DNA. The func-
tion nat is described in Section 3.2. The natural number n becomes the parameter of the
‘skip’ item.

The sixth case produces a ‘search’ item (line 49), which is parameterized by a sequence49

of bases. Therefore, after consuming the initial ‘IF’ and one additional base, the func-
tion consts (described in Section 3.2) is called to scan for a sequence s of encoded bases in
the DNA string, which then becomes the parameter of the generated item.

The seventh case produces an ‘open’ item (line 50) and at the same time increments the50

lvl variable.
The eighth case matches if the prefix of dna is ‘IIC’ or ‘IIF’ (line 51). In both cases, the51

three-letter prefix is removed. If the current lvl is 0, pattern recognition ends at this point
and the function returns the pattern accumulated thus far in p (line 53). If lvl is a positive53

number, it is decremented and a ‘close’ item is produced (line 54).54

6

39 function pattern () : Pattern =
40 let p : Pattern← ε;
41 let lvl : N ← 0;
42 repeat
43 case dna starts with
44 ‘C’ ⇒ dna← dna[1 . .]; p← p B I
45 ‘F’ ⇒ dna← dna[1 . .]; p← p B C
46 ‘P’ ⇒ dna← dna[1 . .]; p← p B F
47 ‘IC’ ⇒ dna← dna[2 . .]; p← p B P
48 ‘IP’ ⇒ dna← dna[2 . .]; let n← nat (); p← p B !n
49 ‘IF’ ⇒ dna← dna[3 . .]; let s ← consts (); p← p B ?s three bases consumed!
50 ‘IIP’ ⇒ dna← dna[3 . .]; lvl← lvl + 1; p← p B (
51 ‘IIC’ or ‘IIF’ ⇒ dna← dna[3 . .]
52 if lvl = 0
53 then return p
54 else lvl← lvl− 1; p← p B)
55 end if
56 ‘III’ ⇒ rna← rna B dna[3 . . 10]; dna← dna[10 . .]
57 anything else⇒ finish ()
58 end case
59 end repeat

Figure 7: Pattern recognition

60 dna← ‘CIIC’; pattern () returns ‘I’
61 dna← ‘IIPIPICPIICICIIF’; pattern () returns ‘(!2)P’

Figure 8: Pattern recognition examples

If the first three bases in dna are ‘III’, then the next seven bases form an RNA command
and are added to the output sequence rna. All ten bases (the three I’s plus the RNA com-
mand) are consumed (line 56). The RNA commands are interpreted in the next phase of the56

DNA transformation process, described in Section 4.
If none of the given prefixes match, we are close to the end of the DNA string, and the

final case is taken, which calls finish to print the RNA and terminate the program (line 57).57

The specification of pattern recognition implies that the recognition process either ends
successfully by encountering ‘IIC’ or ‘IIF’ at the beginning of an iteration when the cur-
rent lvl is 0, or by termination of the program if none of the given prefixes match. The
parentheses in patterns returned by the function pattern are always balanced.

Figure 8 presents two example calls of the pattern function. The second makes use of the
natural number encoding that is described next.

7

62 function nat () : N =
63 case dna starts with
64 ‘P’ ⇒ dna← dna[1 . .]; return 0
65 ‘I’ or ‘F’ ⇒ dna← dna[1 . .]; let n← nat (); return 2 ∗ n
66 ‘C’ ⇒ dna← dna[1 . .]; let n← nat (); return 2 ∗ n + 1
67 nothing (i.e., is empty)⇒ finish ()
68 end case
69 function consts () : DNA =
70 case dna starts with
71 ‘C’ ⇒ dna← dna[1 . .]; let s ← consts (); return IC s
72 ‘F’ ⇒ dna← dna[1 . .]; let s ← consts (); return CC s
73 ‘P’ ⇒ dna← dna[1 . .]; let s ← consts (); return FC s
74 ‘IC’ ⇒ dna← dna[2 . .]; let s ← consts (); return PC s
75 anything else ⇒ return ε
76 end case

Figure 9: Helper functions for decoding DNA

77 Template ::= TItem∗

78 TItem ::= Base
79 | NN

80 | |N|

Figure 10: Templates

3.2 Helper functions

In this section, we describe the functions nat and consts which are used during pattern and
template recognition. Both are specified in Figure 9 and are very similar in structure.

