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Abstract

In many applications of terrain analysis, pits or local minima are considered artifacts
that must be removed before the terrain can be used. Most of the existing methods for
local minima removal work only for raster terrains. In this paper we consider algorithms to
remove local minima from polyhedral terrains, by modifying the heights of the vertices. To
limit the changes introduced to the terrain, we also try to minimize the total displacement
of the vertices. Two approaches to remove local minima are analyzed: lifting vertices and
lowering vertices. For the former we show that all local minima in a terrain with n vertices
can be removed in the optimal way in O(n log n) time. For the latter we prove that the
problem is NP-hard, and present an approximation algorithm with factor 2 ln k, where k
is the number of local minima in the terrain.

1 Introduction

Digital terrain analysis is an important area of GIS. In many cases, when the terrains are used
for purposes concerning land erosion, landscape evolution or hydrology, it is generally accepted
that the majority of the depressions present in the terrains are likely to be spurious features.
The sources of such artifacts can be many, including low-quality input data, interpolation
errors during the generation of the terrain model and truncation of interpolation values [13].
As a result, it is standard in many applications of terrain analysis, particularly in hydrologic
applications such as automatic drainage analysis, to do some kind of preprocessing of the
terrain to remove these spurious sinks [21, 24]. This is because this kind of artifact can severely
hinder flow routing. Several related terms have been used before to refer to these features,
such as depressions, sinks, pits and local minima. In this paper, following the computational
geometry literature, we use the term local minimum.

The most widely used type of digital terrain model, or simply terrain, is the square grid
digital elevation model (raster DEM), mainly due to its simplicity. Another common type of
terrain is the triangulated irregular network (TIN), which is a triangulation of a set of points
with elevation. It involves a more complex data structure because it is necessary to store its
irregular topology, but also has several advantages, such as variable density and continuity.

Regarding the removal of local minima, most of the literature in GIS has focused on
algorithms for (raster) DEMs. Most of the proposed methods are some type of “pit filling”
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technique [3, 13, 24]. They consist in raising the local minimum to the elevation of its lowest
neighbor. This type of method implicitly assumes that most of the spurious local minima
result only from underestimation errors, neglecting the ones caused by overestimation. Not
many papers address the problem in the opposite way, removing local minima by lowering a
neighboring vertex to a lower height. An example of such a technique is the one proposed by
Rieger [17] and is also part of the “outlet breaching” algorithm of Martz and Garbrecht [14].
Even though pit filling is the most widely implemented method for local minima removal,
recent studies have shown that the lowering methods perform significantly better than the
depression filling techniques, in terms of the impact on the terrain attributes [11].

When the terrain is modeled as a TIN, a few algorithms have been presented to deal
with the problem of local minima. Theobald and Goodchild [22] show experimental results
on the number of local minima produced by different methods to extract TINs. Liu and
Snoeyink [12] present an algorithm to simulate the flooding of a TIN, a problem that, although
different, is related to removing local minima by pit filling. A recent work of Agarwal et al.
[1] addresses the same problem, but applying I/O efficient algorithms for the union-find
problem. A different approach against local minima is the one followed by de Kok et al. [4]
and Gudmundsson et al. [8]. Instead of modifying the elevation of the points, they choose
the edges of the triangulation in such a way that the number of local minima is minimized.
They optimize over a particular class of well-shaped triangulations, the higher-order Delaunay
triangulations [8].

In this paper we present algorithms to remove local minima from TINs by modifying
the heights of the vertices. We study both lifting points (pit filling) and lowering points
(breaching). In both cases we want to remove local minima while modifying the terrain as
little as possible. To formalize this second goal, we introduce a cost function that is applied
to each point or vertex whose height is modified. The objective is to minimize the total cost
of the removal. There is no obvious choice for this measure of the cost, and many of them are
reasonable. The one adopted throughout most of this paper is the total displacement of the
vertices. A few other measures are discussed in Section 3.5. To our knowledge, no previous
paper deals with optimization for local minima removal.

