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Abstract

Sequence alignment is very important for molecular biologists. Blast is a well-known
family of heuristic approaches to solve this problem efficiently. Special purpose algorithms
and datastructures, however, do not support the data abstraction offered by database
technology. In this paper, we show that modern extensible database management systems,
like the Monet system, allow performance comparable to the special purpose solution,
while offering the required data abstraction.

1 Introduction

There is no doubt about the importance of sequence alignment for molecular biologists. Ho-
mology searching means matching a specific genome string, the query, to a large collection
of already known strings, the database. The database can either contain nucleotide strings,
based on the ACGT-alphabet or amino acid strings, based on a twenty letter alphabet. Due to
evolutionary changes, strings that are related show to some extend differences. So essentially
we are dealing with approximate string matching on very large string collections. We focus
on local alignment, i.e. matching between parts of the query and database strings; note that
this is the most common type of search in bioinformatics.

Approximate string matching is solved by dynamic programming techniques. In the case
of protein databases, the specific biochemical domain knowledge is represented in the under-
lying model by refined valuations of matches and mismatches (e.g. BLOSUM matrices, affine
gap costs). See [2] for a thorough treatment. The Smith-Waterman algorithm is a dynamic
programming technique that solves the local alignment problem, but scales quadratically. Per-
formance requirements have forced the development of heuristic approaches, of which Blast
(3], [1]) is the most well-known.

Although the term database is widely used among people dealing with large collections of
data in any format, computer scientists tend to have a narrower view on this concept. Crucial
to them is the presence of a database management system (DBMS), providing access to and
management of data at a higher level of abstraction. Query languages, such as SQL, are logic
based and data access is formulated in a very concise way. Building a sequence alignment tool
on a DBMS allows you to deal with your data set in a versatile way.

Gravano e.a. have shown how to query a string database using SQL ([4]). The burden of
finding a good access strategy to the data is left to the query optimizer, although Gravano
c.s. ’assist’ the query processor at the SQL level. Some preliminary experiments have shown
us that when this approach is applied in the case of protein strings, the performance is
very unsatisfying. On a Xeon 1.8 machine with 2GB of memory, Blast answers queries on a
Swissprot size database within one or two seconds, where a Gravano-like approach on Postgres



needs minutes. In spite of the overwhelming amount of effort put into the problem of generic
query optimization for the relational model (see [6] for an overview), a dedicated and tuned
program will in general outperform a classic relational database. To state it in a concise way:
a DBMS gives you the comfort and ease of abstraction at the cost of performance.

goals

Our main goal is: how to be fast without losing abstraction. We propose a compromise be-
tween speed and data abstraction. We simulate Blast on a DBMS and reach comparable
performance. Note that we do not have the ambition to outperform Blast, because it would
mean that generic optimization would do better than domain specific optimization, which is
quite unlikely.

A secondary goal is to show that the relational approach gives us the possibility to deal
with different alignment methods in an easy way. The alignment heuristics can typically be
split into two phases. During the filtering phase, the database is searched for promising spots.
In the ezpansion phase, these spots are further investigated. Filtering is a typical DBMS task,
whereas expansion is done by selected algorithms. Managing our data with a DBMS gives
us the possibility to vary with these two phases in a flexible way. With a minimal amount
of effort, we can switch from the Blast two-hit diagonal filtering to the filtering methods of
Cafe, as proposed in [7]. Also the recent proposals to apply non-consecutive g-grams (see e.g.
[8]) can easily be adopted in our prototype.

2 Preliminaries

Definitions

e A string is a mapping from an integer interval [k..n] to the set of characters. We have
the notion of substring. An aastring is a string based on a limited character set: the
amino acid symbols.

e A ¢g-gram is an amino acid string of length ¢, a fixed number that is typically 3 for
protein databases. The term word is a synonym for g-gram and more common in the
Blast community.

e Basically, our database is a set of aastrings, which all have £ = 1. We have a fixed query,
which is also an aastring having k£ = 1. Every aastring in our database is related to one
annotation string, that gives some comments on the origins of this aastring.

e Between two amino acid (sub)strings, we have a notion of similarity, which expresses
in a quantitive sense how strong the strings are related. Our similarity calculations are
based on the techniques of [2] using a BLOSUM62 matrix.

e Two g-grams are neighbours if their similarity is above some given threshold for the
given similarity metric.

e A hitis a 4-tuple < s,j,qs,i > where s is an aastring in the database, gs is a query,
and s[j,j + g — 1] and g¢sl[i,i + ¢ — 1] are neighbours.

