Flooding countries and destroying dams

Rodrigo I. Silveira René van Oostrum

Department of Information and Computing Sciences, Utrecht University Technical Report UU-CS-2007-032 www.cs.uu.nl ISSN: 0924-3275

Flooding countries and destroying dams^{*}

Rodrigo I. Silveira and René van Oostrum

Department of Information and Computing Sciences, Utrecht University, 3508TB Utrecht, the Netherlands {rodrigo, rene}@cs.uu.nl

Abstract

In many applications of terrain analysis, pits or local minima are considered artifacts that must be removed before the terrain can be used. Most of the existing methods for local minima removal work only for raster terrains. In this paper we consider algorithms to remove local minima from polyhedral terrains, by modifying the heights of the vertices. To limit the changes introduced to the terrain, we also try to minimize the total displacement of the vertices. Two approaches to remove local minima are analyzed: lifting vertices and lowering vertices. For the former we show that all local minima in a terrain with n vertices can be removed in the optimal way in $\mathcal{O}(n \log n)$ time. For the latter we prove that the problem is NP-hard, and present an approximation algorithm with factor $2 \ln k$, where kis the number of local minima in the terrain.

1 Introduction

Digital terrain analysis is an important area of GIS. In many cases, when the terrains are used for purposes concerning land erosion, landscape evolution or hydrology, it is generally accepted that the majority of the depressions present in the terrains are likely to be spurious features. The sources of such artifacts can be many, including low-quality input data, interpolation errors during the generation of the terrain model and truncation of interpolation values [13]. As a result, it is standard in many applications of terrain analysis, particularly in hydrologic applications such as automatic drainage analysis, to do some kind of preprocessing of the terrain to remove these spurious sinks [21, 24]. This is because this kind of artifact can severely hinder flow routing. Several related terms have been used before to refer to these features, such as depressions, sinks, pits and local minima. In this paper, following the computational geometry literature, we use the term *local minimum*.

The most widely used type of *digital terrain model*, or simply *terrain*, is the square grid digital elevation model (raster DEM), mainly due to its simplicity. Another common type of terrain is the triangulated irregular network (TIN), which is a triangulation of a set of points with elevation. It involves a more complex data structure because it is necessary to store its irregular topology, but also has several advantages, such as variable density and continuity.

Regarding the removal of local minima, most of the literature in GIS has focused on algorithms for (raster) DEMs. Most of the proposed methods are some type of "pit filling"

^{*}This research has been partially funded by the Netherlands Organisation for Scientific Research (NWO) under the project GOGO. A preliminary version of this paper appeared in WADS 2007.

technique [3, 13, 24]. They consist in raising the local minimum to the elevation of its lowest neighbor. This type of method implicitly assumes that most of the spurious local minima result only from underestimation errors, neglecting the ones caused by overestimation. Not many papers address the problem in the opposite way, removing local minima by lowering a neighboring vertex to a lower height. An example of such a technique is the one proposed by Rieger [17] and is also part of the "outlet breaching" algorithm of Martz and Garbrecht [14]. Even though pit filling is the most widely implemented method for local minima removal, recent studies have shown that the lowering methods perform significantly better than the depression filling techniques, in terms of the impact on the terrain attributes [11].

When the terrain is modeled as a TIN, a few algorithms have been presented to deal with the problem of local minima. Theobald and Goodchild [22] show experimental results on the number of local minima produced by different methods to extract TINs. Liu and Snoeyink [12] present an algorithm to simulate the flooding of a TIN, a problem that, although different, is related to removing local minima by pit filling. A recent work of Agarwal et al. [1] addresses the same problem, but applying I/O efficient algorithms for the union-find problem. A different approach against local minima is the one followed by de Kok et al. [4] and Gudmundsson et al. [8]. Instead of modifying the elevation of the points, they choose the edges of the triangulation in such a way that the number of local minima is minimized. They optimize over a particular class of well-shaped triangulations, the higher-order Delaunay triangulations [8].

In this paper we present algorithms to remove local minima from TINs by modifying the heights of the vertices. We study both lifting points (pit filling) and lowering points (breaching). In both cases we want to remove local minima while modifying the terrain as little as possible. To formalize this second goal, we introduce a cost function that is applied to each point or vertex whose height is modified. The objective is to minimize the total cost of the removal. There is no obvious choice for this measure of the cost, and many of them are reasonable. The one adopted throughout most of this paper is the total displacement of the vertices. A few other measures are discussed in Section 3.5. To our knowledge, no previous paper deals with optimization for local minima removal.

The different possibilities for the cost function give rise to different problems. Furthermore, another source of variants of the problem is choosing *what* local minima to remove. Possible options are: removing *a given subset* of the local minima, removing *all* of them, or removing the *cheapest* k, for k a parameter. When the removal method is lifting, the three options can be solved on a one-by-one basis, that is, by removing each of the local minima separately. This is possible because the removal of one minimum does not affect the removal of the others. For lowering, the situation is different, because the way a local minimum is removed may affect the cost of removing other minima.

We study both approaches, lifting and lowering, independently. Some comments on their combination are made in Section 4. For the lifting approach, we show how the use of *contour* trees allows to remove all the local minima in $\mathcal{O}(n \log n)$ time, by facilitating the location of the vertices that must be used to remove each minimum. The lowering approach turns out to be much harder than the lifting version. We start by showing that removing optimally one local minimum, or a constant number of them, while minimizing the total displacement, can be done in polynomial time. Then we show that removing all local minima is NP-hard, and propose an approximation algorithm to solve the problem, based on an existing algorithm for the Node-Weighted Steiner Tree Problem.