The different possibilities for the cost function give rise to different problems. Furthermore,
another source of variants of the problem is choosing what local minima to remove. Possible
options are: removing a given subset of the local minima, removing all of them, or removing
the cheapest k, for k a parameter. When the removal method is lifting, the three options can
be solved on a one-by-one basis, that is, by removing each of the local minima separately. This
is possible because the removal of one minimum does not affect the removal of the others. For
lowering, the situation is different, because the way a local minimum is removed may affect
the cost of removing other minima.

We study both approaches, lifting and lowering, independently. Some comments on their
combination are made in Section 4. For the lifting approach, we show how the use of contour
trees allows to remove all the local minima in O(n log n) time, by facilitating the location of
the vertices that must be used to remove each minimum. The lowering approach turns out to
be much harder than the lifting version. We start by showing that removing optimally one
local minimum, or a constant number of them, while minimizing the total displacement, can
be done in polynomial time. Then we show that removing all local minima is NP-hard, and
propose an approximation algorithm to solve the problem, based on an existing algorithm for
the Node-Weighted Steiner Tree Problem.

We begin by studying the simplest of the two, the lifting approach, and then we focus on
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the lowering technique.

2 Removing local minima by lifting

In this section we present an algorithm to remove local minima by increasing the elevation of
some of the vertices. This can be seen as a flooding or pit filling technique for TINs.

We begin with a few basic definitions that will be also used in the next sections. A
polyhedral terrain T , or just terrain, is a triangulated point set in the plane where each point
or vertex v has a height, denoted h(v). Any terrain has an associated graph, GT . Sometimes
we will refer to both the terrain and the associated graph as the terrain.

A (local) minimum is a maximally connected set of vertices M ⊂ T such that all the
vertices in M have the same height and no vertex in M has a neighbor with lower height.

Even though a minimum can be made of more than one vertex, for the purpose of this
paper it is more convenient to treat each minimum as consisting of only one vertex. For
example, if a minimum at vertex u is lifted to height h, we will assume that also all the other
vertices of the minimum u belongs to are lifted in the same way. The same is done with
the definition of saddle: below we define it as being one vertex, but in practice it can be a
connected set of them. This does not affect our algorithms or their running times. These
considerations apply to the whole paper. From now on, we treat each minimum or saddle as
consisting of one vertex only.

A saddle is a vertex that has some neighboring vertices around it that are higher, lower,
higher, lower, in cyclic order around it. To simplify the presentation of the algorithms, we
will assume the terrain has only one global minimum, and we will adopt the convention that
when we refer to local minima, we do not include the global minimum.

The cheapest way to remove a local minimum at a vertex v, with height h(v), is by lifting
it to h(w), where w is the lowest neighbor of v. However, this may turn w into a local
minimum. To fix this, the lifting procedure must be propagated until no new local minima
are left.

Conceptually, the idea is as follows. We explain how to compute a list S = {s1, . . . , sk}
of vertices that must be lifted to remove a local minimum at v. Initially, S = {s1 = v},
and it is expanded every time the lifting must be propagated. Let U = {u1, . . . , um} be the
union of the neighbors of all vertices in S that are not in S themselves, and denote the vertex
in U with lowest height with umin. We raise all vertices in S such that h(si) = h(umin) for
i ∈ {1, . . . , k}. If umin is a saddle vertex of the terrain, then it is connected to another lower
vertex and we are done. Otherwise, we remove umin from U and add it to S as sk+1, and we
set k to k + 1. Next, we add the neighbors of the new sk that are not already in S to U .
After the changes made to S and U , umin refers to the new lowest vertex in U . This iterative
approach lifts the whole basin of the local minimum, in a bottom-up fashion, until it reaches
its lowest saddle vertex.

