
Morph Endo!
Report on the Tenth Interstellar Contest on Fuun
Programming

Eelco Dolstra

Jur Hage

Bastiaan Heeren

Stefan Holdermans

Johan Jeuring

Andres Löh

Arie Middelkoop

Alexey Rodriguez

John van Schie
Clara Löh

Department of Information and Computing Sciences, Utrecht University

Technical Report UU-CS-2007-029

www.cs.uu.nl

ISSN: 0924-3275

Morph Endo!
Report on the Tenth Interstellar Contest on Fuun Programming

Eelco Dolstra ∗ Jurriaan Hage ∗ Bastiaan Heeren ∗ Stefan Holdermans ∗ Johan Jeuring ∗

Andres Löh ∗ Clara Löh † Arie Middelkoop ∗ Alexey Rodriguez ∗ John van Schie ∗

Abstract
The Tenth Annual ICFP Programming Contest was a 72-hour
contest held July 20–23 2007 and organised in conjunction
with the 12th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2007). As in the previous nine
editions, the goal of the contest was to allow teams from
all over the world to demonstrate the superiority of their
favourite programming languag. This year’s task was to re-
verse engineer the DNA of a stranded alien life form to enable
it to survive on our planet. The alien’s DNA had to be modi-
fied by means of a prefix that modified its meaning so that the
alien’s phenotype would approximate a given “ideal” out-
come, increasing its probability of survival. In this report we
describe the task, how to solve it, how we created it, and
how the contestants fared. About 357 teams from 39 coun-
tries solved at least part of the contest. The language of choice
for discriminating hackers turned out to be C++.

1. The story so far
On Saturday, April 21, 2007, Endo crashed on Earth. Endo is an
alien life form, belonging to the species of the Fuun. While travel-
ling through space to visit some relatives, Endo had fallen asleep.
Endo’s spaceship Arrow drifted into a heap of strange objects where
it was picked up by an Interstellar Garbage Collector. Interstellar
Garbage Collectors are run by another alien species, the Imps, who
are known throughout the galaxy for dumping garbage on under-
developed worlds for aeons. Hence, together with a lot of other stuff,
Arrow and Endo were dropped on our planet.

Arrow is an intelligent spaceship, but was severely damaged by
the crash. Therefore, it could not warn Endo that environmental
conditions on Earth are not suitable for a Fuun. Endo left the ship,
looked upwards, and got hit by a cargo container, also dropped by
the Garbage Collector.

It took a while for Arrow to find out what had happened and
to regain some of its reasoning power. When it finally knew what
was going on, the situation looked grim: Endo was on the verge of
death, and Arrow had consumed a lot of energy repairing itself to
a certain extent, but no power supply seemed available anywhere
close.

The environment seemed equally strange. Some animals were
close by, but didn’t react to communication attempts. Finally, Ar-
row seemed to have found a way to contact Utrecht University, via
e-mail. The message was so strange that it not only crashed the mail
server, but also caused a power outage at the Computing Sciences
department. However, would it not have been for this crash and the

∗ Software Technology, ICS, Utrecht University, {eelco, jur, bastiaan,
stefan, johanj, andres, amiddelk, alexey, jcschie}@cs.uu.nl
† WWU Münster, clara.loeh@uni-muenster.de

investigation that followed, systems people might not have gained
interest in the strange mail.

The huge message, containing several attachments and data in
several unknown formats and languages, was shown around as a
curiosity and finally found its way to the machine of Johan Jeuring,
who together with some of his PhD students, started to look at it in
the little time they had next to organizing the ICFP contest.

For a long time, little progress was made. The only success the
group achieved, after quite a while, was the discovery of a sequence
of pictures hidden and encoded within the message. The algorithm
to decrypt the pictures was slow and running on just one machine,
so it took about three months to decode the complete sequence of ten
pictures (see Figure 1), which tell the story of Endo up to its arrival
on Earth.

Arrow wondered why no answer was coming in, but already
guessed that it might be difficult for the inhabitants of Earth to
understand what it wanted, and focussed its efforts solely on pro-
longing Endo’s life while preserving as much energy as possible.

On Friday, July 13, 2007, Alexey Rodriguez had an incredibly
clever idea on how to decode large chunks of the message, and this
turned out to be the breakthrough: large parts of the message were
suddenly clear, and by Wednesday, July 18, contact with Arrow
(via e-mail) was made.

Arrow’s desperate plan was to save Endo by changing its DNA
thereby adapting the Fuun to the conditions of Earth. Arrow usu-
ally could perform such an operation itself, but finding a suitable
DNA modification is a tricky business. Arrow simply did not have
enough energy to both come up with modified DNA and to admin-
ister the resequencing process.

Even then, considering the long delay after sending out the mes-
sage, it turned out that Arrow’s energy would run out sometime on
Monday, July 23, implying certain death for Endo.

Johan Jeuring and his group managed to assemble a specification
of how DNA resequencing works for Fuun, but it was clear that
they would not have enough time to look for a suitable modification
themselves. So as an emergency, they abandoned their original plan
for the ICFP contest and instead asked the international hacker
community to help to “Morph Endo!”

The Tenth Annual ICFP Programming Contest was a 72-
hour contest held July 20–23 2007 and organised in conjunc-
tion with the 12th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2007). As in the previous
nine editions, the goal of the contest was to allow teams from
all over the world to demonstrate the superiority of their
favourite programming languages.

This year’s task was to construct a DNA prefix that makes
Endo live. The contestants were given a way to simulate
DNA synthesis in the form of an algorithm that generates a
2D-picture of Endo and its immediate surroundings from

Figure 1: Arrival Sequence

a DNA string. Additionally, two images were handed out.
The “source” image in Figure 2 is the one corresponding to
Endo’s original DNA. The “target” image in Figure 3 is the
goal: concatenating the prefix and the original DNA should
result in an image that matches the target as closely as possi-
ble.

Prefixes were evaluated according to the following crite-
ria:

• the number of incorrect pixels in the resulting picture
compared to the target picture – the fewer, the better;

• the length of the prefix – the shorter, the better;

Figure 2: Source

Figure 3: Target

• the energy consumption of the synthesis, i.e., the time
and space complexity of performing the algorithm – just
a limit was given.

In this report we describe the task, how to solve it, how
we created it, and how well the contestants did. In Section 2,
we have a closer look at Fuun DNA (and RNA) and the sim-
ulation algorithm that turns DNA into a picture. Endo’s DNA
has some peculiar properties, and Section 3 shows how that
structure can be used to obtain the target picture from the
source picture. We also discuss some alternative approaches
to producing the target picture. Section 4 shows the making
of Endo: it discusses some of the tools we built to produce
the task for the contest. In Section 5 we reveal the winners
and give lots of statistics about the contestants.

2. DNA and RNA

Simulating the synthesis of Endo from Fuun DNA is a two-
phase process. First, Endo’s DNA is converted into RNA using
a process called execution. Then, the resulting RNA is used
to build Endo and its immediate surroundings, or rather to
produce a two-dimensional image of it.

Modifications of Endo such as requested by the task are
performed by concatenating a prefix to Endo’s original DNA,
and executing the resulting DNA.

I, C, F, P match a literal I, C, F, or P, respectively
!n skip n bases
?DNA search for DNA string DNA
(p) grouping: match pattern p and save the match

Figure 4: Pattern language

I, C, F, P insert a literal I, C, F, or P, respectively
ln insert saved group n at quoting level l
|n| insert the length of saved group n

Figure 5: Template language

DNA is a sequence where each element is one of four
letters (I, C, F, or P), called bases. Endo’s original DNA string
is 7523060 bases long. RNA is a sequence of commands, each
command being a DNA string consisting of seven bases.

2.1 Execution

Execution is a process that consists of one operation – a
match-replace – on the DNA string, that is performed repea-
tedly. In each iteration, the DNA string is inspected from the
beginning. The DNA is scanned until an initial segment is re-
cognized as a pattern. The rest of the DNA is then scanned
until an initial segment is recognized as a template. The rest
at that point is matched against the pattern. The part that
matches is removed and replaced by an instantiation of the
template. If the match fails, nothing happens.