The function nat decodes a natural number from the global variable dna. Everything up
to the following P is read (line 64). The bases I and F are interpreted as 0 (line 65), a C as a 164

65 (line 66), with the most significant bit being last. If the end of the DNA string is encountered
66 before the next P, finish is called to print the RNA and exit the program (line 67).
67 The function consts decodes a sequence of bases (i.e., a DNA string). If dna starts with one

of the four prefixes ‘C’, ‘F’, ‘P’ or ‘IC’, the prefix is consumed, a single base is produced, and
scanning continues via a recursive call to consts (lines 71–74). If none of the four prefixes71–74

match, the function returns (lines 75).75

3.3 Decoding templates

The phase that decodes a template from the DNA string proceeds in almost the same way
as the pattern recognition phase. The syntax of templates is described in Figure 10. A
template is a sequence of template items, and a template item can be one of three things:

• an item for a constant base (line 78), denoted like the corresponding pattern item as78

I, C, F, or P,

8

81 function template () : Template =
82 let t : Template← ε;
83 repeat
84 case dna starts with
85 ‘C’ ⇒ dna← dna[1 . .]; t← t B I
86 ‘F’ ⇒ dna← dna[1 . .]; t← t B C
87 ‘P’ ⇒ dna← dna[1 . .]; t← t B F
88 ‘IC’ ⇒ dna← dna[2 . .]; t← t B P
89 ‘IF’ or ‘IP’ ⇒ dna← dna[2 . .]; let l ← nat (); let n← nat (); t← t B nl
90 ‘IIC’ or ‘IIF’ ⇒ dna← dna[3 . .]; return t
91 ‘IIP’ ⇒ dna← dna[3 . .]; let n← nat (); t← t B |n|
92 ‘III’ ⇒ rna← rna B dna[3 . . 10]; dna← dna[10 . .]
93 anything else⇒ finish ()
94 end case
95 end repeat

Figure 11: Template recognition

• an item for reference number n with protection level l (line 79), written nl,79

• or an item encoding the length of reference n (line 80), written as |n|.80

Template recognition is performed by function template in Figure 11. The structure of the
function is similar to pattern, but a bit simpler, because there is only one local variable, the
template t accumulated so far (line 82). There is no grouping in templates, and therefore82

no need to keep track of a current grouping level.
After the initialization of t, the rest of template recognition is a loop. In each operation,

the current contents of dna are analyzed. Depending on the prefix, one of the branches is
selected. The cases for the constant items (lines 85–88) as well as the cases for RNA genera-85–88

tion (line 92) and the catch-all case (line 93) are completely analogous to the corresponding92
93 cases in the function pattern (see Section 3.1).

On an ‘IF’ or an ‘IP’ prefix, a ‘reference’ item is generated: After consuming the prefix,
two natural numbers l and n are decoded from the DNA string, using the function nat from
Section 3.2. The item generated is then nl (line 89).89

The prefixes ‘IIC’ or ‘IIF’ mark the end of a template. They are consumed, and the
current contents of t are returned (line 90).90

The prefix ‘IIP’ causes the production of a ‘length’ item |n|, where n is a natural number
decoded from dna after removal of the three-base prefix (line 91).91

3.4 Matching

The procedure matchreplace is shown in Figure 12. The procedure takes two arguments:
the pattern pat and the template t that have been decoded (and removed) from the DNA
string dna. In matchreplace, we traverse the pattern and the dna string, trying to match
the contents of dna to the pattern items in the pattern. While each of the pattern items is
traversed in order, we keep the current position in the DNA string in a variable i (line 98).98

9

96 Environment ::= DNA∗

97 proc matchreplace (pat : Pattern, t : Template) =
98 let i : N ← 0
99 let e : Environment← ε

100 let c : N∗ ← ε
101 foreach p ∈ pat
102 case p is of the form
103 b ⇒ if dna[i] = b
104 then i← i + 1
105 else return
106 end if
107 !n ⇒ i← i + n
108 if i > len (dna) then return end if
109 ?s ⇒ if there is a smallest n : N such that n > i and s is a postfix of dna[i . . n]
110 then i← n
111 else return
112 end if
113 (⇒ c← i C c
114) ⇒ e← e B dna[c[0] . . i]; c← c[1 . .]
115 end case
116 end foreach
117 dna← dna[i . .]
118 replace (t, e)
119 return

Figure 12: Pattern matching

During the matching process, we build up an environment e (line 99). An environment99

is a sequence of DNA strings, where each string represents the piece of DNA that has been
matched against a group (everything between a corresponding ‘open’ and ‘close’ item).
During the traversal of the pattern, we may be in positions where we have encountered
‘open’ items, but not yet the corresponding ‘close’ items. We use the variable c to store the
indices of the positions in DNA for each of the unmatched ‘open’ items (line 100).100

After initializing the local variables, each of the pattern items p in pat is considered in
order (line 101). A pattern for a constant base b matches if there is a b at the current position101

i in the DNA string (line 103). If yes, i is incremented. If not (and also if position i is beyond103

the end of the DNA string), the match fails, and we return from the procedure without
modifying dna.