We begin by studying the simplest of the two, the lifting approach, and then we focus on

the lowering technique.

2 Removing local minima by lifting

In this section we present an algorithm to remove local minima by increasing the elevation of some of the vertices. This can be seen as a flooding or pit filling technique for TINs.

We begin with a few basic definitions that will be also used in the next sections. A *polyhedral terrain* T, or just *terrain*, is a triangulated point set in the plane where each point or vertex v has a height, denoted h(v). Any terrain has an associated graph, G_T . Sometimes we will refer to both the terrain and the associated graph as the *terrain*.

A (local) minimum is a maximally connected set of vertices $M \subset T$ such that all the vertices in M have the same height and no vertex in M has a neighbor with lower height.

Even though a minimum can be made of more than one vertex, for the purpose of this paper it is more convenient to treat each minimum as consisting of only one vertex. For example, if a minimum at vertex u is lifted to height h, we will assume that also all the other vertices of the minimum u belongs to are lifted in the same way. The same is done with the definition of *saddle*: below we define it as being one vertex, but in practice it can be a connected set of them. This does not affect our algorithms or their running times. These considerations apply to the whole paper. From now on, we treat each minimum or saddle as consisting of one vertex only.

A *saddle* is a vertex that has some neighboring vertices around it that are higher, lower, higher, lower, in cyclic order around it. To simplify the presentation of the algorithms, we will assume the terrain has only one global minimum, and we will adopt the convention that when we refer to *local* minima, we do not include the *global* minimum.

The cheapest way to remove a local minimum at a vertex v, with height h(v), is by lifting it to h(w), where w is the lowest neighbor of v. However, this may turn w into a local minimum. To fix this, the lifting procedure must be propagated until no new local minima are left.

Conceptually, the idea is as follows. We explain how to compute a list $S = \{s_1, \ldots, s_k\}$ of vertices that must be lifted to remove a local minimum at v. Initially, $S = \{s_1 = v\}$, and it is expanded every time the lifting must be propagated. Let $U = \{u_1, \ldots, u_m\}$ be the union of the neighbors of all vertices in S that are not in S themselves, and denote the vertex in U with lowest height with u_{\min} . We raise all vertices in S such that $h(s_i) = h(u_{\min})$ for $i \in \{1, \ldots, k\}$. If u_{\min} is a saddle vertex of the terrain, then it is connected to another lower vertex and we are done. Otherwise, we remove u_{\min} from U and add it to S as s_{k+1} , and we set k to k + 1. Next, we add the neighbors of the new s_k that are not already in S to U. After the changes made to S and U, u_{\min} refers to the new lowest vertex in U. This iterative approach lifts the whole basin of the local minimum, in a bottom-up fashion, until it reaches its lowest saddle vertex.

The propagation of the lifting is facilitated by the variation of the *contour tree* used by van Kreveld et al. [23]. Contour trees have been previously used in image processing and GIS research [5, 7, 19, 20] and are also related to the *Reeb graph* used in Morse Theory [16, 18]. A contour is a connected component of the level set of the height function of the terrain, at some height h_0 , (more precisely, $\{x \in \mathbb{R}^2 | h(x) = h_0\}$). The contour tree is a tree that captures the changes in the topology of the contours of the terrain, as the height h changes. As h varies, the contour tree keeps tracks of contours that appear, join, split, and disappear. Minima and

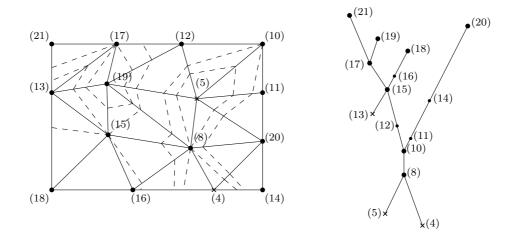


Figure 1: Left: example of a terrain showing the elevation of the vertices (between parenthesis) and some of the contour lines. Right: the augmented contour tree of the terrain.

maxima in the terrain are represented by leaves in the contour tree, and saddle vertices in the terrain correspond to nodes of degree three or higher. Ordinary, non-critical vertices appear as vertices of degree two. See Figure 1 for an example. The contour tree for a terrain with n vertices can be computed in $\mathcal{O}(n \log n)$ time [2,23].

To remove a given local minimum at v in the terrain by propagated lifting, we look at the corresponding leaf v' in the contour tree. Let w' be the node of degree three or more in the contour tree that is closest to v'. It corresponds to a saddle w in the terrain, the first one encountered when "flooding" v. To remove the local minimum at v, we must lift all the vertices in the terrain that correspond to nodes on the path from v' to w' in the contour tree, including v', but excluding w', to the height of the saddle vertex.

After this change we must update the contour tree to reflect the changes. The branch that ended at v' disappears, and the nodes on it become ordinary (non-critical) ones, at the same height as the saddle node. If necessary, we can store any relevant information about the lifted vertices, like total displacement, together with the saddle node. If before the lifting step the saddle had only one downward branch, then after the lifting it became a new local minimum, and the lifting needs to be propagated until the lowest of the saddle ancestors is reached (there could be more than one). If before the lifting step the saddle had two or more downward branches, then the saddle might continue as a saddle or become an ordinary node. In both cases this lifting step is over. In any case, during the removal of the local minima every node involved is processed only once, because after lifting it, it becomes "part" of the saddle node.