The propagation of the lifting is facilitated by the variation of the contour tree used by
van Kreveld et al. [23]. Contour trees have been previously used in image processing and GIS
research [5, 7, 19, 20] and are also related to the Reeb graph used in Morse Theory [16, 18]. A
contour is a connected component of the level set of the height function of the terrain, at some
height h0, (more precisely, {x ∈ R2|h(x) = h0}). The contour tree is a tree that captures the
changes in the topology of the contours of the terrain, as the height h changes. As h varies,
the contour tree keeps tracks of contours that appear, join, split, and disappear. Minima and
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Figure 1: Left: example of a terrain showing the elevation of the vertices (between parenthesis)
and some of the contour lines. Right: the augmented contour tree of the terrain.

maxima in the terrain are represented by leaves in the contour tree, and saddle vertices in the
terrain correspond to nodes of degree three or higher. Ordinary, non-critical vertices appear
as vertices of degree two. See Figure 1 for an example. The contour tree for a terrain with n
vertices can be computed in O(n log n) time [2, 23].

To remove a given local minimum at v in the terrain by propagated lifting, we look at
the corresponding leaf v′ in the contour tree. Let w′ be the node of degree three or more in
the contour tree that is closest to v′. It corresponds to a saddle w in the terrain, the first
one encountered when “flooding” v. To remove the local minimum at v, we must lift all the
vertices in the terrain that correspond to nodes on the path from v′ to w′ in the contour tree,
including v′, but excluding w′, to the height of the saddle vertex.

After this change we must update the contour tree to reflect the changes. The branch
that ended at v′ disappears, and the nodes on it become ordinary (non-critical) ones, at the
same height as the saddle node. If necessary, we can store any relevant information about
the lifted vertices, like total displacement, together with the saddle node. If before the lifting
step the saddle had only one downward branch, then after the lifting it became a new local
minimum, and the lifting needs to be propagated until the lowest of the saddle ancestors is
reached (there could be more than one). If before the lifting step the saddle had two or more
downward branches, then the saddle might continue as a saddle or become an ordinary node.
In both cases this lifting step is over. In any case, during the removal of the local minima
every node involved is processed only once, because after lifting it, it becomes “part” of the
saddle node.

As an example, consider the terrain and contour tree of Figure 1. For this explanation
we will use their heights to refer to the vertices. Suppose the minimum 4 is removed first.
Only that vertex is lifted, to height 8. After that, 8 is not a saddle anymore, and becomes
a ordinary vertex. If the local minimum to be removed next is 5, then it must be lifted to
the height of the next saddle, 10, together with the two vertices at height 8. But that is not
enough, because that would turn saddle 10 into a new local minimum. Hence the lifting needs
to continue to height 15, lifting also 11 and 14 to the same height.

Note that this way to remove the local minima by lifting has minimum cost. Any alterna-
tive way to remove a local minimum, by lifting, implies lifting the content of the whole basin
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to the some higher saddle vertex, incurring in a larger displacement.
Removing all the local minima, given the contour tree, can be done in linear time. Hence

the total running time equals the time needed to build the tree.

Theorem 1 Given a terrain T with n vertices, a lifting of the vertices that removes all local
minima while minimizing the total displacement of the vertices can be computed in O(n log n)
time.

3 Removing local minima by lowering

In this section we study how to remove local minima by lowering the heights of some ver-
tices, and, at the same time, minimize the total displacement of the vertices. For the lifting
approach, it was relatively simple to figure out what vertices had to be lifted to remove a
given minimum. In the case of lowering this is not immediate at all, because, in principle,
any neighbor of the minimum may be the first vertex to be lowered. We begin by defining
some appropriate terminology and making some basic observations.

3.1 Preliminaries

Any vertex in a terrain can be lowered, meaning that its height can be decreased. The cost
of lowering a vertex is defined as the difference between its original height and the new one.
Some other suitable definitions are discussed in Section 3.5. Recall that each local minimum
is treated as consisting of exactly one vertex.

A given local minimum at u is removed by lowering some neighboring vertex to a height
less than or equal to h(u). Since the lowered vertex can become a local minimum itself, and
we do not want to create new local minima (or make an existing one worse), a propagation
takes place, until the original and the newly created local minima are removed. Figure 2
shows an example. Observe that any given local minimum can be removed in this way (recall
that we do not consider the global minimum to be a local minimum). The same can be done
for any set of local minima that does not include the lowest minimum in the terrain.