On a ‘skip’ item, the current position is adjusted accordingly (line 107). If the new posi-107

tion is beyond the end of the DNA string, the match fails (line 108).108

On a ‘search’ item, we look for the DNA string s in the DNA string dna. We only look in
the part that starts at position i, and we look for the first occurrence. If the search succeeds
and n is the first position after the end of s, we set i to n (lines 109–110). If s is not contained109–110

in dna[i . .], the match fails (line 111).111

On an ‘open’ item, we prepend the current position i to the stored opening positions c
(line 113).113

10

120 proc replace (tpl : Template, e : Environment) =
121 let r : DNA← ε
122 foreach t ∈ tpl
123 case t is of the form
124 b ⇒ r← r B b
125 nl ⇒ r← r � protect (l, e[n])
126 |n| ⇒ r← r � asnat (len (e[n]))
127 end case
128 end foreach
129 dna← r � dna
130 return

Figure 13: Replacement

On a ‘close’ item, we read the first number in c to get the stored position of the corre-
sponding ‘open’ item. The range between that position and the current position i is the part
of the item that is matched to the current group, and we therefore append it to the envi-
ronment. Finally, the first item of c is removed, because this group is now closed (line 114).114

If we reach the end of the pattern, the match was successful. In this case, we remove
everything up to the current position i from dna (line 117), and replace it with a DNA string117

generated from the template t and the accumulated environment e, using the procedure
replace (line 118).118

3.5 Replace

We now consider the replace operation as shown in Figure 13. It takes two arguments: a
template tpl (as previously decoded from the DNA string), and an environment e (the result
of the successful matching process). During the operation, we traverse the template item
by item (line 122) and incrementally build a replacement piece r of DNA (line 121), which122

121 in the end is prepended to the global DNA string dna (line 129).
129 For a constant item b, we add the appropriate base b to the replacement string (line 124).
124 For a ‘reference’ item nl, we look up the nth element of the environment. Note that this

lookup results in ε if n is greater than the length of e. We quote the resulting string l times
using the function protect (see Section 3.6) before we append it to r (line 125).125

For a ‘length’ item |n|, we also look up the nth element of the environment, and compute
its length. Since the lookup returns ε if n is out of range, the length will be 0 for such values
of n. We then encode the natural number as a DNA string via function asnat (see Section 3.7)
and add it to the replacement (line 126).126

3.6 Protection

The function protect takes two arguments, a level l and a piece of DNA d. It repeatedly
applies quote to d, namely l times, and returns the resulting string.

The function quote replaces each I by a C, each C by an F, each F by a P, and each P by the
sequence ‘IC’.

11

131 function protect (l : N, d : DNA) : DNA =
132 if l = 0
133 then return d
134 else return protect (l− 1, quote (d))
135 end if
136 function quote (d : DNA) : DNA =
137 case d starts with
138 I ⇒ return C C quote (d[1 . .])
139 C ⇒ return F C quote (d[1 . .])
140 F ⇒ return P C quote (d[1 . .])
141 P ⇒ return ‘IC’ � quote (d[1 . .])
142 anything else⇒ return ε
143 end case

Figure 14: Protection

144 function asnat (n : N) : DNA =
145 case n is
146 0 ⇒ return ‘P’
147 positive even⇒ return IC asnat bn/2c
148 positive odd ⇒ return CC asnat bn/2c
149 end case

Figure 15: Encoding natural numbers

150 ‘IIPIPICPIICICIIFICCIFPPIICCFPC’ turns into ‘PICFC’
151 ‘IIPIPICPIICICIIFICCIFCCCPPIICCFPC’ turns into ‘PIICCFCFFPC’
152 ‘IIPIPIICPIICIICCIICFCFC’ turns into ‘I’

Figure 16: Full iteration examples

3.7 Encoding natural numbers

The function asnat is almost the inverse of function nat. It takes a number n and produces
a DNA string encoding that number. In binary representation with the most significant bit
last, each 0 is replaced by I, each 1 is replaced by C, and the end is marked with P.

3.8 Example

To conclude the description of execute, Figure 16 shows a few examples of how the dna
variable changes during a single full iteration, i.e., the decoding of a pattern, a template,
and the subsequent execution of matchreplace.