As an example, consider the terrain and contour tree of Figure 1. For this explanation we will use their heights to refer to the vertices. Suppose the minimum 4 is removed first. Only that vertex is lifted, to height 8. After that, 8 is not a saddle anymore, and becomes a ordinary vertex. If the local minimum to be removed next is 5, then it must be lifted to the height of the next saddle, 10, together with the two vertices at height 8. But that is not enough, because that would turn saddle 10 into a new local minimum. Hence the lifting needs to continue to height 15, lifting also 11 and 14 to the same height.

Note that this way to remove the local minima by lifting has minimum cost. Any alternative way to remove a local minimum, by lifting, implies lifting the content of the whole basin to the some higher saddle vertex, incurring in a larger displacement.

Removing all the local minima, given the contour tree, can be done in linear time. Hence the total running time equals the time needed to build the tree.

Theorem 1 Given a terrain T with n vertices, a lifting of the vertices that removes all local minima while minimizing the total displacement of the vertices can be computed in $\mathcal{O}(n \log n)$ time.

3 Removing local minima by lowering

In this section we study how to remove local minima by lowering the heights of some vertices, and, at the same time, minimize the total displacement of the vertices. For the lifting approach, it was relatively simple to figure out what vertices had to be lifted to remove a given minimum. In the case of lowering this is not immediate at all, because, in principle, any neighbor of the minimum may be the first vertex to be lowered. We begin by defining some appropriate terminology and making some basic observations.

3.1 Preliminaries

Any vertex in a terrain can be *lowered*, meaning that its height can be decreased. The *cost* of lowering a vertex is defined as the difference between its original height and the new one. Some other suitable definitions are discussed in Section 3.5. Recall that each local minimum is treated as consisting of exactly one vertex.

A given local minimum at u is removed by lowering some neighboring vertex to a height less than or equal to h(u). Since the lowered vertex can become a local minimum itself, and we do not want to create new local minima (or make an existing one worse), a propagation takes place, until the original and the newly created local minima are removed. Figure 2 shows an example. Observe that any given local minimum can be removed in this way (recall that we do not consider the global minimum to be a local minimum). The same can be done for any set of local minima that does not include the lowest minimum in the terrain.

Since the lowest minimum can never be removed by lowering (without creating a new local minimum), we will talk about removing *all* local minima, but we will mean removing *all but the lowest* local minimum.

The following definitions formalize the basic ideas related to lowering.

Definition 1 Let T be a terrain, and let u and v be two vertices of T, with h(u) > h(v). A breaching path from u to v is a tuple $\rho = (P, D)$, where P is a list of vertices that induce a path between u and v, that is, $P = \{u, w_1, w_2, \dots, w_\eta, v\}$, and $D = \{0, d_1, d_2, \dots, d_\eta, 0\}$ is a list of height displacements for the intermediate vertices of the path, such that $h(u) \ge h(w_1) + d_1$, $h(w_i) + d_i \ge h(w_{i+1}) + d_{i+1}$ for every $1 \le i < \eta$, and $h(w_\eta) + d_\eta \ge h(v)$. The cost of a breaching path is $Cost(\rho) = \sum_i |d_i|$.

Intuitively, a breaching path is a path used to remove a local minimum at u, by connecting it to a lower vertex v, by modifying the heights of all the vertices in between (see Figure 2). A natural extension of the concept of breaching path is the *breaching graph*. A breaching graph connects a set of local minima with each other, removing all of them (but the lowest one).

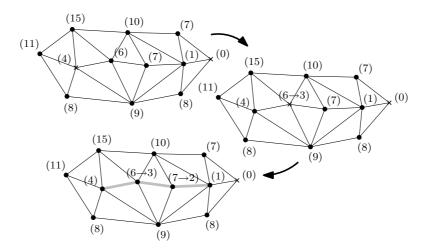


Figure 2: Removing the local minimum of height 4 by lowering. Top: initial heights (between parenthesis). The change in height of the lowered vertices is shown with an arrow. Middle and bottom: first a vertex is lowered from 6 to 3, turning it into a new local minimum. To remove it, a neighboring vertex is lowered from 7 to 2. A breaching path from the vertex of height 4 to the one of height 1 is highlighted in gray.

Definition 2 Let T be a terrain. A breaching graph is a tuple $\psi = (P, D)$, where P is a set of vertices that induce a subgraph of T, such that all the vertices of degree one are minima, and each vertex with degree higher than one has a height displacement in D such that for each connected component, ψ includes a breaching path connecting each of its local minima to the lowest minimum of the component. The cost of the breaching graph is defined as $Cost(\psi) = \sum_i |d_i|$.

The problem of removing all local minima can now be restated as finding a minimum cost breaching graph connecting them. Observe that since we aim at removing *all* local minima, the breaching graph is always connected, because all the local minima must be connected to the global minimum of the terrain.

See Figure 3 for an example. Note that it is possible for a minimum cost breaching graph not to be a tree. However, it can be turned into a tree by discarding some edges, without changing its cost. For this reason we will sometimes refer to a minimum cost breaching *tree*. Throughout this paper we refer to *connecting* two minima u and v, meaning that the minimum at u or v (the highest one) is removed by creating a breaching path connecting u and v.