While scanning for the pattern and the template, a spe-
cial three-base sequence III indicates a following RNA com-
mand which is then output immediately.

As long as the resulting DNA string of a match-replace op-
eration can be interpreted again as another match-replace
command, the process continues. If the end of the DNA
string is reached while scanning for the pattern or template,
the process stops. Executing Endo’s original DNA performs
1891886 match-replace operations before it stops.

The pattern language comprises constant patterns (literal
sequences of bases), skipping a non-negative number of bases,
searching for a certain sequence of bases, and grouping (Fig-
ure 4). Templates contain literal sequences of bases, but can
also refer to grouped parts of the DNA that the pattern has
matched, and query the length of such parts (Figure 5).

Quoting Encoding constant bases in patterns and tem-
plates requires an escape mechanism: it is necessary to dis-
tinguish a literal I from the pattern matching a literal I. At
the very least, we have to know where a pattern ends. There-
fore, DNA uses a quoting mechanism in many places, which
works as follows:

I becomes C

C becomes F

F becomes P

P becomes IC

As a result, we know that if we are looking for a quoted
string, the sequences II, IF, and IP can never occur. Even if
a string is quoted multiple times, this observation remains
true. Sequences starting with one of those three pairs are
therefore associated with special meaning. For instance, IIC
or IIF denotes the end of a group or pattern or template, III

indicates a subsequent RNA command, IP introduces a skip
in a pattern, and IF introduces a reference in a template.

When strings are reinserted into the DNA via template ref-
erences, one can choose an arbitrary quoting level at which
they should be inserted.

Here is a full example of a single execution step – let us
assume we have the following DNA:

IIPIPICPIICICIIF ICCIFPPIIC CFPC

For better readability, the above DNA is split into three parts.
The first two parts are interpreted as a match-replace opera-
tion which is then applied to the rest – the third part.

The first part is interpreted as the pattern (!2)P, i.e., start
a group, skip two bases, end a group, match a P. The middle
part is interpreted as the template PI00, i.e., insert PI, and
insert what was matched against the first group. The replace
command, which can be written as

(!2)P 7→ PI00

is now applied to CFPC, i.e., the remainder of the DNA. Two
bases are skipped, thus the group is bound to CF, and the
third base is a P, so the match is successful. The part that
has been matched – the string CFP – is then removed, and
instead, the template is instantiated (00 by CF) and inserted,
so that the final result is PICFC.

Numbers Execution also makes use of encoded numbers in
various places. A simple binary encoding is used, where an
I or F represents 0, C represents 1 and P indicates the end.

Issues The DNA language as interpreted by the execution
process is a Turing-complete language. We have encoded
both an imperative and a functional (combinator-based) lan-
guage in DNA, which are described in Sections 4.3 and 4.4,
respectively.

Execution of Endo’s DNA makes extensive use of skip-
ping, matching and inserting large chunks of DNA, and given
the total number of iterations, efficiency becomes very im-
portant. It turns out that the central issue is the choice of a
suitable data structure. Some additional details are given in
Sections 3.2 and 4.1.

2.2 Building

After executing DNA, we end up with a sequence of RNA
commands. Although RNA commands are seven bases long,
only 20 commands have an effect on the resulting picture.
Other commands produced by Endo’s DNA are ignored and
have no documented effect (but see Section 3.4).

The 20 commands form a spiced-up turtle control lan-
guage for generating a 600 by 600 bitmap picture. In addition
to the basic commands for moving the turtle one step for-
ward and turning it left or right by 90 degrees, there is sup-
port for changing the color, for saving a position, for drawing
a line between the current and the saved position, for flood-
filling an area of the picture, and for maintaining a stack of
pictures where the top-two elements can be composed in dif-
ferent ways, allowing alpha-blending and clipping.

Endo’s original DNA produces 302450 RNA commands,
of which 237484 are among the 20 “legal” RNA commands.
Performing these commands results in the source picture
shown in Figure 2.

Changing the color with a limited set of commands while
allowing a full range of 8-bit RGBA values is achieved by
maintaining a color bucket. There is one command to empty
the bucket, and there are ten commands to add different
base colors to the bucket. Each color can be added to the

bucket multiple times if desired. The currently active color
is then given by the average of all the colors in the bucket.
As a result of this approach, some RGBA values are very
cheap to compute, while others are very costly. For instance,
producing the opaque RGB color (254, 255, 255) requires 255
RNA commands.

3. Solving the task
To reiterate, the task for the contestants is to adapt Endo’s
DNA to life on Earth. This adaptation is in the form of a prefix,
a (hopefully) small piece of DNA that, when prepended to
Endo’s DNA and executed, produces the picture in Figure 3.
So how would a contestant go about this task?

Of course, we could ignore Endo’s original DNA entirely
and try to generate DNA that draws the target picture. Done
naively, this approach will take tens or hundreds of millions
of bases, but by being clever, we can drastically reduce this
amount. For instance, adjacent areas with the same colour
can be drawn efficiently with a flood fill. Gradients in the
picture are trickier, but with some cleverness these too can
be drawn efficiently. Finally, we could write a DNA or RNA
compressor in DNA – maybe even a PNG decompressor! But
this approach has its limits: a PNG encoding of the target
picture is about 235 KB, which would amount to almost a
million bases, and then we would still have to include the
PNG decompressor. So this isn’t a winning approach (though
you might get the Judges’ Prize!).

3.1 Reverse engineering

Instead of trying to solve the task by means of the brute-force
approach given above, it is better to reuse the existing DNA.
After all, the target picture is quite similar to the original
picture in many respects. We should try to figure out how
Endo’s DNA works, then write a prefix that “patches” the
original DNA appropriately. For instance, the dome of the
flying saucer in the original picture looks suspiciously like
the “cup” in which the whale swims in the target picture.
Maybe we can find the bases responsible for drawing the
dome and prepend some rotation and move commands to
transform it into the cup. In fact, the task description hints at
this approach:

It is hypothesized that, contrary to life on Earth, the
Fuun are a result of intelligent design. We believe this
because Arrow hints at the fact that there may be
“messages” from the creators in the DNA, and that
there may be genes already present that could help
with the plan to transform Endo.

3.2 Getting started

The task description says that “something curious” happens
if the prefix IIPIFFCPICICIICPIICIPPPICIIC is used. Obvi-
ously, we should try this first. And voila – if our DNA ma-
chine is correct, then we get a “self check” screen showing a
number of tests, each followed by “OK”. On the other hand,
if some subtle aspect of the specification is implemented in-
correctly, then some or all of the screen will be mangled, e.g.,
everything drawn after a certain test will be rotated by 90
degrees.

Well, it’s good to know that our machine is correct, but it
doesn’t really help us get further (except that it’s now clear
that there are things hidden in Endo’s DNA). So maybe we
should look more closely at the DNA. It starts with III –
that’s an RNA command. In fact, there are thousands of RNA
commands right at the start of Endo’s DNA, before it goes off

Figure 6: First field repair guide page

doing mysterious match-replace operations. What does the
RNA do? Here it really helps if your DNA machine allows you
to step through commands interactively, like a debugger –
an indispensable tool for reverse engineering. When you do,
you will see that a message is drawn before it is overwritten
by a black flood fill:

IIPIFFCPICFPPICIICCIICIPPPFIIC

There are other ways to discover this prefix. In fact, it’s quite
possible to see the hidden prefix by accident if, for instance,
flood fills or bitmap operations don’t work correctly yet; or if
your machine is just very slow (which was the case for many
contestants).

Hopefully this bit of DNA is another prefix, like the one for
the self check. And indeed, when we prepend it to Endo’s
DNA and execute it, we make a remarkable discovery: the
first page of the Fuun Field Repair Guide (Figure 6)!