Since the lowest minimum can never be removed by lowering (without creating a new local
minimum), we will talk about removing all local minima, but we will mean removing all but
the lowest local minimum.

The following definitions formalize the basic ideas related to lowering.

Definition 1 Let T be a terrain, and let u and v be two vertices of T , with h(u) > h(v). A
breaching path from u to v is a tuple ρ = (P, D), where P is a list of vertices that induce a
path between u and v, that is, P = {u,w1, w2, · · · , wη, v}, and D = {0, d1, d2, · · · , dη, 0} is a list
of height displacements for the intermediate vertices of the path, such that h(u) ≥ h(w1)+d1,
h(wi) + di ≥ h(wi+1) + di+1 for every 1 ≤ i < η, and h(wη) + dη ≥ h(v). The cost of a
breaching path is Cost(ρ) =

∑
i |di|.

Intuitively, a breaching path is a path used to remove a local minimum at u, by connecting
it to a lower vertex v, by modifying the heights of all the vertices in between (see Figure 2). A
natural extension of the concept of breaching path is the breaching graph. A breaching graph
connects a set of local minima with each other, removing all of them (but the lowest one).
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Figure 2: Removing the local minimum of height 4 by lowering. Top: initial heights (between
parenthesis). The change in height of the lowered vertices is shown with an arrow. Middle
and bottom: first a vertex is lowered from 6 to 3, turning it into a new local minimum. To
remove it, a neighboring vertex is lowered from 7 to 2. A breaching path from the vertex of
height 4 to the one of height 1 is highlighted in gray.

Definition 2 Let T be a terrain. A breaching graph is a tuple ψ = (P,D), where P is
a set of vertices that induce a subgraph of T , such that all the vertices of degree one are
minima, and each vertex with degree higher than one has a height displacement in D such
that for each connected component, ψ includes a breaching path connecting each of its local
minima to the lowest minimum of the component. The cost of the breaching graph is defined
as Cost(ψ) =

∑
i |di|.

The problem of removing all local minima can now be restated as finding a minimum cost
breaching graph connecting them. Observe that since we aim at removing all local minima,
the breaching graph is always connected, because all the local minima must be connected to
the global minimum of the terrain.

See Figure 3 for an example. Note that it is possible for a minimum cost breaching graph
not to be a tree. However, it can be turned into a tree by discarding some edges, without
changing its cost. For this reason we will sometimes refer to a minimum cost breaching
tree. Throughout this paper we refer to connecting two minima u and v, meaning that the
minimum at u or v (the highest one) is removed by creating a breaching path connecting u
and v.

Since we are minimizing the total displacement, each vertex will be lowered as little as
possible. Hence if a vertex wi needs to be lowered to connect a local minimum at u to a lower
vertex v, the new height of wi will be h(u).

In a breaching graph it can occur that an intermediate vertex wi is part of more than one
breaching path. See for example the vertex of initial height 3 in Figure 3. In that case the new
height of the vertex must be set to the height of the lowest of those minima. We introduce
the concept of paying to denote this relation between intermediate vertices and local minima.
We say that u pays for the lowering of a vertex wi if u is the lowest local minimum that is
removed by a breaching path through wi.

It is interesting to look at the structure of an optimal solution to our problem, in relation
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Figure 3: From left to right: a terrain with three local minima: at u,v and w; a breaching
path from v to u; a breaching graph of minimum cost that connects u,v and w.
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Figure 4: Left: terrain with four local minima, together with the breaching graph of an
optimal solution (only the relevant heights are shown). Center: the breaching graph seen as
a tree, with the removal direction shown. Right: payment of the lowering the intermediate
vertices. The black vertices are paid by u, the medium gray vertices by w, and the light gray
vertex by v.

to how the payment of the lowering is distributed among the local minima. As said before,
any optimal solution is a breaching graph, which induces a connected subgraph of T . This
subgraph can be turned it into a tree by discarding edges to break the cycles arbitrarily,
Figure 4 shows an example. Notice that the breaching path that removes the second lowest
minimum (vertex u) is paid entirely by that minimum. That is always the case. For some
higher local minima, like v or w in the example, part of the costs related to removing them
might be paid by lower minima. In the example, local minimum v only pays for the lowering
of the vertex with initial height 5.