Since we are minimizing the total displacement, each vertex will be lowered as little as possible. Hence if a vertex w_i needs to be lowered to connect a local minimum at u to a lower vertex v, the new height of w_i will be h(u).

In a breaching graph it can occur that an intermediate vertex w_i is part of more than one breaching path. See for example the vertex of initial height 3 in Figure 3. In that case the new height of the vertex must be set to the height of the lowest of those minima. We introduce the concept of *paying* to denote this relation between intermediate vertices and local minima. We say that u pays for the lowering of a vertex w_i if u is the lowest local minimum that is removed by a breaching path through w_i .

It is interesting to look at the structure of an optimal solution to our problem, in relation

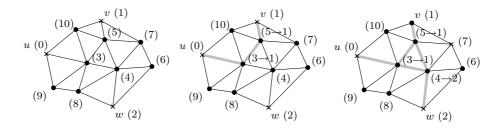


Figure 3: From left to right: a terrain with three local minima: at u, v and w; a breaching path from v to u; a breaching graph of minimum cost that connects u, v and w.

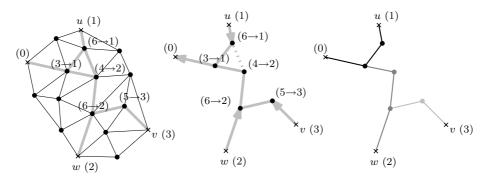


Figure 4: Left: terrain with four local minima, together with the breaching graph of an optimal solution (only the relevant heights are shown). Center: the breaching graph seen as a tree, with the removal direction shown. Right: payment of the lowering the intermediate vertices. The black vertices are paid by u, the medium gray vertices by w, and the light gray vertex by v.

to how the payment of the lowering is distributed among the local minima. As said before, any optimal solution is a breaching graph, which induces a connected subgraph of T. This subgraph can be turned it into a tree by discarding edges to break the cycles arbitrarily, Figure 4 shows an example. Notice that the breaching path that removes the second lowest minimum (vertex u) is paid entirely by that minimum. That is always the case. For some higher local minima, like v or w in the example, part of the costs related to removing them might be paid by lower minima. In the example, local minimum v only pays for the lowering of the vertex with initial height 5.

3.2 Removing one local minimum

We begin with the problem of removing one given local minimum u. As mentioned before, this is always possible as long as u is not the lowest one. We assume that is the case.

The goal is to remove u by lowering some vertices while minimizing the total displacement. Using the terminology introduced in the previous section, we are looking for a minimum cost breaching path from u to some lower vertex. Notice that any vertex that is not a local minimum has a breaching path of zero cost from it fto some lower minimum. For this reason it is the same if we look for a minimum cost breaching path from u to some other lower minimum (this will simplify the presentation of the algorithms).

The cheapest way to connect u to a lower minimum can be found by looking for the

shortest paths between u and each of the lower minima in a directed graph based on the terrain. The vertices and edges are the same as in the terrain, but edges are made directed: each undirected edge \overline{pq} is replaced by two edges \overline{pq} and \overline{qp} , and the weight of edge \overline{pq} is set to max $\{0, h(q) - h(u)\}$, that is, if q is higher than u, it is the vertical distance between q and u.

Theorem 2 Given a terrain T with n vertices and a local minimum u, a breaching path of minimum cost removing u can be found in $O(n \log n)$ time.

In order to use an algorithm like the previous one to remove more than one local minimum, the shape of the solutions must be brought into play. For two given local minima u_1, u_2 , a minimum cost breaching graph can have only one of two different shapes: it can be made of two disjoint paths, or it can be Y-shaped, meaning that it has two branches that are joined in a junction vertex and then continue together until the local minimum that is used to remove the lowest of u_1, u_2 . When the number of minima to be removed grows, the number of shapes increases exponentially, so trying all the possible shapes for the minimum cost breaching tree leads to a polynomial time algorithm only when the number of local minima is a constant. As will be shown in the next section, the problem becomes NP-hard when the number of local minima is not constant.

3.3 Removing all local minima

In this section we prove that the problem of removing all local minima from a terrain by lowering, while minimizing the total displacement, is NP-hard.

We use a reduction from Planar Connected Vertex Cover (PCVC), which is known to be NP-hard [6]. The optimization version of PCVC consists in given a planar graph G = (V, E), finding a set of vertices of minimum size such that every edge has at least one end among the selected vertices, and the subgraph induced by the set is connected.

We show how to solve any instance of PCVC, given by a planar graph G = (V, E), with an algorithm for our problem. We create a new graph G' as follows. Take G as the initial graph G'. Assign height 1 to each existing vertex. Then for each edge $e \in E$, create a vertex "in the middle" of the edge at height 0 (these will be all minima). Finally, change the height of an arbitrary local minimum to -1, to create a global minimum. The resulting graph has exactly |E| minima. Each of them corresponds to an edge in G that must be covered by the vertex set. To turn the graph into a terrain, we compute a first arbitrary triangulation, and for every edge added during the triangulation, we add a vertex on its midpoint at height $+\infty$. The resulting non-triangular faces are triangulated in some arbitrary way. This guarantees that all the new edges have one endpoint with a vertex at height $+\infty$, so they will never be part of an optimal solution. It is straightforward to see that the whole construction can be done in polynomial time.