Apparently Endo’s intelligent designers – FuunTech Inc.
on Rigel IV – helpfully created information on repairing bro-
ken Fuun in the field. The page shows two prefixes: a prefix
that shows the next repair guide page, and one that rotates
the planet, i.e., turns the picture from night into day. This prefix
alone fixes a huge number of pixels (although the survival
chance – see Section 5.3 – only increases to 1.27% to reflect
the fact that this is far from enough to save Endo). About 160
teams managed to discover this prefix.

Actually, the other prefix sounds even more interesting
– something about a catalog of repair topics – and indeed,
when used, it shows a repair guide page that describes how
integers are encoded in DNA, and suggests that one can ac-
cess other pages by taking a known repair guide prefix and
changing the embedded number to the number of the de-
sired page. It also mentions that the catalog has page number
1337.

(This page presented a serious obstacle for many con-
testants: the first page renders quickly even on slow DNA
machines, but the second one (like the actual picture) takes
an excruciating amount of time if skips and template re-
placement aren’t sublinear, as the spec advised. Thus, con-
testants would be stuck at this point unless they fixed the
time complexity of their machine. It certainly isn’t neces-
sary to engage in heavy bit-fiddling, hand optimisation or
assembler programming to get it fast enough: for instance,
our straight-forward, 347-line Haskell reference implementa-

tion using the right data structure takes about 50 seconds. Our
über-optimised C++ implementation took about 5 seconds.)

Onward, then! Given that we have a DNA machine by
now, disassembling a known repair guide prefix shouldn’t
be hard. Let’s take the prefix for Figure 6. It disassembles to
the following DNA operation:

(?IFPCFFP)I 7→ 00C

We use the notation pattern 7→ template to denote the DNA
string encoding the corresponding match-replace operation.
The above prefix searches for the base sequence IFPCFFP
(and binds everything up to and including that sequence),
then matches a lone I; it then rewrites the matched DNA
string by putting back everything up to and including the
IFPCFFP, and writing a single C. Thus, it replaces a certain
I with a C. According to the description of the encoding of
numbers on the second help page, that would be changing
the number 0 to 1. To test this a bit further, we could look at
the prefix for the second page:

(?IFPCFFP)II 7→ 00IC

and indeed, this would appear to change 0 to 2.
According to the second page, we have to set the number

to 1337 to get access to the catalog page. The encoding of 1337
is CIICCCIICIC. So the necessary prefix would be

(?IFPCFFP)IIIIIIIIIII 7→ 00CIICCCIICIC

or, in concrete DNA,

IIPIFFCPICFPPICIICCCCCCCCCCCCIICIPPPFCCFFFCCFCFIIC

This prefix finally reveals the catalog page, which lists the
numbers of many other repair guide pages. With the same
technique as above we can now access all of them. Now we
are really getting somewhere. There are a lot of interesting
pages, although many are quite cryptic – a lot of talk about
red zones and green zones and blue zones (e.g. Figure 7), and
at least one page is “encrypted” according to the catalog.

But there is one page in particular that looks very interest-
ing: page number 42 shows a “gene list” (Figure 8)! For each
“gene”, it shows the size and offset relative to a special base
sequence. Finally – something that a compiler hacker can ap-
preciate! Alas, this is only the first page. But there is a colos-
sal hint in there: the gene named AAA geneTablePageNr. So
what if we constructed a prefix that searches for the special
sequence IFPICFPPCFFPP (the marker to which the gene off-
set are relative according to the gene table), then skips 0x510
bases (minus the length of the special sequence), and writes
a number? To write page number 10 would be, for instance,

(?IFPICFPPCFFPP!1283)!4 7→ 00ICIC

where !n denotes a skip over n bases. In DNA, that’s

IIPIFFCPICCFPICICFPPICICIPCCIIIIIIC
ICPIICIPIICPIICIPPPCFCFIIC

Of course, this prefix has to be appended to the prefix that
sets the help page number to 42.

From the gene list we learn that there are hundreds of
these genes, although some entries in the gene table appear
to be damaged.

3.3 Improving the picture

Now we have enough information to try to find ways to im-
prove the picture. For instance, there are lots of apparent
variables in the gene table (like AAA geneTablePageNr). Per-
haps tweaking them will have some effect on the picture. Of

Figure 7: Alien software engineers use strange terminology

course, the more you know about the code (say, through trac-
ing or disassembling), the easier this becomes.

For instance, there is a variable polarAngleIncr, which, it
turns out, determines the rotation of the blades of the wind-
mill. How could you know? Well, the blades are rotated
slightly in the target picture compared to the original pic-
ture, which makes one hopeful that the vertices of the blades
are not positioned absolutely but are subject to some trans-
formation. Plus, there are sine and cosine tables in the gene
list. Finally, the call graph (see below) shows that the func-
tion windmill makes calls to drawPolylinePolar. It takes a bit of
experimenting, but it turns out that setting it to 5 gives the
rotation that matches with the target picture. The command
to do so is

(?IFPICFPPCFFPP!823763)!3 7→ 00CIC

Other interesting variables include enableBioMorph (which
adapts Endo to the local ecosystem, though not necessarily in
the desired way) and weather (which enables various weather
patterns).

Far from all necessary changes are as simple as changing a
variable. For instance, some involve modifying DNA code in
some way, such as disabling certain bits of code or enabling
dead code. An example is removing the λx.x stuck in the
windmill:

(?IFPICFPPCFFPP!5049987)!33 7→ 00
[
!727 7→

]
where [pattern 7→ template] denotes the encoding of a
match-replace instruction in DNA. (The encoding of this in-
struction is 33 bases, hence the !33.) In other words, this prefix
places a skip of 727 bases at offset 5049987, which is the start
of the code that draws the lambda. Similarly,

(?IFPICFPPCFFPP!5043058)!33 7→ 00
[
!154 7→

]
causes the ducks to appear. (The ducks, it turns out, are
drawn in a conditional: if true then nop else drawSomeDucks.
The skip jumps over the conditional to the else-branch.)

Figure 8: The Holy Grail: the Gene Table

3.4 Reverse engineering the DNA

One important secret of Endo’s DNA is the presence of certain
undocumented RNA sequences. These RNA sequences are of
the form IIICFPICFP or IIICnnnnnn, where each n is one
of I, P, or C. A bit of analysis (plus a big hint in the help
screen on “abnormal RNA”) makes it clear that the former
indicates a return from a function (a.k.a. “gene”), while the
latter indicates the entry of a function, where the ns denote
a unique function number in base-3 notation. Thus, these
RNA sequences reveal the exact dynamic call graph within
Endo’s DNA.

3.5 Memory model

When you step through the DNA code, and from the help
screens and the gene table, you should get a picture of the
operation of the DNA, which is useful – you have to patch the
code, after all. Endo’s designers – the misnamed FuunTech
– seem to have programmed Endo in an imperative language
called Imp. It’s a perfectly serviceable language though: it has
functions, recursion, local and global variables, conditionals,
loops, arrays, and even pointers. Due to the strange prop-
erties of Fuun DNA, the compilation scheme and memory
model is not quite the same as what one would expect in
Earth-bound Von Neumann machines, but if you squint just
right, it almost looks like one. It’s just a matter of understand-
ing the FuunTech terminology.

The repair guide page in Figure 7 talks about several
“zones” in the DNA: red, green and blue, which appear in
the DNA string in that order. The blue zone (which “waxes
and wanes”) is just a stack: it contains return addresses,
local variables and function arguments (and there is even a
page on the precise layout of stack frames). The green zone
contains code and global variables. But DNA does not have
an instruction pointer – it can only execute instructions at the
front of the DNA string. So we can’t execute a function directly

within the green zone, since then we would lose the function
forever (plus all the functions and variables that precede it).

That’s where the red zone comes in: it’s simply a copy of
(the remainder of) the current function from the green zone.
A function is called by copying it to the front of the DNA,
i.e. the red zone. The caller pushes the return address on the
stack, then discards its remaining code and copies the callee
to the front of the string.