3.2 Removing one local minimum

We begin with the problem of removing one given local minimum u. As mentioned before,
this is always possible as long as u is not the lowest one. We assume that is the case.

The goal is to remove u by lowering some vertices while minimizing the total displacement.
Using the terminology introduced in the previous section, we are looking for a minimum cost
breaching path from u to some lower vertex. Notice that any vertex that is not a local
minimum has a breaching path of zero cost from it fto some lower minimum. For this reason
it is the same if we look for a minimum cost breaching path from u to some other lower
minimum (this will simplify the presentation of the algorithms).

The cheapest way to connect u to a lower minimum can be found by looking for the
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shortest paths between u and each of the lower minima in a directed graph based on the
terrain. The vertices and edges are the same as in the terrain, but edges are made directed:
each undirected edge pq is replaced by two edges −→pq and −→qp, and the weight of edge −→pq is set
to max{0, h(q)− h(u)}, that is, if q is higher than u, it is the vertical distance between q and
u.

Theorem 2 Given a terrain T with n vertices and a local minimum u, a breaching path of
minimum cost removing u can be found in O(n log n) time.

In order to use an algorithm like the previous one to remove more than one local minimum,
the shape of the solutions must be brought into play. For two given local minima u1, u2, a
minimum cost breaching graph can have only one of two different shapes: it can be made of
two disjoint paths, or it can be Y-shaped, meaning that it has two branches that are joined in
a junction vertex and then continue together until the local minimum that is used to remove
the lowest of u1, u2. When the number of minima to be removed grows, the number of shapes
increases exponentially, so trying all the possible shapes for the minimum cost breaching tree
leads to a polynomial time algorithm only when the number of local minima is a constant. As
will be shown in the next section, the problem becomes NP-hard when the number of local
minima is not constant.

3.3 Removing all local minima

In this section we prove that the problem of removing all local minima from a terrain by
lowering, while minimizing the total displacement, is NP-hard.

We use a reduction from Planar Connected Vertex Cover (PCVC), which is known to be
NP-hard [6]. The optimization version of PCVC consists in given a planar graph G = (V, E),
finding a set of vertices of minimum size such that every edge has at least one end among the
selected vertices, and the subgraph induced by the set is connected.

We show how to solve any instance of PCVC, given by a planar graph G = (V, E), with
an algorithm for our problem. We create a new graph G′ as follows. Take G as the initial
graph G′. Assign height 1 to each existing vertex. Then for each edge e ∈ E, create a vertex
“in the middle” of the edge at height 0 (these will be all minima). Finally, change the height
of an arbitrary local minimum to −1, to create a global minimum. The resulting graph has
exactly |E| minima. Each of them corresponds to an edge in G that must be covered by the
vertex set. To turn the graph into a terrain, we compute a first arbitrary triangulation, and
for every edge added during the triangulation, we add a vertex on its midpoint at height +∞.
The resulting non-triangular faces are triangulated in some arbitrary way. This guarantees
that all the new edges have one endpoint with a vertex at height +∞, so they will never be
part of an optimal solution. It is straightforward to see that the whole construction can be
done in polynomial time.

Removing all local minima in G′ induces a set of vertices that must be lowered. If the
local minima are removed in an optimal way, the set of lowered vertices is an optimal vertex
set of G. The fact that all local minima have been removed implies that all edges have one
end in the chosen set, so it is indeed a solution to Vertex Cover, and it is a tree, hence also
connected. It can be easily verified that it is also optimal. Any connected vertex cover of G
induces a lowering of some vertices (the ones in the result set). The vertex cover is connected
and must cover all edges, hence every local minimum is adjacent to a vertex that is selected.
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Figure 5: Part of a terrain where computing the individual optimum breaching paths and
merging them results in a solution of cost k, whereas the optimum has cost 1 + ε.