For a hit < s, j,¢s,i >, we define the diagonal as j — 1.



e A candidate is a pair of hits that refer to the same aastring s, the same query and have
the same diagonal. They are nonoverlapping: |j; — jo| > ¢ and within a given distance
A: [j1 — jo| < A. The default value for A in BLASTP is 40.

e An alignment is a T-tuple
< s[j —left,j +right], j,qsli — left,i + right],i,left, right, score >
where s is an aastring in the database, ¢s is the query, and s[j — left,j + right] and
gsli — left,i + right] have a similarity score according to our metric.

Example
qs = CWYWRWYY
s = RRWYWAWYYRR

We have a hit < s,2,¢s,1 >, because RWY is a neighbour of CWY: R and C are close
according to BLOSUMG62 and the last two characters are identical in both g-grams. We have
a second hit < s,3,¢s,2 >, that overlaps with the previous one. We have a another hit
< 8,7,q5,6 > for WY'Y. The first and the third together are a candidate, because they have
the same diagonal: 3 —2 =7 — 6. Also the second and the third hit are a candidate.

Below you see a Blast-like representation of an alignment based on the last candidate:
< RWYWAWYY, 3, CWYWRWYY,2 1,6,50 >. The score is again based on BLOSUMG62.

Query: 1 CWYWRWYY
Sbjct: 2 RWYWAWYY

3 A relational view on Blast

We will describe how the two-hit diagonal filtering technique of BLASTP (the protein align-
ment version of Blast) can be simulated on a relational database. We choose to formulate the
constituent queries in the relational algebra (RA). Almost every textbook on databases gives
an introduction into the RA, which is generally based on set semantics.

The reason for this choice has to do with our DBMS, Monet. One of its front-end languages
is Mil. Mil is conceptually based on the RA, but it offers more. One of the extensions is the
multiplex operator, that allows you to evaluate any function with the appropriate signature
over all rows in a table. To stay close to the expressiveness of Mil, we will use an extended
version of the RA, which is based on ordered bag semantics and allows for sorting, grouping
and aggregation. Translation to SQL is straightforward. See [5] and [6] for more details.

As already noted, the filtering phase will be based on the two-hit diagonal method. It is
a matter of choice which expansion algorithm we will use. For our experiments, have chosen
to adopt the simplest case, ungapped expansion, because we are primarily interested in the
filtering performance.

Our knowledge of the Blast processing is based on [1]. We are aware of the fact that the
actual implementation of BLASTP is more complicated than described here, but many of the
details are (to our knowledge) undocumented in the scientific literature.

The database consists of the following tables, which can easily be generated for any protein
database in the Fasta format, which is a character based format that is often used to distribute
genome string collections. In Fasta data sets, the strings are listed interleaved with their



Table 1: Example database

Strings Annots Qgrams
id | string id | annot d| j | qg
1 | RRWYWAWYYRR 1 | comments on string 1 .. 1|1 | RRW
2 | RRRWYWAWYWRR 2 | comments on string 2 .. 1|2 | RWY
3 | RRWYWAAWYYRR 3 | comments on string 3 .. 113 | WYW

3 |10 | YRR

Qdecomp Nbh
i a9 a9 q92
1| CWY CWY | CWY
2 | WYW CWY | AWY
3 | YWR CWY | RWY
71 YYC

annotation. We have a simple tool to split this set into the Strings and Annots tables and
to generate the g-grams.

Strings(id, string)
Annots(id, annot)
Q-grams(id,i,qg)
Qdecomp(j,qg)
Nbh(qg,qg2)

Strings are identified with a system generated id. It maintains the connection between the
aastrings, the annotation strings and the g-grams. So for each aastring in Strings, we have
a describing tuple in Annots.

The position of the g-grams in the strings is denoted by a j in the strings and an ¢ in
the query. The annotation table joins in (literally) at a very late stage. Table 1 shows our
example database.