A function returns by popping the return address from
the stack, discarding its own remaining code, and copying
the remaining code of the caller back to the front of the DNA
string. Here it has to know how much of the remaining code
of the caller to copy back. Therefore, an address consists not
just of an offset (relative to the start of the green zone) but
also a size in bases.

As each instruction is executed (i.e., appears at the front
of the string), the offsets of all functions and variables that it
references are statically known. This is because the compiler
for the imperative language knows the size of the remaining
“red zone” code and it knows the size of each object in the
green zone. Similarly, it knows the offset of the start of the
stack, and therefore of all variables in the current stack frame.

All of this means that you have to be very careful about
modifying DNA. You cannot insert code into the green zone,
since that would invalidate offsets. You have to be very care-
ful when calling functions that you also discard the current
red zone code. And when you call a function from a prefix,
you don’t have a return address in the green zone, unless you
patch the green zone first. Calling functions from a prefix is
therefore pretty tricky.

However, the Fuun engineers were aware of this difficulty
and provided a “function call adapter” that makes it easier
to call functions from prefixes. It is explained in detail in a
repair guide page, but essentially it just saves the current red
zone on a special stack (i.e., it saves the actual code, rather
than a return address in the green zone, which you don’t
have when calling from within a prefix).

3.6 Secrets

Endo’s DNA contains many secrets that can help you to pro-
duce a short prefix fixing as many pixels as possible. We
won’t reveal them in detail, but we will give some hints.

Intergalactic character set Strings in Endo’s DNA are en-
coded in the Intergalactic character set. The character set help
page does not appear very helpful as it’s drawn in a “bullet”
font (every character’s glyph is an identical dot). However,
overwriting the contents of the fontTable Dots variable with
that of fontTable Cyperus (or any other font) will reveal the
character set, which turns out to be EBCDIC shifted by 64
positions. Given this knowledge, it’s easy to write the equiv-
alent of the Unix strings program and discover all kinds of
interesting information. However, as one help screen notes, a
lot of strings are actually constants in imperative instructions
(e.g. to push them on the stack) and are therefore quoted.

Gaps in the gene table The gene table has a number of
“damaged” entries. By looking at the “holes” between the
known genes, the locations and sizes of most missing genes
are easily reconstructed. (Actually, the array of genes in the
printGeneTable function isn’t damaged at all, it just has a
“damaged” boolean for every gene. So dumping that array
will show all genes including their names.)

Damaged genes Some functions are “damaged”. You can
see which by calling the function printGeneTable with a true
argument, which causes it to verify a checksum over each

Figure 9: FuunDoc documentation page

gene. Damaged genes can be repaired in various ways: some
genes are palindromes, and some have Hamming codes that
allow them to be error-corrected.

ImpDoc and FuunDoc The gene table contains functions in-
triguingly named impdoc1, impdoc2, . . . impdoc10 and fuundoc1
. . . fuundoc3. These provide documentation for functions
in the imperative and functional languages used to build
Endo’s DNA. (The functional language is discussed below.)
They can be executed very easily using the function adapter.
Figure 9 shows a FuunDoc documentation page, which looks
suspiciously like Haddock [4].

Organisers’ easter egg No piece of software would be com-
plete without an easter egg commemorating the developers1.
The function alien-lifeforms (hidden in a gap in the gene table)
does just that (Figure 10). Presumably the letters do some-
thing useful.

Previous contests As this was the tenth ICFP Programming
Contest, a homage to the previous nine contests was in-
cluded. It can be shown by calling the functions contest-1998
through contest-2007. There is a prefix hidden in there, and a
(maybe not very useful) hint.

Audio prefix The voice of an alien reading a useful prefix
is hidden somewhere in Endo’s DNA. How do you find it?
Open the DNA in an editor, set the width of the window to
16 characters, scroll down a bit and you might see a hint. The
prefix provides a hint on how to fix the weeds; see below.

Biomorphological Unit Unless you want to draw Endo
yourself (which would incur a heavy cost), you’ll want to use
Endo’s Biomorphological Unit (BMU), which morphs Endo to
imitate life forms in the surrounding ecosystem. However,
as one repair guide page notes, the BMU is rather flakey,

1 Rumour has it that there is another easter egg, and that it provides
another hint – maybe regarding the hills.

Figure 10: Alien life forms

as evidenced by the fact that depending on environmental
conditions Endo will morph into strange creatures such as
OCamls and MLephants – and even ducks. The BMU also
malfunctions quickly when it rains, but maybe this bug is
really a feature?

Vehicular Morphological Unit Endo’s flying saucer can
morph into less conspicuous forms of transportation, but
it does need a license key. Maybe one of the hidden prefixes
discussed above will help.

Encryption Various genes are encrypted. The repair guide
page “How to Activate Genes” is “encrypted” with a simple
ROT-2 cipher (though attempting to crack it may still violate
intergalactic copyright legislation). Various other genes are
encrypted with a more advanced algorithm, discussed in
detail in the “Fuun Security Features” page (the text of which
is ROT-13 encrypted, just because the FuunTech engineers
are unpleasant people).

Cargo box The colour of the cargo box changes from purple
to orange (which colour would be more appropriate in a
Dutch landscape?). By carefully inspecting the precise RGB
values of the cargo box in both pictures, one can easily fix the
box by changing just a few RNA color bucket operations. This
gives a sizeable increase in Endo’s survival chance.

L-systems There are some weeds in the background that
look differently between the source and target pictures. They
are generated using an L-system [5], and can be efficiently
fixed by changing the pseudo-random number generator
seed to 8128, the fourth perfect number, which is hinted at in
the help screen activated by the audio prefix.

Spirograph In the target picture, the sun contains a subtle,
strange pattern. This pattern can be drawn using a spirograph.
Endo’s DNA contains a function to draw spirographs, but the
trick is to figure out the parameters that draw the desired
spirograph.

There is a repair guide page on spirographs that shows
various examples of spirographs, including the very one
needed for the sun. However, this page is hard to find – it
is not listed in the catalog, has a high page number, and is
compiled directly into the main function so that it can only
be found by disassembling main.

Whale The whale is drawn by a function that takes a
boolean argument that determines whether the whale is
happy or sad. The whale’s blow is hidden in plain sight in
the gene table function. Rotating the cup is a matter of inject-
ing some RNA rotation and movement commands. Finally,
the cup can be filled with rain water – maybe changing the
weather would help?

Hills The hills are drawn using a bunch of higher-order
functions in Endo’s imperative language to combine sines
and parabolas. A prefix that activates the hills (with a slightly
off shape) is hidden somewhere.

Virus A malicious virus from outer space is residing in
Endo’s DNA and waiting to be activated. This virus will def-
initely mess things up. Ironically, the help page describing
this virus appears to be one of the locations that is infected.

Steganography Steganographic content was hidden in one
of the not so informative help pages, revealing a key for an
encrypted part of the cow. The hidden message can be seen
by only considering the least significant bits of the RGB color
channels of that help page.

Fish Unlike other image elements, the fish are drawn by
code written not in the Imp language but in the functional
Fuun language (see section 4.4). To fix the direction some
of the fish are facing, it is important to know that the lay-
out of the fish is given in a tree-like structure in the gene
goldenFish adaptation. The tree describes how parts of a pic-
ture, represented as subtrees, are combined into bigger pic-
tures using operators. These picture operators are docu-
mented in the FuunDoc pages. The encoding of values in the
Fuun compilation scheme is described in the repair guide
page on so-called super adaptive genes.

Grass The original picture contains 70 clumps of grass,
whose locations are computed using a pseudo-random num-
ber generator. They must be relocated in the target picture by
setting a new seed value in the variable seed. This value can
be found by solving the puzzle given in the “Biomorphic ini-
tial conditions” repair guide page. The two functions in that
page, bioAdd and bioMul, are compiled using the functional
Fuun language using combinators documented in FuunDoc.
If enableBioMorph adaptation is set to true, the grass seed will
be disturbed using bioMul adaptation. However the definition
for bioMul is wrong, therefore the wrong seed is computed.
To solve this problem, you must come up with a correct im-
plementation of Peano-style multiplication and encode it in
bioMul adaptation. For inspiration on how to encode it, you
may want to have a look at bioAdd and its corresponding
encoding bioAdd adaptation.