If we lower all the vertices in the vertex cover, all local minima will get removed because they
will be all connected to the global minimum (height −1). The cost of the vertex cover is
exactly the total displacement needed to remove all local minima. Therefore the vertex cover
induced by the removal of the local minima must be a minimum (connected) vertex cover,
otherwise there would be a cheaper way to remove the local minima.

Theorem 3 Given a terrain T with n vertices, it is NP-hard to compute a lowering of the
vertices that removes all local minima, which minimizes the total displacement of the vertices.

3.4 Approximation algorithm

As was shown in the previous section, the problem of removing all the local minima in a
terrain through lowering while minimizing the total displacement is NP-hard. This motivates
the search for approximation algorithms.

One of the simplest options that arise is computing an optimal breaching path for each
of the k local minima, and then merging them. However, this leads to a k-approximation. A
simple example where this factor is attained is shown in Figure 5.

The inherent difficulty of the problem of removing a set of local minima lies in finding
the vertices that act as junctions of the different breaching paths. This resembles the Steiner
Tree Problem, and in particular, the Node-Weighted Steiner Tree (NWST) problem in net-
works, which is a more general version of the classical Steiner Tree problem where the costs are
assigned to the vertices instead of to the edges. Even though constant factor approximation al-
gorithms are known for the standard Steiner Tree problem, no approximation algorithms with
factor less than logarithmic exist for the NWST problem, unless NP ⊆ DTIME[nO(polylog n)]
[10]. Our problem is still different from the NWST problem because the cost paid for using
a vertex is not fixed. It depends on the heights of the local minima that are being removed
through it. Any fixed-cost approach like, for example, assuming that all the lowering is paid
by the second lowest vertex, may result in a solution a linear factor off the optimum.

In order to make an algorithm for NWST work for our problem, non-trivial adaptations
are needed. In this section we present a better approximation algorithm, with factor 2 lnk,
which is an adaptation of the approximation algorithm for node-weighted Steiner trees of
Klein and Ravi [10], which is in turn based on a heuristic for the standard edge-weighted
Steiner tree problem, by Rayward-Smith [15]. The general idea at each step is to connect
some minima in some simple way, through the use of spiders, as to minimize the ratio of the
cost of the spider to the number of minima it connects. We begin with some definitions.
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Definition 3 (Adapted from [10]) A spider is a tree with at most one vertex of degree greater
than 2. A center of a spider is a vertex from which there are edge-disjoint paths to the leaves of
the spider. A spider has a number of feet, comprised by its leaves and, if the spider contains
at least 3 leaves, its center. A nontrivial spider is one with at least two feet.

Definition 4 (from [10]) Let G be a graph, and let M be a subset of its vertices. A spider
decomposition of M in G is a set of vertex-disjoint nontrivial spiders in G such that the
union of the feet of the spiders contains M .

Every spider has an associated minimum cost breaching graph that connects all the feet
of the spider that are minima. The cost of a spider is defined as the cost of the associated
breaching graph. More formally:

Definition 5 Let T be a terrain and let S be a spider in T , with center v and feet F , where
at least two of its feet are minima of T . The cost of S, Cost(S), is the minimum total
displacement required to remove all (but the lowest) minima in F by lowering vertices of S.

3.4.1 The algorithm

The goal is to find up to k spiders that cover the minima and connect them with each other.
This is done through an iterative process, which at each iteration finds one spider and uses
it to remove a number of local minima. A spider is specified by a center vertex c and a set
of leaves F . The elements of F will be minima, which can always be removed (except for the
global minimum) if they are all connected to c, and c is connected to the lowest minimum of
F .

The algorithm begins by computing the shortest (breaching) paths from each minimum
to all the other vertices. It then computes for each vertex, a list with the k minima sorted by
increasing distance to the vertex (in the breaching path sense). All this preprocessing takes
O(kn log n) time.