Our example query is CWYWRWYYC. Its g-gram decomposition can be found in the
Qdecomp table.

BLASTP also finds approximate hits. We could calculate the g-gram neighbourhood, but
in our case we prefer to join with a precalculated symmetric table of pairs of neighbour g-
grams to obtain an extended version of Qdecomp. We have chosen for a minimal similarity
of 11 (default) according to BLOSUM62.

Qdecompr = T} ggqq2(Qdecomp >1 Nbh) (1)

The next step is finding the hits. This is also a straightforward natural join.

Hits := Tiq j diag—(j—i) (Qgrams > Qdecompz) (2)

According to the two-hit diagonal filtering method, candidates are defined by two hits in the
same string and on the same diagonal. This can be expressed by a self join on Hits.

Hits2 := miq2.42 j2,diag2 (Hits) (3)

4



Hits2 should be interpreted as an alias of (or view on) the Hits table, not as a physical copy.
Having found the hits, we are able to calculate the candidates:

Candidates := m;q; ;(Hits g Hits2) (4)
where 6 denotes the join condition:

0 : (id = 1d2,diag = diag2, (i2 — i) > q,|i —i2| < A)

Note that the (i2 — i) > ¢ requirement also prevents double occurences of hit pairs.
Based on our knowledge of the PBLAST filtering methods, we come to the following
conclusion:

Theorem 1 The RA-expressions (1) to (4) cover the candidates that are found by the PBLAST
filtering approach.

The expanding phase requires the execution of an expansion algoritm on all candidates.
Having a function expand with the appropriate signature

expand: <id,i,j> -> <id,1i,j,sfrag,qsfrag,left,right,score>

we can evaluate this function for every row in the Candidates table. We have chosen for
simple, ungapped alignment. In the experiments, the Blast parameters were set accordingly.
Expand calculates an alignment and its score according to out similarity metric. j-left and
j+right mark the borders of the matching interval in the database string. Using ¢ in stead
of j, we get the borders of the matching query substring.

The resulting set of tuples is filtered on the score value. For representation purposes, it is
sorted in descending order on score.

Result := | score (Tscore>=threshold([ expand | Candidates) <1 Annots) (5)

So we see that the BLASTP filtering and expansion phases can be expressed in five (or
essentially four) relational algebra expressions.

4 The Monet approach

Our DBMS of choice is Monet, developed at the CWI in Amsterdam ([5]). There are a few
reasons for this choice.

e main-memory approach
Monet is a main-memory DBMS (MMDBMS). The data and indexes are supposed
to be resident in main-memory. Where the classical DBMS focuses on minimizing 10,
Monet gains performance by optimizing for main-memory access and by applying cache-
conscious techniques. A MMDBMS is not very suitable in a typical transaction process-
ing environment, with high update rates. Its power will show up in cases where updates
are rare and usage is read-intensive. Sequence alignment clearly fits this usage profile.

With an amount of 2GB of memory, we can deal with medium-size protein databases.
Experiments have been done with subsets as large as one-third to one-half of Swissprot,
without memory related problems like swapping.



o cxtensibility
Monet is extensible. You can add procedures and functions (in C/C++). You can ex-
ecute these methods interleaved with the data manipulation primitives. Typically the
expansion phase of Blast requires this feature.

e layered levels of access

Monet provides a SQL interface, as well as an XQuery interface. Queries in these lan-
guages are translated into a lower level algebraic language: Mil. However, Mil is also
available for end-users, although it is not primarily intended for this purpose. Finally,
you even have the possibility to write specific algebraic operators in C and add them to
the Mil collection. This makes sense in the case of very performance critical operations.
Of course, a point of consideration here is the trade off between abstraction in data
access and performance.

The RA-expressions of the previous section can be translated into Mil, Monets query algebra.
This translation is complicated by the fact that Monet has adopted a binary data model. We
will not go into details with respect to the decomposition problems (see [5]). Instead, we will
keep our discussion at the level of the standard RA.

However, it should be noted that Monet is very eager on memory economy. The database
is represented by columns that have absolute minimal memory requirements. The connecting
identifiers are in most cases virtual and require no space. Still, look-ups based on the identifiers
are extremely fast.