Removing all local minima in G' induces a set of vertices that must be lowered. If the local minima are removed in an optimal way, the set of lowered vertices is an optimal vertex set of G. The fact that all local minima have been removed implies that all edges have one end in the chosen set, so it is indeed a solution to Vertex Cover, and it is a tree, hence also connected. It can be easily verified that it is also optimal. Any connected vertex cover of G induces a lowering of some vertices (the ones in the result set). The vertex cover is connected and must cover all edges, hence every local minimum is adjacent to a vertex that is selected.

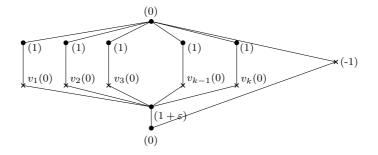


Figure 5: Part of a terrain where computing the individual optimum breaching paths and merging them results in a solution of cost k, whereas the optimum has cost $1 + \varepsilon$.

If we lower all the vertices in the vertex cover, all local minima will get removed because they will be all connected to the global minimum (height -1). The cost of the vertex cover is exactly the total displacement needed to remove all local minima. Therefore the vertex cover induced by the removal of the local minima must be a minimum (connected) vertex cover, otherwise there would be a cheaper way to remove the local minima.

Theorem 3 Given a terrain T with n vertices, it is NP-hard to compute a lowering of the vertices that removes all local minima, which minimizes the total displacement of the vertices.

3.4 Approximation algorithm

As was shown in the previous section, the problem of removing all the local minima in a terrain through lowering while minimizing the total displacement is NP-hard. This motivates the search for approximation algorithms.

One of the simplest options that arise is computing an optimal breaching path for each of the k local minima, and then merging them. However, this leads to a k-approximation. A simple example where this factor is attained is shown in Figure 5.

The inherent difficulty of the problem of removing a set of local minima lies in finding the vertices that act as junctions of the different breaching paths. This resembles the Steiner Tree Problem, and in particular, the Node-Weighted Steiner Tree (NWST) problem in networks, which is a more general version of the classical Steiner Tree problem where the costs are assigned to the vertices instead of to the edges. Even though constant factor approximation algorithms are known for the standard Steiner Tree problem, no approximation algorithms with factor less than logarithmic exist for the NWST problem, unless $NP \subseteq DTIME[n^{O(polylog n)}]$ [10]. Our problem is still different from the NWST problem because the cost paid for using a vertex is not fixed. It depends on the heights of the local minima that are being removed through it. Any fixed-cost approach like, for example, assuming that all the lowering is paid by the second lowest vertex, may result in a solution a linear factor off the optimum.

In order to make an algorithm for NWST work for our problem, non-trivial adaptations are needed. In this section we present a better approximation algorithm, with factor $2 \ln k$, which is an adaptation of the approximation algorithm for node-weighted Steiner trees of Klein and Ravi [10], which is in turn based on a heuristic for the standard edge-weighted Steiner tree problem, by Rayward-Smith [15]. The general idea at each step is to connect some minima in some simple way, through the use of *spiders*, as to minimize the ratio of the cost of the spider to the number of minima it connects. We begin with some definitions.

Definition 3 (Adapted from [10]) A spider is a tree with at most one vertex of degree greater than 2. A center of a spider is a vertex from which there are edge-disjoint paths to the leaves of the spider. A spider has a number of feet, comprised by its leaves and, if the spider contains at least 3 leaves, its center. A nontrivial spider is one with at least two feet.

Definition 4 (from [10]) Let G be a graph, and let M be a subset of its vertices. A spider decomposition of M in G is a set of vertex-disjoint nontrivial spiders in G such that the union of the feet of the spiders contains M.

Every spider has an associated minimum cost breaching graph that connects all the feet of the spider that are minima. The *cost* of a spider is defined as the cost of the associated breaching graph. More formally:

Definition 5 Let T be a terrain and let S be a spider in T, with center v and feet F, where at least two of its feet are minima of T. The cost of S, Cost(S), is the minimum total displacement required to remove all (but the lowest) minima in F by lowering vertices of S.

3.4.1 The algorithm

The goal is to find up to k spiders that cover the minima and connect them with each other. This is done through an iterative process, which at each iteration finds one spider and uses it to remove a number of local minima. A spider is specified by a center vertex c and a set of leaves F. The elements of F will be minima, which can always be removed (except for the global minimum) if they are all connected to c, and c is connected to the lowest minimum of F.

The algorithm begins by computing the shortest (breaching) paths from each minimum to all the other vertices. It then computes for each vertex, a list with the k minima sorted by increasing distance to the vertex (in the breaching path sense). All this preprocessing takes $O(kn \log n)$ time.

Then up to k iterations take place. At each iteration, a spider is found that connects at least two minima, hence removing at least one. The spider is chosen as one that minimizes the ratio $C(F_i)/|F_i|$, where F_i is the set of minima connected by the spider, $|F_i|$ its size and $C(F_i)$ the cost of the spider. To find such an optimal spider, the algorithm needs to find a center vertex c_i and the set of minima that will be connected to the center, F_i . This is done as follows.