Then up to k iterations take place. At each iteration, a spider is found that connects at
least two minima, hence removing at least one. The spider is chosen as one that minimizes
the ratio C(Fi)/|Fi|, where Fi is the set of minima connected by the spider, |Fi| its size and
C(Fi) the cost of the spider. To find such an optimal spider, the algorithm needs to find a
center vertex ci and the set of minima that will be connected to the center, Fi. This is done
as follows.

Every possible vertex is tried as the center ci. For each center candidate, all the possible
second lowest minima in Fi are tried. There are O(nk) of these pairs. For a pair of center ci

and second lowest minimum v
(2)
i , we still need to find the other elements of Fi. The lowest

element of Fi, v
(1)
i , is set to the nearest minimum lower than v

(2)
i , where the distance equals

the displacement needed to remove v
(2)
i by connecting it to v

(1)
i (going through ci). After this

we have Fi = {v(1)
i , v

(2)
i }. By construction this is the optimal choice for this pair (ci, v

(2)
i ) and

|Fi| = 2. Next we can start augmenting Fi by adding, one by one, the local minimum nearest
to ci, among the ones higher than v

(2)
i . By nearest we mean the one with the minimum cost

breaching path to ci. This results in optimal choices for each value of |Fi|, because the fact
that all the local minima that are added are higher than v

(2)
i guarantees that the total cost of

the removal, C(Fi), is increased only by the cost of connecting the added vertices to ci (the

10



connection from ci to v
(1)
i is paid by v

(2)
i ). We choose the minimum ratio combination over

all the ones considered in the current iteration.
Since each iteration removes at least one local minimum, the total number of iterations is

O(k), yielding a O(k3n + kn log n) running time.

3.4.2 Approximation factor

Our proof of the approximation factor follows the proof in [10]. We first define some notation.
Ti is the terrain just after iteration i. The number of local minima (not yet removed) in Ti is
denoted by φi. The number of minima connected at iteration i (which is one more than the
number of local minima removed at that iteration) is denoted hi. The cost of the lowering
done at iteration i is Ci. Finally, OPT is the cost of an optimal solution. Since any solution
induces a breaching graph of T , which can be seen as a tree, we will sometimes refer to the
optimal tree, meaning one of the trees associated with an optimal solution.

The most important part is the following lemma, which relates the ratio of the combination
chosen at step i to the ratio of an optimal solution.

Lemma 1 At any iteration i of the algorithm,

Ciφi−1

OPT
≤ hi (1)

Proof: Let T ∗ be a tree of an optimal solution. Some of the vertices in T ∗ may
correspond to local minima that have been already removed in the current terrain (Ti−1).
Let T ∗i be a tree based on T ∗ where all the leaves that correspond to local minima that have
been removed in Ti−1 have been deleted, together with all the paths that connected them to
the rest of the tree (we keep everything just as to keep the remaining minima connected). If
there is a removed local minimum in T ∗ that is not a leaf, we treat that vertex as a normal
one — non-local minimum).

Let Cost(T ∗i ) be the cost of T ∗i , in the same way as it is defined for breaching graphs: the
cost of removing all local minima in the tree by lowering only vertices of the tree. Observe
that Cost(T ∗i ) can be different from Cost(T ∗) = OPT , because the removal of some leaves of
the tree may change the minimum that pays for the lowering of some intermediate vertex (see
Figure 6). However, since the minimum paying is always the lowest one, the new minimum
paying for the intermediate vertex will be higher than the previous one, and the displacement
will decrease, hence we have Cost(T ∗i ) ≤ OPT .

Given a tree and a subset of its vertices M , |M | ≥ 2, there is always a spider decomposition
of M contained in the tree [10]. Thus we can compute a spider decomposition of T ∗i , where
M are the minima. Let c1, ..., cr be the centers of the spiders in the decomposition. For a
spider with only two leaves (a path), we pick any vertex in the path as its center. Let the
cost of the spider Sj , centered at cj , be Cost(Sj), and let nj be the number of minima that
it connects.