Major Imp For people tired of hacking DNA, there was a di-
version in the form of various episodes of the galaxy-famous
adventure series “Major Imp’s Next Assignment”. Nobody
discovered a crucial hint to solving the contest sneakily hid-
den in the Major Imp stories.

4. The making of Endo
We started thinking about ideas for the task way back in
November 2005, but it wasn’t until August 2006 that we

began to put real effort into it. Some oddball ideas were
considered – writing Quake bots, reverse engineering music,
and counting rings in photographs – until we settled on
hacking alien DNA. We intended this year’s contest to be a
reverse-engineering hackfest: the idea was to let contestants
make debuggers, disassemblers, and whatever other means
they could come up with to grok and repair Endo’s DNA.

4.1 The evolution of DNA

The initial DNA language looked suspiciously like regular
expressions, since we all felt that sed(1) is under-utilised
as a programming language paradigm. We quickly verified
that all necessary programming features – variables, loops,
conditionals, stacks, functions – could be implemented using
regular expressions.

While programming in pure regular expressions is clearly
an idea whose time has come, it turns out to have some chal-
lenging implementation issues. (We intend to publish exten-
sively at POPL and PLDI on these.) The most vexing prob-
lem is to make DNA evaluation efficient enough. Our orig-
inal DNA language relied exclusively on pattern matching
to locate variables and functions in memory. For instance,
each variable would be preceded by a unique “marker”, and
could be updated by searching for its marker and updating
the succeeding bases, e.g.

(?ICFP) . . . 7→ 00IPI

to update the 3-base variable marked ICFP to IPI. However,
this means that every DNA instruction takes O(n) time in the
length of the DNA, which is much too slow2. Thinking about
how to cache the location of markers gave us a headache, so
a different approach was necessary.

The solution is the skip operation, which allowed us to
sneak in random-access memory while still retaining the
flavour of regular expressions. After all, a skip operation of n
bases is really just the regular expression . repeated n times.
If DNA is stored in a data structure like a rope [2] or even just
a sufficiently short list of strings, programs can be executed
efficiently.

Still, Endo’s DNA would require a lot of arithmetic (for a
while we even wanted to draw the windmill with an em-
bedded 3D engine, but we ran out of time). Initially we used
Peano arithmetic, which for some uses (such as a small loop
counter) is very efficient in DNA. But Peano doesn’t scale
very well, so we moved towards a binary encoding of num-
bers and wrote DNA functions to do addition, subtraction and
multiplication. As these operated at the bit level, they were
quite slow. We cheated once more and snuck addition into
the DNA specification in the form of the “length of match”
operation: to add natural numbers n and m, you skip n and
m bases within a group, then in the replacement store the
length of the group thus matched. However, this fails when
n + m is longer than the length of the DNA, which is why
Endo’s DNA starts with a mysterious bunch of instructions
that “grow” his DNA to 224 bases.

But now subtraction was a bottleneck, so we committed a
final hack and changed the semantics of DNA quotation such
that we could use it to do efficient subtraction. (Hint: in two’s
complement, x− y = x + (~y) + 1, so all we need is a way to
perform bitwise negation...)

2 This is exactly the problem that many contestants encountered if
they didn’t use an efficient datatype for DNA.

4.2 Making pictures with RNA

The RNA language is inspired by turtle graphics [1], although
ultimately our “turtle” is primitive in some respects and
advanced in others. We had interminable debates about
whether arbitrary directions should be permitted (as op-
posed to just top/bottom/left/right), and whether the spec-
ification should be pixel-precise (which would preclude the
use of floating-point numbers in the specification). For a
while we even considered specifying output in terms of Scal-
able Vector Graphics (SVG). We added an alpha channel and
compositing operations to be able to draw nice-looking im-
ages (see for instance the transparent backgrounds in the re-
pair guide pages). Floodfills were added to obviate the need
for an explicit polygon drawing operation.

4.3 The Imp language

In terms of ease of programming, Fuun DNA lies some-
where between assembler and Turing machines. Therefore,
we made a simple, high-level imperative language called
Imp that compiles to DNA code. (Some code, such as the self-
check, was more-or-less written by hand.) The Imp compiler
is written in Haskell, and Imp programs are written as an em-
bedded domain-specific language in Haskell. Imp is a pretty
conventional C-like imperative language, except for some
tricky details. For instance, you can’t really pass a pointer to
a stack variable to a function, because pushing things on the
stack causes the addresses of stack variables to shift.

Here is an example of an Imp function that returns the
length of a string. (Strings are sequences of 9-base integers,
terminated by the value 0xff.)

stringLength =
comment "Return the length of a string." $
function "stringLength" intType -- return type

[stringArg "s"] -- parameters
[intVar "i" 0] -- local variables
[while ("s" !!! "i" 6= byte 0xff)

["i"←− "i"+ 1]
, ret "i"
]

Haskell functions such as while, ret, and function are combi-
nators that build the abstract syntax tree that the compiler
translates into DNA. We used some very nasty and ill-advised
operator overloading to be able to write object-language ex-
pressions such as "i"+ 1.

Embedding the Imp language in Haskell obviates the
need for a grammar and parser, but more importantly, it
allows all kinds of meta-programming in Haskell. After all,
the full expressive power of Haskell is available to transform
abstract syntax trees at compile time. For instance, here is the
definition of a function that performs a bitwise increment of
an integer; note that the foldr essentially unrolls a loop that
iterates over the bits.

incInt = comment "Increment an integer by one." $
function "incInt" intType [intArg "x"] []

[foldr (λindex carryToNextBit→
iff (base "x" index ≡ encodeOneBit)

-- bit at index is 1, set it to 0 and go to the next bit
[base "x" index←− encodeZeroBit, carryToNextBit]

-- bit at index is 0, set it to 1
[base "x" index←− encodeOneBit]

)
Nop -- overflow; ignore

[0 . . (defaultIntLength− 2)]
, ret "x"
]

We wrote quite a bit of code in Imp, such as arithmetic op-
erations, string operations, turtle graphics, RC4 encryption,
Hamming error correction, functions for drawing L-systems
and spirographs, and lots more. Also, the functions that draw
the Endo scene and the repair guide screens were generated
from a picture combinator language that translated into Imp
code.

4.4 The Fuun language

The code that positions the fish is generated using a com-
piler for a functional language called Fuun. Like the Imp lan-
guage, the Fuun language is a DSL embedded in Haskell. A
neat detail of the embedding is that Fuun programs are stat-
ically typed by the Haskell compiler using phantom types.
Fuun is a call-by-name functional language, so expressions
are evaluated only if their values are demanded. It is not a
call-by-need language, so expressions are evaluated repeat-
edly rather than that they reuse previous evaluations.

4.5 Tools

We developed a lot of tools to generate, execute and analyse
DNA programs. For this, we used an amalgam of program-
ming languages: Haskell, C++, C, Java, Perl, PHP, and Ruby.

DNA machines We wrote implementations of the execute
function in Haskell (several implementations), C++ (several),
Perl, and Java. In the end, we decided to use the C++ version
for our submission system, but the Haskell implementations
were pretty fast as well. Some of these implementations of-
fered additional features to support some very basic debug-
ging.

Renderers Renderers (the function build) were written in
Haskell and Java. For the submission system, we used a
Haskell/C implementation: we used Haskell’s Foreign Func-
tion Interface to communicate with the libpng library to do
some low-level bitmap operations. The algorithms for draw-
ing lines, flood fill and bitmap composition were also imple-
mented in C. This renderer also supported a nice debug op-
tion to see some intermediate bitmaps.