Every possible vertex is tried as the center c_i . For each center candidate, all the possible second lowest minima in F_i are tried. There are O(nk) of these pairs. For a pair of center c_i and second lowest minimum $v_i^{(2)}$, we still need to find the other elements of F_i . The lowest element of F_i , $v_i^{(1)}$, is set to the *nearest* minimum lower than $v_i^{(2)}$, where the distance equals the displacement needed to remove $v_i^{(2)}$ by connecting it to $v_i^{(1)}$ (going through c_i). After this we have $F_i = \{v_i^{(1)}, v_i^{(2)}\}$. By construction this is the optimal choice for this pair $(c_i, v_i^{(2)})$ and $|F_i| = 2$. Next we can start augmenting F_i by adding, one by one, the local minimum *nearest* to c_i , among the ones higher than $v_i^{(2)}$. By *nearest* we mean the one with the minimum cost breaching path to c_i . This results in optimal choices for each value of $|F_i|$, because the fact that all the local minima that are added are higher than $v_i^{(2)}$ guarantees that the total cost of the removal, $C(F_i)$, is increased only by the cost of connecting the added vertices to c_i (the connection from c_i to $v_i^{(1)}$ is paid by $v_i^{(2)}$). We choose the minimum ratio combination over all the ones considered in the current iteration.

Since each iteration removes at least one local minimum, the total number of iterations is O(k), yielding a $O(k^3n + kn \log n)$ running time.

3.4.2 Approximation factor

Our proof of the approximation factor follows the proof in [10]. We first define some notation. T_i is the terrain just after iteration *i*. The number of local minima (not yet removed) in T_i is denoted by ϕ_i . The number of minima connected at iteration *i* (which is one more than the number of local minima removed at that iteration) is denoted h_i . The cost of the lowering done at iteration *i* is C_i . Finally, *OPT* is the cost of an optimal solution. Since any solution induces a breaching graph of *T*, which can be seen as a tree, we will sometimes refer to the *optimal tree*, meaning one of the trees associated with an optimal solution.

The most important part is the following lemma, which relates the ratio of the combination chosen at step i to the ratio of an optimal solution.

Lemma 1 At any iteration i of the algorithm,

$$\frac{C_i\phi_{i-1}}{OPT} \le h_i \tag{1}$$

Proof: Let T^* be a tree of an optimal solution. Some of the vertices in T^* may correspond to local minima that have been already removed in the current terrain (T_{i-1}) . Let T_i^* be a tree based on T^* where all the leaves that correspond to local minima that have been removed in T_{i-1} have been deleted, together with all the paths that connected them to the rest of the tree (we keep everything just as to keep the remaining minima connected). If there is a removed local minimum in T^* that is not a leaf, we treat that vertex as a normal one — non-local minimum).

Let $\operatorname{Cost}(T_i^*)$ be the cost of T_i^* , in the same way as it is defined for breaching graphs: the cost of removing all local minima in the tree by lowering only vertices of the tree. Observe that $\operatorname{Cost}(T_i^*)$ can be different from $\operatorname{Cost}(T^*) = OPT$, because the removal of some leaves of the tree may change the minimum that pays for the lowering of some intermediate vertex (see Figure 6). However, since the minimum paying is always the lowest one, the new minimum paying for the intermediate vertex will be higher than the previous one, and the displacement will decrease, hence we have $\operatorname{Cost}(T_i^*) \leq OPT$.

Given a tree and a subset of its vertices M, $|M| \ge 2$, there is always a spider decomposition of M contained in the tree [10]. Thus we can compute a spider decomposition of T_i^* , where M are the minima. Let $c_1, ..., c_r$ be the centers of the spiders in the decomposition. For a spider with only two leaves (a path), we pick any vertex in the path as its center. Let the cost of the spider S_j , centered at c_j , be $\text{Cost}(S_j)$, and let n_j be the number of minima that it connects.

During iteration i of the algorithm, vertex c_j (for any j), will be considered as a possible center vertex to remove a set of local minima. The quotient of this vertex was defined as to minimize the ratio between the cost of connecting the minima and the number of minima that it connects. The c_j with the minimum ratio will be selected. That ratio can never be more than the ratio of the spider with center c_j . Notice that it could be lower, if for example some of the vertices that must be lowered have been already partially lowered in the previous iterations. Then for each spider S_j in the decomposition we have

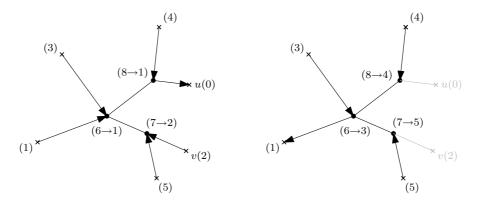


Figure 6: Left: the tree of an optimal solution, T^* , showing the original and final height of the vertices lowered. Right: T_i^* , assuming that in the current terrain u and v have been already removed. As the example shows, the cost of T_i^* (9) can be different from the one of T^* (17), but it can never be higher.

$$\frac{C_i}{h_i} \le \frac{\operatorname{Cost}(S_j)}{n_j}$$

Rewriting and summing over all the spiders in the decomposition we get

$$\frac{C_i}{h_i} \sum_j n_j \le \sum_j \operatorname{Cost}(S_j) \tag{2}$$

Now we argue that $\sum_{j} \operatorname{Cost}(S_{j}) \leq \operatorname{Cost}(T_{i}^{*})$. The cost of some spider S_{i} , $\operatorname{Cost}(S_{i})$, can be different from the cost of the associated subgraph in T_{i}^{*} . Some vertices may have been lowered in a different way. This is because when T_{i}^{*} is divided into subtrees (each corresponding to one spider), it might occur that the lowest vertex in one of the subtrees changes (because the original one is now in some other subtree). This causes a series of changes in the way the local minima of the subtree are removed, because another vertex must act as the global minimum of the component. However, the new global minimum must be higher than the previous one, hence using the same arguments used to claim that $\operatorname{Cost}(T_{i}^{*}) \leq OPT$, it follows that $\operatorname{Cost}(S_{i})$ cannot be higher than the cost of the associated subgraph of T_{i}^{*} .