12

4 From RNA to a Fuun

As in humans, Fuun RNA directs protein biosynthesis, resulting in a living being. We lack
the ability to assemble living beings ourselves – only Arrow, the spaceship, can do that –
but fortunately, we can come up with a picture of the resulting life form and its surround-
ings. This section describes what we found out about how Fuun RNA can be displayed.

Recall from Figure 2 that Fuun RNA is a long list of commands, where each command is
a seven-base long DNA string – except the very last RNA command, which might be shorter
than seven bases. While building a Fuun from RNA, each RNA command is processed,
possibly updating the internal state. The resulting image is part of that state.

The data types for the image are described in Figure 17. A coordinate (Coord) is a natural
number in the range from 0 to 599. A pair of coordinates forms a position (Pos).

A Component is a natural number in the range from 0 to 255. A triple of components
forms an RGB value (RGB). A Transparency (or alpha) value is a single component. A
number of colors are predefined. In particular, black corresponds to (0, 0, 0), white to
(255, 255, 255), the transparency value 0 means fully transparent, whereas 255 means fully
opaque.

A Bitmap is an array indexed by positions, i.e., from (0, 0) up to (599, 599), where every
element is a Pixel: a pair of an RGB and a Transparency. The position (0, 0) denotes the
upper-left, the position (599, 599) the lower-right corner of the image. To refer to the pixel
at position p in the bitmap b, we write b@p.

The Fuun assembly process will also make use of a Bucket, a sequence of Colors where
each entry can either be an RGB value (denoted by the postfix rgb) or a transparency value
(denoted by the postfix α).

Furthermore, we require a data type of directions (Dir), which comprises the four values
north (N), east (E), south (S), and west (W).

4.1 State

While interpreting RNA, a significant amount of internal state is utilized. Each component
of the state is kept in a global variable. The components and their initial values are shown
in Figure 18.

There is a sequence of colors in the variable bucket, initially empty. Section 4.3 describes
how the bucket works.

The variable position contains the position that RNA is currently working on. The initial
position is the upper-left corner (0, 0). There is also a saved position called mark, which is
also initially (0, 0).

There is a current direction dir, initially east (E), which indicates where the focus of the
build process is likely to switch next.

The position, mark, and direction are used by the move and draw RNA commands, de-
scribed in Sections 4.4 and 4.5, respectively.

Finally, there is a sequence of bitmaps in the variable bitmaps. Initially, it contains a single
element, a fully transparent bitmap, i.e., transparentBitmap@p = (black, transparent) for all
valid positions p. Section 4.6 describes how the sequence of bitmaps is used. Note that
bitmaps is never empty, and that after processing all the RNA commands, the first element
of bitmaps contains the resulting image.

13

153 Coord ::= a natural number n with 0 6 n < 600
154 Pos ::= Coord× Coord
155 Component ::= a natural number n with 0 6 n < 256
156 RGB ::= Component× Component× Component
157 Transparency ::= Component
158 Pixel ::= RGB× Transparency
159 Bitmap ::= an array from (0, 0) to (599, 599) with elements of type Pixel
160 Color ::= RGB rgb
161 | Transparency α
162 Bucket ::= Color∗

163 Dir ::= N | E | S | W
164 global black : RGB← (0 , 0 , 0)
165 global red : RGB← (255, 0 , 0)
166 global green : RGB← (0 , 255, 0)
167 global yellow : RGB← (255, 255, 0)
168 global blue : RGB← (0 , 0 , 255)
169 global magenta : RGB← (255, 0 , 255)
170 global cyan : RGB← (0 , 255, 255)
171 global white : RGB← (255, 255, 255)
172 global transparent : Transparency← 0
173 global opaque : Transparency← 255

Figure 17: Coordinates, colors, bitmaps

174 global bucket : Bucket ← ε
175 global position : Pos ← (0, 0)
176 global mark : Pos ← (0, 0)
177 global dir : Dir ← E
178 global bitmaps : Bitmap∗ ← transparentBitmap C ε

Figure 18: Initial state for Fuun assembly

4.2 Processing RNA

The main function of the RNA processing phase is shown in Figure 19. The structure of
build is simple. First, the input rna is read. The global variable rna then contains the RNA
instructions that have been produced by the execute program described in the previous
section (Section 3).

The sequence of RNA instructions is traversed from left to right. We look at each instruc-
tion r in turn. Arrow has provided us with information about 20 RNA codes that seem to
be essential for Fuun assembly. If r is one of the 20 known RNA codes, we perform some
action that modifies the state. If it is another, unknown, code, we ignore it and continue
with the next.