Picture combinators We designed an embedded domain-
specific language to compose pictures from primitive ele-
ments such as texts and circles. This combinator library was
written in Haskell, and was used to describe the source and
the target picture, as well as all the help pages. It supported
both relative and absolute positioning, allowed us to apply
some gradients to elements, and to rotate and scale parts of
a picture. Picture description in this EDSL were translated to
the Imp language and from there into DNA.

Font generators Endo’s DNA sequence contains 3 embed-
ded fonts such as the well-known Tempus. In fact, these fonts
were embedded several times in various sizes and in differ-
ent styles (e.g., italic). We made a tool in Java to translate an
existing font by turning its characters into RNA commands.
Border pixels are drawn semi-transparently to achieve some
anti-aliasing, which is essential for the readability of the
smaller fonts. We also included the Wingdings font and used
this for the help page on viruses.

Curve tool We wanted some of the picture elements to be
cartoonish (such as the cow), and for this we implemented a
simple tool for drawing curves interactively. This tool was

written in Haskell using the wxHaskell GUI toolkit. The
curves were approximated by quadratic Bézier curves, which
were then rendered to a collection of points.

Image tools A couple of tools were developed (in Haskell)
for embedding images. The first tool simplifies the images:
colors are slightly changed to simpler colors (requiring fewer
RNA commands) and larger areas of one color are created by
merging areas that are sufficiently close to each other. The
degree of simplification was determined for each of the im-
ages individually. The second tool converts the image to a
sequence of RNA commands. Connected areas of one color
are determined, the border is drawn (only where it is really
necessary), and if needed, some flood fills are performed.
The order in which the areas are dealt with highly influ-
ences the number of RNA commands. A few simple heuris-
tics were used to determine the ordering. The last tool turns
a list of RNA commands into DNA commands and performs
some compression. All RNA commands are mapped to nat-
ural numbers: the more occurrences, the lower the natural
number. A simple combinator, written in DNA commands,
can turn the natural numbers back into RNA commands.
The compression ratio is acceptable: although higher ratios
could be obtained, a requirement was that decompression at
execution-time should be reasonably efficient. The following
table shows for two embedded images the sizes before and
after simplification (number of bytes in PNG format), the
number of RNA commands, and the number of DNA bases:

image before after RNA DNA

world map 95111 30687 111350 246500
contest team 284158 58634 226020 455133

Call graph A small Ruby script (88 loc) visualises the call
graph by inspecting the undocumented RNA commands,
linking them to the symbol table.

Strings tool We wrote a simple tool in Haskell that finds all
(quoted) strings in a piece of DNA. Care was taken that not
too much information could be found in this way.

Web submission system Teams used the web system to
monitor their progress, and the progress of their competi-
tors, thus stimulating competition. Each team could submit
a prefix at most each ten minutes to receive a score, see an
overview of the scores of their previous submits, and view
the rendered result of their prefix with the lowest score (high-
est survival chance). The scoreboard, visible for everyone,
shows the teams ranked by score, with the top 15 in random
order.

The web system consists of two parts, both written in
PHP; the front-end and the back-end. The front-end stores a
submission in the database and the back-end retrieves it, exe-
cutes the prefix, generates an image, stores it in the database,
and scores the image. Because this back-end cycle takes ap-
proximately 20 seconds with our implementation and we re-
ceived more than three submits per minute, we needed to
run multiple instances of the back-end. We ran instances of
the back-end on 18 machines, which resulted in an average
waiting time of 5 seconds before the back-end picked up a
new submit.

4.6 Encouraging reverse engineering

We realized that this programming contest could be solved
in many different ways. Although we didn’t want to limit
the various approaches too much, we took some measures
to make reverse engineering more attractive (compared to a

brute-force approach). The target picture contained an “anti-
compressant” (a Moiré pattern) which some people did man-
age to clone. The target picture contains several gradients
that are difficult to draw.

Many people have wondered why RNA commands have
such an inefficient encoding (ten bases for just 20 com-
mands). This was to penalise attempts to simply “brute
force” the target picture by drawing it with just RNA com-
mands.

5. The contest
The contest took place from 12:00 (noon) CEST on July 20
2007 till 12:00 on July 23, giving contestants 72 hours to
save Endo’s life. Teams were not required to pre-register, but
could do so. There was no limit on team sizes. Teams with
members associated with the Information and Computing
Sciences department of Utrecht University were allowed to
participate, but were ineligible for any of the prizes.

Teams could submit DNA prefixes any number of times
during the 72-hour period, with a ten minute waiting period
between submissions to prevent overloading the server. Each
submission was immediately evaluated by our submission
system. The score of the submission was then reported back
to the team. Also, a rendering of the best submission of the
team so far was shown. We didn’t show each team’s latest
submission to prevent teams from using our submission sys-
tem as a substitute for writing a DNA machine. Teams were
judged on the basis of their best submission over the course
of the contest.

During the contest, a scoreboard showed the scores of
each team, with the exception of the 15 highest-scoring teams
which were shown unordered without a score.

5.1 The contestants

869 teams registered before and during the contest. Ulti-
mately, 357 teams submitted at least one prefix. The average
size of the submitting teams was 2.6 members.

Teams were asked to specify their physical locations.
Some teams were distributed across countries or even con-
tinents. Table 1 lists how many teams had members in each
country. There were 137 teams with members in North Amer-
ica, 1 in South America, 55 in Asia, 188 in Europe including
Russia (with 136 in the European Union), 16 in Oceania and
2 in Africa. Incidentally, Africa was the continent with the
highest percentage of winning teams.

Teams were not required to submit source code and other
contest materials unless they wished to be eligible for a prize
(in particular the Judges’ prize). Thus, we cannot make cer-
tain pronouncements regarding the programming languages
used by teams. However, teams were asked to specify the
languages they used on their team information page, which
they could change during and after the contest.

Table 2 shows how many times languages were men-
tioned by teams. Some entries may need to be taken with a
grain of salt. Imperative languages continue to dominate the
field. Haskell and OCaml are the most popular functional
languages by some margin. Interpreted languages are also
popular.

5.2 During the contest

The organisers spent their time watching movies, monitor-
ing progress on the big scoreboard and answering questions
from teams on the contest mailing list. Happily for us, most
questions could be answered by stating that the spec was cor-

#teams Countries

130 USA
35 Japan
33 Germany
30 France
29 Russia
15 UK
10 Australia, Ukraine

9 India, Sweden
7 Canada, Netherlands
6 Belgium, New Zealand
5 Austria, Belarus, Latvia, Switzerland
4 Finland, Italy
3 China, Ireland, Norway, Spain
2 Denmark, Greece, Hungary, Israel, Poland, Sin-

gapore, Slovakia, South Africa
1 Bulgaria, Colombia, Romania, South Korea, Tai-

wan, Thailand, Uzbekistan

Table 1. Countries of team members

#teams Language(s)

81 C++
67 C
66 Haskell
64 Python
52 Objective Caml
48 Java
35 Perl
26 Ruby
22 Lisp
22 C#
17 Scheme

9 Unix shell (sh, bash)
8 D
5 PHP
4 Erlang, Delphi
3 ML
2 AWK, Fuun DNA, LOLCODE, Lua, Octave, Pro-

log, Refal, Scala
1 2D, Basic, Blub, Brainfuck, CWEB, Cobol, Dylan,

Emacs Lisp, Excel, FP, F#, Grep, Hub, MUMPS,
Nemerle, PL/I, Pascal, R, Sed, Silcc, Smalltalk,
Unlambda

Table 2. Languages used by teams

rect and that this or that section should be read more care-
fully. Technically, the contest went by uneventfully — the
submission system held up fine except for a 15 minute down-
time near the start of the contest, when the Xen virtual ma-
chine hosting the PHP script began to run out of memory.

However, for a long time it seemed that poor Endo was
not going to make it! Most teams seemed to have more trou-
ble than we had hoped getting the DNA machine fast enough
— a precondition to doing the actual Endo-saving work.
Many teams managed to discover the prefix that turns on
daylight, but unless they had fast DNA machines, they would
get stuck at that point.