Going back to Equation 2, and using that $\operatorname{Cost}(T_i^*) \leq OPT$ and that the sum $\sum_j n_j$ equals the number of minima at the beginning of the current iteration, ϕ_{i-1} , we get $(C_i/h_i)\phi_{i-1} \leq OPT$, which is (after rewriting) the result claimed.

To get the approximation factor, exactly the same arguments used in [10] can be used to conclude that if p is the total number of iterations of the algorithm, then $\sum_{j=1}^{p} C_j \leq 2 \ln k \cdot OPT$. An example showing that the approximation factor is nearly tight can be constructed.

Theorem 4 Given a terrain T with n vertices, k of them minima, a lowering of the vertices that removes all the local minima, which minimizes the total displacement of the vertices, can be computed in $\mathcal{O}(k^3n + kn \log n)$ time, where the total displacement is at most $2 \ln k$ times the minimum one.

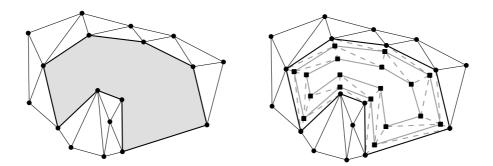


Figure 7: Left: a face of the input graph (in gray) that needs to be triangulated to turn the graph into a valid terrain. Right: a series of smaller copies of the face, two in the example, are created and triangulated; the center hole still not triangulated can be triangulated in any way.

3.5 Other measures

Even though most of this paper considered the total displacement as the measure being optimized, there are several other measures that are also interesting. We comment briefly on some of them.

Maximum displacement. Minimizing the maximum displacement, that is, the maximum height that any vertex is moved, is an interesting criterion. The adaptations needed for the algorithm of Section 3.2 to work for this variant are straightforward. Moreover, for this measure the solution for k local minima can be obtained by simply merging the optimal breaching paths of each minimum. Hence the problem of removing all minima (or more generally, a given set of k local minima) while minimizing the maximum displacement, is solvable in $O(kn \log n)$ time.

Number of vertices modified. It might be important to minimize not the amount of displacement but the number of vertices that are modified. This can be seen as a particular case of the problem studied before, where all the heights are either 0, for the local minima, or 1, for the other vertices. The NP-hardness proof of Section 3.3 can also be used to show that this problem is NP-hard. Only the triangulation part needs to be slightly different. Figure 7 shows a way to adapt it, by adding a series of smaller, concentric, copies of the face that needs to be triangulated, and connecting them by triangles in some simple way. For a face with r vertices, around r/4 inner copies are sufficient. The approximation algorithm can also be adjusted to this version of the problem.

Total volume reduction. Minimizing the total decrease in volume due to the lowering is also a criterion of interest, but it is in essence very similar to minimizing the total displacement, because the volume change related to the lowering of one vertex is independent from the other vertices. Both the NP-hardness proof and the algorithms presented above can be adapted in a quite straightforward way to work for this version of the problem.

4 Conclusions and Future Work

This paper studied the removal of local minima from triangulated terrains by modifying the heights of the vertices. Two major techniques were analyzed, lifting and lowering, with the objective of removing all local minima while minimizing the total displacement of the

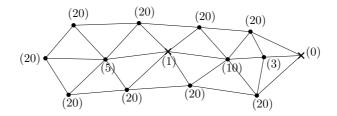


Figure 8: Three approaches to remove the local minimum at height 1: (i) by lifting: $(1 \rightarrow 10)$ and $(5 \rightarrow 10)$ (cost 14), (ii) by lowering: $(10 \rightarrow 1)$ and $(3 \rightarrow 1)$ (cost 11), and (iii) by combining both: $(1 \rightarrow 5)$ and $(10 \rightarrow 5)$. The combined approach, with cost 9, outperforms the other two.

vertices. For the lifting technique, we showed how to use contour trees to facilitate finding which vertices need to be lifted to remove each local minimum.

The lowering technique presented many interesting challenges. We showed that one local minimum can be removed efficiently, but as soon as the number of minima is not constant the problem becomes NP-hard. With that in mind, we proposed an approximation algorithm with factor $2 \ln k$.

There are many directions for further research, specially for the lowering approach. Approximation algorithms with better factors are one of them. There are some better approximation algorithms for the Node-Weighted Steiner Tree problem, like the ones of Guha and Khuller [9], which improve the $2 \ln k$ factor of Klein and Ravi [10] to $1.5 \ln k$ or even $(1.35 + \epsilon) \ln k$, but it is unclear how to adapt them to our problem.

In this paper the approaches of lifting and lowering were analyzed separately. However, there are cases where a combination of both can result in a smaller total displacement. A simple example is shown in Figure 8. Moreover, such an approach would make more sense since both the underestimation and overestimation error present in the terrain could be compensated.