In the very end, we look at the first bitmap in the sequence bitmaps, and draw it. The

14

179 proc build () =
180 rna← read
181 foreach r ∈ rna
182 case r is of the form
183 ‘PIPIIIC’ ⇒ addColor (black rgb)
184 ‘PIPIIIP’ ⇒ addColor (red rgb)
185 ‘PIPIICC’ ⇒ addColor (green rgb)
186 ‘PIPIICF’ ⇒ addColor (yellow rgb)
187 ‘PIPIICP’ ⇒ addColor (blue rgb)
188 ‘PIPIIFC’ ⇒ addColor (magenta rgb)
189 ‘PIPIIFF’ ⇒ addColor (cyan rgb)
190 ‘PIPIIPC’ ⇒ addColor (white rgb)
191 ‘PIPIIPF’ ⇒ addColor (transparent α)
192 ‘PIPIIPP’ ⇒ addColor (opaque α)
193 ‘PIIPICP’ ⇒ bucket← ε

194 ‘PIIIIIP’ ⇒ position← move (position, dir)
195 ‘PCCCCCP’ ⇒ dir← turnCounterClockwise (dir)
196 ‘PFFFFFP’ ⇒ dir← turnClockwise (dir)
197 ‘PCCIFFP’ ⇒ mark← position
198 ‘PFFICCP’ ⇒ line (position, mark)
199 ‘PIIPIIP’ ⇒ tryfill ()
200 ‘PCCPFFP’ ⇒ addBitmap (transparentBitmap)
201 ‘PFFPCCP’ ⇒ compose ()
202 ‘PFFICCF’ ⇒ clip ()
203 anything else⇒ do nothing
204 end case
205 end foreach
206 draw bitmaps[0] all alpha values are set to 255!
207 exit

Figure 19: Building a Fuun from RNA

resulting image is determined by the RGB values of bitmaps[0]. The transparency values of
bitmaps[0] are ignored and all set to opaque (255) for drawing.

The known RNA commands can be sorted into four groups: commands that affect the
bucket, commands that change the focus, commands that draw, and commands that affect
the sequence of bitmaps. Each of the command groups is discussed in detail below.

4.3 Bucket commands

For each of the eight predefined colors and the two predefined transparency values, there
is an RNA command that prepends the Color to the bucket, using the procedure addColor in
Figure 20. The instruction ‘PIIPICP’ empties the bucket.

The bucket encodes information about a pixel, i.e., a current color and transparency
value. The function currentPixel, also in Figure 20, can be used to determine this value of
type Pixel.

15

208 proc addColor (c : Color) =
209 bucket← c C bucket
210 return
211 function currentPixel () : Pixel =
212 let rc ← average ({r | (r, g, b) rgb ∈ bucket}, 0)
213 let gc ← average ({g | (r, g, b) rgb ∈ bucket}, 0)
214 let bc ← average ({b | (r, g, b) rgb ∈ bucket}, 0)
215 let ac ← average ({a | a α ∈ bucket}, 255)
216 return ((brc ∗ ac/255c, bgc ∗ ac/255c, bbc ∗ ac/255c), ac)
217 function average (values : Component∗, default : Component) : Component =
218 if values = ε then
219 return default
220 else
221 return bsum (values)/len (values)c
222 end if

Figure 20: The color bucket

223 let b← black rgb; let r← red rgb; let m← magenta rgb; let w← white rgb
224 let y← yellow rgb; let c← cyan rgb; let t← transparent α; let o← opaque α
225 bucket← t C o C o C ε; currentPixel () returns ((0, 0, 0), 170)
226 bucket← b C y C c C ε; currentPixel () returns ((85, 170, 85), 255)
227 bucket← y C t C o C ε; currentPixel () returns ((127, 127, 0), 127)
228 bucket← b C b C b C b C b C b C b C b C b C b C b C b C b C b C b C b C b C b 18 blacks
229 C r C r C r C r C r C r C r 7 reds
230 C m C m C m C m C m C m C m C m C m C m C m C m C m
231 C m C m C m C m C m C m C m C m C m C m C m C m C m
232 C m C m C m C m C m C m C m C m C m C m C m C m C m 39 magentas
233 C w C w C w C w C w C w C w C w C w C w 10 whites
234 C o C o C o 3 opaques
235 C t 1 transparent
236 C ε; currentPixel () returns ((143, 25, 125), 191)

Figure 21: Examples for currentPixel

The current alpha ac is the average of all transparency values in the bucket, assuming an
opaque pixel (255) if there are no transparency values in the bucket. Each of the color com-
ponents is the average of the values of that component currently in the bucket, normalized
by the current transparency. Note that currentPixel will return (black, opaque) for an empty
bucket.