Fortunately, in the second half of the contest and the last
day in particular, Endo’s chance of survival went up by leaps
and bounds (Figure 11 shows how the scores of the best six
teams began to improve – i.e. decrease – around 40 hours

Place Score Survival
chance

Team name

1 178246 90.22% Team Smartass
2 224623 84.92% United Coding Team
3 293898 75.59% Celestial Dire Badger
4 321617 71.52% ryba
5 358246 65.98% PurelyFunctionalInfrastructure
6 453744 51.32% jabber-ru
7 498781 44.66% Begot
8 514121 42.47% Basically Awesome
9 543163 38.45% SwtPl

10 608964 30.07% shinh
11 682894 22.07% SzM
12 819614 11.34% kuma–
13 862213 8.99% Unknown?
14 865556 8.83% voyo
15 872788 8.47% kokorush

Table 3. Top 15 teams

0

200000

400000

600000

800000

1000000

1200000

1400000

 35 40 45 50 55 60 65 70

S
co

re

Hours passed

Team Smartass
United Coding Team
Celestial Dire Badger

ryba
PurelyFunctionalInfrastructure

jabber-ru

Figure 11: Scores of the Top 6 during the contest

into the contest). Most of this progress wasn’t visible to the
world, since the scores of the best 15 teams weren’t shown on
the scoreboard.

5.3 The winners

Table 3 lists the scores and survival chances of the best 15
teams. A team’s score is the length of its best prefix, plus the
number of incorrect pixels in the generated image times 10.
The survival chance is defined as 100 e−1 (0.000018 score)2

.
The jury decided not to award a winner for the “lightning

division” prize (for the best submission within 24 hours) be-
cause there were no non-trivial submissions within 24 hours.

Judges’ prize While the first and second prizes followed di-
rectly from the teams’ scores, for the Judges’ prize we looked
at the materials that 31 teams submitted. We were looking in
particular for clever techniques and tools that resulted in a
good score.

Half-way through the contest the jury worried somewhat
about how well some “brute force” approaches were do-
ing, i.e. approaches that did not attempt to reverse engi-
neer Endo’s DNA but rather wrote DNA and RNA code that
drew an approximation of the target image directly. In fact,
this approach – though perfectly legitimate – had been a

concern for us in advance since we intended this to be a
reverse-engineering contest. We had even put in place sev-
eral counter-measures: there is an almost invisible Moiré pat-
tern super-imposed on the source and target images, and
RNA commands are 10 bases long to penalise brute-force
drawing code.

Nevertheless, a number of teams proceeded with the “re-
engineering” approach undaunted and made good progress,
even leading the scoreboard for a while. Of these, Celestial
Dire Badger (using OCaml and C++) had the most elegant
approach. He combined a more-or-less “brute force” approx-
imation of parts of the target picture (with increasing reso-
lution in the final hours of the contest) with a re-use not of
Endo’s DNA but its captured RNA output, as well as a com-
pressor for the generated DNA. Therefore the jury is happy to
declare that

Celestial Dire Badger (Jed Davis) is an extremely
cool hacker.

Second prize The jury is pleased to declare that United Cod-
ing Team (Cape Town, South Africa) has proven that

Perl is a fine tool for many applications.

The members of this team were Richard Baxter, Marco
Gallotta, James Gray, Carl Hultquist, Alexander Karpul, Ju-
lian Kenwood, Bertus Labuschagne, Hayley McIntosh, Bruce
Merry, Max Rabkin, Ian Saunder and Harry Wiggins.

First prize The jury is honoured to declare that Team Smar-
tass (Mountain View, California) has demonstrated beyond
doubt that

C++ is the programming language of choice for
discriminating hackers.

This team consisted of Ambrose Feinstein, Christopher
Hendrie, Derek Kisman and Daniel Wright. Team Smartass
also won the 2006 ICFP Programming Contest. An impressive
achievement!

5.4 Reflections

One thing that struck us during and after the contest, read-
ing IRC channels and blog postings, was that many program-
mers don’t have a lot of confidence in their favourite (func-
tional) language: when they realised that their implemen-
tation of the DNA machine was too slow, their first instinct
was often to switch to a “faster” language such as C. But
the problem wasn’t the language but algorithmic complexity:
a straight-forward Haskell implementation using the right
data structure (e.g. Data.Sequence [3]) would be fast enough
and outperform by several orders of magnitude an optimised
C implementation using a dumb data structure. So program-
mers should worry less about languages and more about
good old complexity.

As far as functional programming is concerned, we must
conclude that functional languages didn’t fare too well this
year (although in the Top 15 there were five users of OCaml
and three of Haskell). Better luck next year!

5.5 So what happened to Endo?

Thanks to the hard work of the contestants, Endo survived. It
spent some time as a cow in a meadow near Utrecht, during
which time it revealed lots of advanced computer science
techniques that we will be publishing about at some future
ICFP. It joined us on our trip to Freiburg to say ‘thank you’ to
the contestants present at the conference.

Acknowledgements. We would like to thank several peo-
ple that helped in organizing this contest. Atze Dijkstra and
Doaitse Swierstra participated in our early brainstorming
sessions. Chris Eidhof, Maaike Gerritsen, Jeroen Leeuwe-
stein, Eelco Lempsink, Martijn van Steenbergen and Mark
Stobbe tested an early version of the problem, and helped
extending it. Eric Bouwers, Thomas van Noort, Sander Mak
and Michiel Overeem tested the second version of the prob-
lem. The systems people at the Information and Computing
Sciences department of Utrecht University kindly provided
us with an environment in which we could set up and run the
contest. The Information and Computing Sciences depart-
ment of Utrecht University provided us with the necessary
facilities for the contest. Jonathan Jeuring supported Endo to
the end.

References
[1] Harold Abelson and Andrea diSessa. Turtle Geometry: The

Computer as a Medium for Exploring Mathematics. MIT Press,
1981.

[2] Hans-J. Boehm, Russ Atkinson, and Michael Plass. Ropes:
an alternative to strings. Software—Practice and Experience,
25(12):1315–1330, December 1995.

[3] Ralf Hinze and Ross Paterson. Finger trees: A simple general-
purpose data structure. Journal of Functional Programming,
16(2):197–217, 2006.

[4] Simon Marlow. Haddock. http://www.haskell.org/haddock/.

[5] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The
Algorithmic Beauty of Plants. Springer, 1990.

A. Best solution
The following 3903-base prefix was supplied by Jochen
Hoenicke of team SwtPl after the contest. It is a perfect so-
lution: it produces the target image exactly. It has a survival
chance of about 99.9951%. The best prefix that the organisers
made before the contest scored a meager 45.3%.