The combined problem is automatically NP-hard, since it generalizes the lowering approach. Moreover, it seems to get considerably more complicated. To illustrate this, take the problem of removing one single given local minimum. For the lowering approach this can be solved rather easily by reducing it to a shortest path problem. In the combined version, where any vertex can be either lowered or lifted, we are no longer looking for an optimal path to remove the minimum. An optimal solution will consist of some vertices in the basin of the minimum — including the minimum itself — being lifted to some height h and then a minimum cost breaching path connecting the lifted vertices to a lower minimum. The height h can be anything between the height of the minimum and the height of the lowest saddle vertex of the basin (note that the extreme values correspond to the *pure* lowering and lifting approaches). Therefore in order to find the optimal way to remove a single minimum, we must find the value of h that minimizes the cost of the lifting plus the cost of the lowering. $\mathcal{O}(n)$ different values are possible. For the general case of removing all local minima, it is not clear how to integrate this two-step removal into the approximation algorithm here presented, while maintaining the approximation factor guarantee.

Finally, there are many other variants of the problem that can be worth studying in more detail, like removing not *all* but *a given set* of local minima (the approximation algorithm presented here can be adapted for that variant as well), constraining the vertical displacement of any vertex to be within some interval, and the use of different cost functions.

Acknowledgments. We thank Marc van Kreveld for proposing the problem and for many helpful suggestions.

References

- [1] P. K. Agarwal, L. Arge, and K. Yi. I/O-efficient batched union-find and its applications to terrain analysis. In *Symposium on Computational Geometry*, pages 167–176, 2006.
- [2] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. Comput. Geom. Theory Appl., 24:75–94, 2003.
- [3] J. Charleux-Demargne and C. Puech. Quality assessment for drainage networks and watershed boundaries extraction from a digital elevation model (dem). In Proc. 8th Int. Symp. Advances Geographic Information Systems (ACM-GIS), pages 89–94, New York, 2000. ACM Press.
- [4] T. de Kok, M. van Kreveld, and M. Löffler. Generating realistic terrains with higher-order Delaunay triangulations. Comput. Geom. Theory Appl., 36:52–65, 2007.
- [5] H. Freeman and S. P. Morse. On searching a contour map for a given terrain profile. J. of the Franklin Institute, 248:1–25, 1967.
- [6] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.
- [7] C. Gold and S. Cormack. Spatially ordered networks and topographic reconstructions. In Proc. 2nd Internat. Sympos. Spatial Data Handling, pages 74–85, 1986.
- [8] J. Gudmundsson, M. Hammar, and M. van Kreveld. Higher order Delaunay triangulations. Comput. Geom. Theory Appl., 23:85–98, 2002.
- [9] S. Guha and S. Khuller. Improved methods for approximating node weighted steiner trees and connected dominating sets. *Information and Computation*, 150:57–74, 1999.
- [10] P. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted steiner trees. J. Algorithms, 19:104–115, 1995.
- [11] J. B. Lindsay and I. F. Creed. Removal of artifact depressions from digital elevation models: towards a minimum impact approach. *Hydrological Processes*, 19:3113–3126, 2005.
- [12] Y. Liu and J. Snoeyink. Flooding triangulated terrain. In Proc. 11th Int. Symp. on Spatial Data Handling, pages 137–148, 2004.
- [13] D. Mark. Network models in geomorphology. In M. G. Anderson, editor, Modelling Geomorphological Systems, chapter 4, pages 73–97. John Wiley & Sons, 1988.
- [14] L. W. Martz and J. Garbrecht. An outlet breaching algorithm for the treatment of closed depressions in a raster dem. *Computers & Geosciences*, 25:835–844, 1999.
- [15] V. J. Rayward-Smith. The computation of nearly minimal steiner trees in graphs. Int. J. Math. Educ. Sci. Technol., 14:15–23, 1983.

- [16] G. Reeb. Sur les points singuliers d'une forme de pfaff complement integrable ou d'une fonction numerique. Comptes Rendus Acad. Sciences Paris, 222:847–849, 1946.
- [17] W. Rieger. A phenomenon-based approach to upslope contributing area and depressions in DEMs. *Hydrological Processes*, 12:857–872, May 1998.
- [18] Y. Shinagawa and T. L. Kunii. Constructing a Reeb graph automatically from cross sections. *IEEE Comput. Graph. Appl.*, 11:44–51, Nov. 1991.
- [19] J. K. Sircar and J. A. Cerbrian. Application of image processing techniques to the automated labelling of raster digitized contours. In Proc. 2nd Internat. Sympos. Spatial Data Handling, pages 171–184, 1986.
- [20] S. Takahashi, T. Ikeda, Y. Shinagawa, T. L. Kunii, and M. Ueda. Algorithms for extracting correct critical points and constructing topological graphs from discrete geographical elevation data. In *Eurographics'95*, volume 14, pages C–181–C–192, 1995.
- [21] A. Temme, J. Schoorl, and A. Veldkamp. Algorithm for dealing with depressions in dynamic landscape evolution models. *Computers & Geosciences*, 32:452–461, 2006.
- [22] D. Theobald and M. Goodchild. Artifacts of tin-based surface flow modeling. In Proc. GIS/LIS90, pages 955–964, 1990.
- [23] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour trees and small seed sets for isosurface generation. In S. Rana, editor, *Topological Data Structures for Surfaces*, chapter 5, pages 71–85. Wiley, 2004.
- [24] Q. Zhu, Y. Tian, and J. Zhao. An efficient depression processing algorithm for hydrologic analysis. Computers & Geosciences, 32:615–623, 2006.