The function average is used by currentPixel to compute the average of a sequence of
Components. For an empty sequence, the given default is used. Otherwise, the average is
the sum of the values divided by the number of components, rounded down.

Figure 21 shows four example calls to currentPixel, given different contents of the bucket.

16

237 function move ((x, y) : Pos, d : Dir) : Pos =
238 case d is of the form
239 N ⇒ return (x , (y− 1) mod 600)
240 E ⇒ return ((x + 1) mod 600, y)
241 S ⇒ return (x , (y + 1) mod 600)
242 W⇒ return ((x− 1) mod 600, y)
243 end case
244 function turnCounterClockwise (d : Dir) : Dir =
245 case d is of the form
246 N ⇒ return W
247 E ⇒ return N
248 S ⇒ return E
249 W⇒ return S
250 end case
251 function turnClockwise (d : Dir) : Dir =
252 case d is of the form
253 N ⇒ return E
254 E ⇒ return S
255 S ⇒ return W
256 W⇒ return N
257 end case

Figure 22: Moving the focus

4.4 Move commands

The instruction ‘PIIIIIP’ changes position depending on the current value of dir. Given the
current position and the direction, function move in Figure 22 returns the new position. For
example, if the direction is east, and the current position is (324, 210), the new position is
(325, 210). If the new position is invalid (beyond an edge of the grid), we take the position
on the opposite edge. For example, moving from (100, 0) in the direction north yields
position (100, 599).

The RNA code ‘PCCCCCP’ changes the direction counter-clockwise, using the function
turnCounterClockwise. For example, if the current movement direction is south, the new
direction is east.

The RNA code ‘PFFFFFP’ changes the direction clockwise, and the function turnClockwise
is the inverse of turnCounterClockwise. For example, if the current movement direction is
south, the new direction is west.

4.5 Draw commands

All drawing commands affect the first element of the bitmaps sequence, via the two opera-
tions getPixel and setPixel that are listed in Figure 23.

The function getPixel takes a position p and returns the Pixel (i.e., the color and trans-
parency) of the first element of bitmaps at position p.

The procedure setPixel also takes a position p, and it modifies position p in the first el-

17

258 function getPixel (p : Pos) : Pixel =
259 return (bitmaps[0])@p
260 proc setPixel (p : Pos) =
261 (bitmaps[0])@p← currentPixel ()
262 return

Figure 23: Pixel operations

Figure 24: Example approximation of a line in a raster

ement of bitmaps. The new value is given by function currentPixel (see Figure 20), which
means that the color and transparency of the pixel is determined by the current contents of
the bucket.

The RNA command ‘PCCIFFP’ saves the current value of position in the variable mark.
There is only a single marked position at a time, so the previous contents of mark are dis-
carded. The contents of mark are used in the ‘PFFICCP’ command.

The command ‘PFFICCP’ draws a line (in the first bitmap in bitmaps) from the current
position to the marked position. The line is drawn using the current color and transparency
in the bucket.

The function line shown in Figure 25 specifies an algorithm that determines which points
in a raster should be plotted in order to form a close approximation to a straight line be-
tween to given points. An example illustration of the algorithm is in Figure 24. The
variables deltax and deltay are integer variables (i.e., they can be negative). The function
abs returns the absolute value of an integer, and max computes the maximum value of two
numbers. Note that setPixel only takes a Pos argument, because it uses the current color
and transparency from the bucket.

The fill command ‘PIIPIIP’ calls the procedure tryfill, given in Figure 26. The procedure
tries to fill a connected area surrounding the current position with the current color and
transparency (as determined by getPixel), but only if the pixel at the current position does
not already have this color and transparency.

A flood fill algorithm fill is used to determine the fill area and change the pixels. The
algorithm is also specified in Figure 26. The procedure fill takes a position and a pixel initial.
If the pixel at the current position is equal to initial, we change the color and transparency
at this position to the value determined by the bucket (using setPixel) and recursively call
fill on the horizontally and vertically adjacent positions.

If a fill command is encountered, the procedure fill is called at the current value of position
with the color and transparency at that position (the result of getPixel).