5 Measurements and discussion

We have experimented with two data sets. The first data set consists of the first 60.000 lines
of a recent Swissprot database (which is about 1/3 of the total set). The second set takes the
first 100.000 lines. Both selections allow the whole database to be in main memory. We took
samples of different places in the string collection to serve as queries. Furthermore, we ran
queries with lengths ranging from 20 to 100. We counted milliseconds.

The tests were done on a dual processor Xenon 1.8 GHz machine with 2GB of main
memory and running under Linux. Besides the total running time of our Blast prototype, we
list the performance on steps (2) and (5), because they are the most time consuming. The
running time of step (1) can be ignored. Step (3) is only virtual.

Our first observation is that with respect to the running times, we are in the same order of
magnitude of Blast for short queries. In that sense, our goal to approach the Blast performance
has been reached.

All of the mentioned operators were written in Mil, except step (4). For performance
reasons, we decided to write a Mil-extension in C.

For longer queries, the difference is increasing. Note that Blast is more selective in step
(4), because it has an additional local maximality requirement for Candidates. We could add
this feature to our version of (4), but we decided that it would lead us to far away from the
relational approach.

A final remark concerns the dual processor architecture of our machine. We noticed that
Monet makes, to some extend, use of its possibilities, although it is not clear which operations
benefit from it. One should estimate the running time advantage to be a factor somewhere
between 1 and 2. This aspect is not reflected by the figures. On the other hand, one could



Table 2: Test results

Testset 60k
length || Blast | Monet-total | step (2) step (5)
20 || 460-470 | 630-670 | 530-580 60
30 | 510-540 | 1050-1070 | 730-740 240
50 || 470-590 | 2080-2360 | 1380-1450 | 480-670
100 || 680-700 | 4670-5183 | 2629-3000 | 1590-1700
Testset 100k
length Blast Monet-total | step (2) step (5)
20 760-760 1540-2000 | 1400-1810 90-120
30 790-850 2780-2930 | 2140-2470 | 340-520
50 940-940 5580-5680 | 4020-4200 | 1090-1280
100 1070-1190 | 12450-12780 | 8320-8450 | 2710-2910

argue that the fact that your DBMS supports parallellism is for free and inherent to our
approach. It does not affect our conclusion that we approach the Blast performance.

6 Let’s do CAFE too

In [7], Williams and Zobel propose an alternative filtering method. In stead of the two-hit
diagonal filtering, they experiment with a few other q-gram based characteristics: framecount,
coverage and length.

Using the example below, we will explain these concepts briefly. For simplicity, we identify
equality and neighbourhood of g-grams. Note that the one step shifted representation of gs
in the figure below corresponds with a diagonal value 1.

For this diagonal, we have 7 exact letter matches (= coverage). The number of matching
3-grams is 3 (= framecount). The total length of the substring of s from the leftmost to the
rightmost lettermatch is 8 (=length).

s = RRWYWAWYYRR
qs = CWYWRWYYRW
Filtering is based on a function

f: <s,gs,diag,length,coverage> -> <score>

We can determine these parameters for each string/diagonal combination using the grouping
operator Iy, runction Of the relational algebra.

(6)
(7)

The coverage calculation cannot be expressed directly in the RA, but it is easily expressed in
Mil.

Framecounts := I'iq giag,count (Hits)

Lengths := Fid,diag,max(j)fmin(j)Jrl(Hits)



7 Conclusions and further research

Our main goal was: how to be fast without losing abstraction and we note that it contains two
claims.

The first is being fast. With running times that range from 1.5 to 10 times the running
times of Blast, we conclude that we have approximated its performance.

The second is without losing data abstraction. The filtering and expansion is fully realized
with the possibilities offered by Monet. In one case, we decided to implement an operator at
the Mil/C extension level.

Our secondary goal was to illustrate the advantages of data abstraction. Although we have
no experiments done yet to compare Blast with Cafe, out platform provides a way to realize
such experiments quickly. So our prototype can also be regarded as a suitable platform for
performance comparison of alignment methods.

With respect to future research, we have the ambition to attack the multiple alignment
problem with Monet. Note that our approach enables us to reuse the existing subqueries, but
with full flexibility for adaption and tuning.
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