IIPIPCCICCICCPIICIICIPPPIPPPIICIPCICIICICCPFCIIPIFCCCFPIICIICIPPPIPPPIICIIPIPCCICCICCPIICI

IPIFCICIICIIPIFCPIICIIPIFCPIICIICCCICCICIIPCCPCCFICCCFFFCFFCPFICICPCFFFPFFCFFCFIFCPCPFCFPI

FICPICPFFPFCPFICICCCFPIPPCCPFICCCFIFCPPIFCPPCCICFICCPICFICCPICICCCFIICCPCCCCCPIICCCPFCPIIF

ICICICIPICCICICIPCIIICCICPIICCCCIIPCIIIIIICPCCCIICCIPCCIICCIIICPPCPFFFIICPPPIIPCPIFCCCCPCF

PCCCCCIIIIIIIIIIIIIIIIIIPICCICIICPIICIICCIPCCIIICCIPCICCICIIPICCICICIPICCIIICIPCICCICIIPIC

IIIIICPCIIIIICIPCICICICIPIICIIICIPCICCICIIPCIICIIICPCIICIIICPCCCCCCCCPCPIICPCPCPPCPFCPFIII

IIICCCCCCCCPCCCCPPFIFCICIIIIIICPIICCCPFFPPPICFIFCCIPFFCCCCPCFFCPIIPCFFICCPFFCICPIFFPCPCFFC

IIIIIFFIPICPCFFCICCCPFFCCFFCPIIPFFICPCFFCCPICCCCPIFCCFCICCFCCFIIIICFFIIPPIPIPCFCFPPCCCPPIC

PIIFICCCFPCCIIIIIICCPIICIIIIIIIPCCPIIICPCPCFFCFFCPICPIIIFFIPPIIFFICPICFFCPPIIICCFFIICFFCCP

CPCFFCPIICFFICCCCPCFFICCPFFCCPICPIPIIIIPCFCFCFCPIIIFFPCCCCPPCPCPIIIIFPCFFCCCCCCFFCIPIIFPCF

CFCFFCFFFFIIIPICPCFICFFFFFFICPIFICFCCCCCICPPCCCCPIIIFPFCICCICFIFCCCIPCPPIIIFFIIICPCPPPPIIF

FCCPPIPIPCCCCCCCPCFPCFFFCCCCCCFCPCCFICFCFFCFIIPPCPIICCCPCPFFFFFFIIIPICCPCFFCFFCICPIICCPFPF

CFCFFFICCCPFIFFFCIPPCCCPFPFFCCCFCICCCPFIFCFFPIPICCPIPIICPFIIIFPPIPIPCFFCICPIICPFCCFPICCCFP

FCFCICFFIFCFPIICFFFPCFFPPCFFCPIIIPIIIIPCCPCCFFCPIPFCCFFCCFIIIPICFCFCFIIIPPIIPIFFICFCFIIPIC

PCPPCFICCFFCFCFCFCCPIIIFIIFFCFFCCFCCCCCCPIFIIIFFFCFFFFFCCCCCFFICFIIIFFFCFFFFFFCCCFCCIPIIPP

ICFCCFFFCFIFFCIPIIFCCFCCFCPIIIIIPIFPICFIICCCICICICCCICCIICICICPFIIIFCCIICCCCIIIIIICCFPICFI

CCCIIICCCICICCCCCIIICCPCPIPCCCPCFICFCFCFFCCCCPCFCCFFCCFPIPCPFIFIPPIPICCCPFIIFFFFCFFCCCCCPC

FIFCFFPIIPIFIPFIIICCCICCICICIICFCCFCIICIFCCFICICICFIFIICCFPIFCCCIICICCICCCICPFIFCCIPICCPCP

FPFCFFCCCPIIIFIIFCCFCCCFPCCCPIPCCFFCCPFICFCCFCFFICFCFFCFCFCCFFCCFPCFFFFICFCCCFCCCFCCFCFCCP

FCFFCFICFFFCCCIIPPCCPCFIIFFFFFFFFCPPIIFCCCCFFFCFCCCCFFFFFFFCPCFPIFCCCCFFFCCFCFFFPCCCCCCPPI

IPPCCFICFFFFFCPIIICFPFCFCFFCPPPIFICFPFFFFIFIFIIICCCCCPFIIFIPFFFFFPIPICPCPIPICPCCFPFFCCFFCP

CCCPIICFICFFFFCFIIPICPFIFCFCPPPCPCCFCFFCIIIPCPCFICFCCFCFPPIIIPIPCPCPCFFICPIPCCPPIICPFIIPFF

CCFFFCFICFCFCFFCFICCCFCFFCPICFIPFCFFCFICFFFFFFPIPIIIFPICCFFFFFCFCCFCFCFFFFCCCCICFCCCFCFCCF

FFCCCCCPIPIPCFCCCCFCCCICICCCPIICIICPCCPIIIPCFCCPCFFCFFFFFCFFFCCFCFCFCFCCFICCCFFFCFCCCFCFCC

PIPIIPCFCFIICFCCFPIICIICPPICCPIIFCCPFPICICIICCIIICICICPIICIICIIPIPPPCCCPCFFCPIIICCFPFFFFFC

CIIPCCCPIPFIFFFFCFIFFFFIIIIPCFIICFFCFCFCCFFFFCCCCPFIFFFFCFFFIPIPIFCPFCCIIIIICIICIIFIIFIIIC

IICIFIIFCICICCICFICFIIICCCCFIPFIICICCIIIIIIIIPFCFCIIIIIIFPFIIICICIIPIIFCFIIPIICPCCCPIIIIII

CCFFPCPIICPPCFIFFFCIPIICPCFFFCCCCPFCFCFFIFFFCICPIPIFFFPIIICFCCFCCCFIPICCPIPCFICFFCFCFPPICP

CCFCCFCCFCIPIICFPCFFCFCCCFCFFPPPCPIIFIIFCCFFFFCICPPIIICPPIIFPFFCCFFCPIIIFICFFCCFCFCFCFCPII

CPPIFFCIIPIIIIICFPFCCFFFCIIIIIFCCFFCCCIPIPCFIFCCFPIIPICPCCFIFCFFCPCCPPFIFFCFPCCPCCPICPCCFF

CCCCCPIPICFPPIFICCICCCIIIIICICIICCCICIPIIPIPICICIICICIIPIICIICIICIPPPIPPCPIIPIPICPCCPCFCCF

CIICIIPIPPFPIFIICICIICICIIICIPIICCCPPIFIIFCCCCCCICCCPFIIFICCCIICCIIPICICCCCCICPFCIIPIPIICI

CCICPIICIICIPPPIPPPIICPIIPIFCCCFPIICIIPIFCICIICIIPIFCPIICIICCCICCICCFFCFICCCICCPFICCFCCFFC

CFCFCCFFFCFFCFCCICICFFPFCFFPPCFFFPCPFICFICFCFCFCFFFPCFFFFFFFCCFCCICCPFPCFCFFFPCCFCCICCICIF

CPICPCICFFFFFFFFFFFICCCFCCFCPICICCCICFICCPICFICCCFCCICCICIIPICPCCICCPFFFPCICIPPCPCCFCCFCCF

FFCFFCFPPFPCFFFPFICPFPFFCFFCFCCICICCPICFICCCFCCFCICFFCFICCCFIPCPPIPCPPCCICFICCPICFICCPFICI

CCCFIICFCCCICCIICCIICCCICCCCICCPCCPCPFPIIPFCPPIFCFIICFCFPCFFCCCFIIFIICCFCPFIICFIIFICFIIIFP

CFPIFCFIIIFCFIIIFFPFPFIIPFCPFPPFIIIFIPFCPFIIIFPPFPFPIFCFIPIFFPFCFCPFICFPIFCFIIFICCFIPFCCFC

PFIPCFIIFPCCFIFICCFFPCFIIFCCFPIFCFIIFIFIPIFIIFCPFCPFPIFIIFIIIFPIFIIIFICFPIFCFPFCCFCCPFFIFI

CFCPFCPCFPIIFCPICFPCPFIFCPFPFPIFCPFPIFIPFIPFPIFPFPFPFPIFIFIFPFFIFCFIPFICFCFFIFIICFCFIIICFI

IICFFICFIFIIICFCCPFPCFCPCPFIPIICFIIFICFICFPCFICFCCFCCFPCFIFICFICFICFFICFIFPICFIIIFICCFCPFC

FIIFCFCCFCPFCIIIPIPIICICCICPIICIIPIPCICCPFIICICIICCCICCICCCFCCCFCFCFFCCCCFCCCCFFICCCICCICF

ICCICIPPCPICCCFCCFCICFICCCICCICCIPCPCPICCCICCICFICCCFCCFCCFIPCPPIPCPPCCICICCPICFICCPICCFIC

CPICFFICCCFIICICIICIICICCIICPIIII

http://www.haskell.org/haddock/

	The story so far
	DNA and RNA
	Execution
	Building

	Solving the task
	Reverse engineering
	Getting started
	Improving the picture
	Reverse engineering the DNA
	Memory model
	Secrets

	The making of Endo
	The evolution of DNA
	Making pictures with RNA
	The Imp language
	The Fuun language
	Tools
	Encouraging reverse engineering

	The contest
	The contestants
	During the contest
	The winners
	Reflections
	So what happened to Endo?

	Best solution