18

263 proc line ((x0, y0) : Pos, (x1, y1) : Pos) =
264 let deltax : Z← x1 − x0
265 let deltay : Z← y1 − y0
266 let d : N← max (abs (deltax), abs (deltay))
267 if deltax ∗ deltay 6 0 then let c← 1 else let c← 0 end if
268 let x← x0 ∗ d + b(d− c)/2c
269 let y← y0 ∗ d + b(d− c)/2c
270 repeat d times
271 setPixel (bx/dc, by/dc)
272 x← x + deltax
273 y← y + deltay
274 end repeat
275 setPixel (x1, y1)
276 return

Figure 25: Drawing a line

277 proc tryfill () =
278 let new← currentPixel ()
279 let old ← getPixel (position)
280 if new 6= old then fill (position, old) end if
281 return
282 proc fill ((x, y) : Pos, initial : Pixel) =
283 if getPixel (x, y) = initial then
284 setPixel (x, y)
285 if x > 0 then fill ((x− 1, y), initial) end if
286 if x < 599 then fill ((x + 1, y), initial) end if
287 if y > 0 then fill ((x , y− 1), initial) end if
288 if y < 599 then fill ((x , y + 1), initial) end if
289 end if
290 return

Figure 26: Filling an area

Unlike the move function, fill does not continue on the opposite side when it reaches the
edge of the bitmap.

4.6 Bitmap commands

The RNA instruction ‘PCCPFFP’ creates a new bitmap in bitmaps. The new bitmap is always
transparentBitmap, the bitmap that is (black, transparent) at every valid position. The bitmap
is added to the front of the sequence using addBitmap in Figure 27. A new bitmap is only
added if there are not already 10 bitmaps in the sequence. If there are 10 bitmaps already,
the command is ignored.

The instruction ‘PFFPCCP’ composes the first two elements of bitmaps, using the proce-

19

291 proc addBitmap (b : Bitmap) =
292 if len (bitmaps) < 10 then
293 bitmaps← b C bitmaps
294 end if
295 return
296 proc compose () =
297 if len (bitmaps) > 2 then
298 foreach p ∈ Pos
299 let ((r0, g0, b0), a0)← (bitmaps[0])@p
300 let ((r1, g1, b1), a1)← (bitmaps[1])@p
301 (bitmaps[1])@p← ((r0 + br1 ∗ (255− a0)/255c,
302 g0 + bg1 ∗ (255− a0)/255c,
303 b0 + bb1 ∗ (255− a0)/255c),
304 a0 + ba1 ∗ (255− a0)/255c)
305 end foreach
306 bitmaps← bitmaps[1 . .]
307 end if
308 return
309 proc clip () =
310 if len (bitmaps) > 2 then
311 foreach p ∈ Pos
312 let ((r0, g0, b0), a0)← (bitmaps[0])@p
313 let ((r1, g1, b1), a1)← (bitmaps[1])@p
314 (bitmaps[1])@p← ((br1 ∗ a0/255c, bg1 ∗ a0/255c, bb1 ∗ a0/255c), ba1 ∗ a0/255c)
315 end foreach
316 bitmaps← bitmaps[1 . .]
317 end if
318 return

Figure 27: Bitmap commands

dure compose in Figure 27, replacing the two images by one. If there are fewer than two
bitmaps, the command is ignored. Otherwise, the first two bitmaps are composed pixel
by pixel: at every position, the new pixel is determined by the pixels of the two original
images at that position. Using this RNA instruction, Fuun images can be combined with
background using alpha blending, a technique that humans only learned about 25 years
ago. Note that if bitmaps[0] is completely opaque (i.e., a0 is 255 at every position), then the
resulting image is equal to bitmaps[0].

The instruction ‘PFFICCF’ composes the first two elements of bitmaps in an alternative
way, using procedure clip in Figure 27. Again, this replaces the first two elements by the
resulting image, and again, the command is ignored if the length of bitmaps is less than 2.
Of bitmaps[0], only the transparency values matter for the resulting image. If bitmaps[0]
is completely opaque (i.e., a0 is 255 at every position), then the resulting image is equal to
bitmaps[1]. If bitmaps[0] is completely transparent (i.e., a0 is 0 at every position), then the
resulting image is equal to transparentBitmap.

20

5 How to make Endo live

Your task is to construct a DNA prefix that makes Endo live. Endo’s original DNA constructs
the “source” image. Your prefix followed by the original DNA should match the “target”
image as closely as possible. In addition, your prefix should not be too long, and the chem-
ical process of modifying Endo with your prefix should not consume too much energy. In
this section, we explain how to evaluate your solution.

5.1 Risk of a prefix

Each prefix can be assigned a risk. The risk is a natural number, and the lower the risk, the
more chances of survival Endo has. The risk is defined to be

risk = 10 · number of incorrect pixels + length of the prefix

Here, the number of incorrect pixels is the number of positions where the RGB value of the
picture printed in line 206 does not exactly match the RGB values of the provided target206

picture. Note again that the transparency values of bitmaps[0] at the time of the draw
command are set to 255, and that (0, 0) is the upper-left and (599, 599) is the lower-right
corner. The length of the prefix is the number of bases that constitute the prefix.

5.2 Resource limitations

In addition to the risk value, we are subject to certain resource limitations. Arrow must
perform the final process, and Arrow has very little energy left, so we must make sure that
the submitted prefix does not cause Arrow to run out of energy before it can save Endo!
There are two limitations:

• The length of the DNA string (len (dna)) must not exceed 25 million bases at any point
of the execution process.

• Inspecting and quoting DNA costs energy; during the execution process, we therefore
maintain a cost counter that must not exceed 3 billion (3 · 109):

– in pattern or template, each base consumed has a cost of 1;
– during matchreplace,
∗ a comparison of the current base with a constant base pattern has a cost of 1;
∗ a succesful search has a cost of n− i, evaluated after line 109;109

∗ a failed search has a cost of len (dna)− i, evaluated after line 109;109

∗ however, skips are cost-free;
– for a call to protect with a level of at least 1, the cost is equal to the length of the

returned DNA string – however, a call to protect with level 0 is cost-free.

If execution and building of your prefix plus Endo’s DNA stays within the above limits,
Arrow will be able to apply your prefix. If not, your prefix may be rejected by Arrow
because it is too energy-consuming. The prefix with the lowest risk received before the
end of the contest and that is not rejected by Arrow will be used to hopefully save Endo.
The team that submitted the prefix wins.

21

5.3 Submission procedure

That’s it. We’ve come a long way figuring out how Fuun DNA works. Now it’s up to
you. However much we are interested in what clever methods you will develop in your
attempts to find a life-saving DNA prefix, for the moment our only concern is Endo’s sur-
vival. Therefore, please submit only prefixes to us, rather than complete programs et cetera.

We will automatically append Endo’s DNA to the prefix and run it through Arrow. Pre-
fixes can be uploaded by registered teams during the entire contest. Each team can submit
many times. On submission, the risk score of your prefix will be determined and, after a
short delay, made available. At the end of the contest, we will only take into a account, for
each team, the DNA prefix with the lowest risk value.

During the contest, intermediate standings may be made available by us on a scoreboard.
We will not pass on any further information about your submissions to other contestants.
In particular, no other teams will see the pictures that result from your submitted prefixes.

Valid submissions are ASCII text files containing only the (uppercase) characters I, C, F,
and P. If your submitted file contains any other characters or even whitespace, there is no
guarantee that it will be accepted and correctly processed by Arrow. The file containing
the prefix should be called prefix.dna and be submitted in a zip archive containing just
this one file.

6 A piece of advice

Let us express our sincerest gratitude that you are trying to help Endo. During the time
we have prepared this description and the infrastructure to organize this call for help, we
unfortunately had only little time to analyze Endo’s DNA ourselves, but we nevertheless
have discovered a few things that we want to share with you.

First, be warned that the process of synthesizing Endo from the DNA string is complex
and even the simulation of the process requires a somewhat efficient implementation. To
give you an idea, calling execute on Endo’s DNA performs 1891886 iterations, produces
302450 RNA commands, and has a cost of 192646205. It seems particularly important to
ensure that performing skips and appending unquoted references perform better than in
linear time.

Second, we noticed that something curious happens if the following prefix is used:

IIPIFFCPICICIICPIICIPPPICIIC

Good luck and happy morphing!

7 Changelog

2007-07-20 10:00 UTC. Version 1.0.

22

Contents

1 Background 2

2 Fuun DNA 3

3 From DNA to RNA 4
3.1 Decoding patterns . 6
3.2 Helper functions . 8
3.3 Decoding templates . 8
3.4 Matching . 9
3.5 Replace . 11
3.6 Protection . 11
3.7 Encoding natural numbers . 12
3.8 Example . 12

4 From RNA to a Fuun 13
4.1 State . 13
4.2 Processing RNA . 14
4.3 Bucket commands . 15
4.4 Move commands . 17
4.5 Draw commands . 17
4.6 Bitmap commands . 19

5 How to make Endo live 21
5.1 Risk of a prefix . 21
5.2 Resource limitations . 21
5.3 Submission procedure . 22

6 A piece of advice 22

7 Changelog 22

23

	Background
	Fuun DNA
	From DNA to RNA
	Decoding patterns
	Helper functions
	Decoding templates
	Matching
	Replace
	Protection
	Encoding natural numbers
	Example

	From RNA to a Fuun
	State
	Processing RNA
	Bucket commands
	Move commands
	Draw commands
	Bitmap commands

	How to make Endo live
	Risk of a prefix
	Resource limitations
	Submission procedure

	A piece of advice
	Changelog