During iteration i of the algorithm, vertex cj (for any j), will be considered as a possible
center vertex to remove a set of local minima. The quotient of this vertex was defined as
to minimize the ratio between the cost of connecting the minima and the number of minima
that it connects. The cj with the minimum ratio will be selected. That ratio can never be
more than the ratio of the spider with center cj . Notice that it could be lower, if for example
some of the vertices that must be lowered have been already partially lowered in the previous
iterations. Then for each spider Sj in the decomposition we have
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(7→5)
(6→3)

(8→4)

(5)

(1)

(3)

(4)

u(0)

v(2)

u(0)

v(2)

(5)

(1)

(3)

(4)

(6→1)
(7→2)

(8→1)

Figure 6: Left: the tree of an optimal solution, T ∗, showing the original and final height of the
vertices lowered. Right: T ∗i , assuming that in the current terrain u and v have been already
removed. As the example shows, the cost of T ∗i (9) can be different from the one of T ∗ (17),
but it can never be higher.

Ci

hi
≤ Cost(Sj)

nj

Rewriting and summing over all the spiders in the decomposition we get

Ci

hi

∑

j

nj ≤
∑

j

Cost(Sj) (2)

Now we argue that
∑

j Cost(Sj) ≤ Cost(T ∗i ). The cost of some spider Si, Cost(Si), can be
different from the cost of the associated subgraph in T ∗i . Some vertices may have been lowered
in a different way. This is because when T ∗i is divided into subtrees (each corresponding to
one spider), it might occur that the lowest vertex in one of the subtrees changes (because the
original one is now in some other subtree). This causes a series of changes in the way the local
minima of the subtree are removed, because another vertex must act as the global minimum
of the component. However, the new global minimum must be higher than the previous one,
hence using the same arguments used to claim that Cost(T ∗i ) ≤ OPT , it follows that Cost(Si)
cannot be higher than the cost of the associated subgraph of T ∗i .

Going back to Equation 2, and using that Cost(T ∗i ) ≤ OPT and that the sum
∑

j nj equals
the number of minima at the beginning of the current iteration, φi−1, we get (Ci/hi)φi−1 ≤ OPT ,
which is (after rewriting) the result claimed. £

To get the approximation factor, exactly the same arguments used in [10] can be used
to conclude that if p is the total number of iterations of the algorithm, then

∑p
j=1 Cj ≤

2 ln k · OPT . An example showing that the approximation factor is nearly tight can be
constructed.

Theorem 4 Given a terrain T with n vertices, k of them minima, a lowering of the vertices
that removes all the local minima, which minimizes the total displacement of the vertices, can
be computed in O(k3n + kn log n) time, where the total displacement is at most 2 ln k times
the minimum one.

12



Figure 7: Left: a face of the input graph (in gray) that needs to be triangulated to turn the
graph into a valid terrain. Right: a series of smaller copies of the face, two in the example,
are created and triangulated; the center hole still not triangulated can be triangulated in any
way.

3.5 Other measures

Even though most of this paper considered the total displacement as the measure being
optimized, there are several other measures that are also interesting. We comment briefly on
some of them.

Maximum displacement. Minimizing the maximum displacement, that is, the maxi-
mum height that any vertex is moved, is an interesting criterion. The adaptations needed
for the algorithm of Section 3.2 to work for this variant are straightforward. Moreover, for
this measure the solution for k local minima can be obtained by simply merging the optimal
breaching paths of each minimum. Hence the problem of removing all minima (or more gen-
erally, a given set of k local minima) while minimizing the maximum displacement, is solvable
in O(kn log n) time.

Number of vertices modified. It might be important to minimize not the amount of
displacement but the number of vertices that are modified. This can be seen as a particular
case of the problem studied before, where all the heights are either 0, for the local minima, or
1, for the other vertices. The NP-hardness proof of Section 3.3 can also be used to show that
this problem is NP-hard. Only the triangulation part needs to be slightly different. Figure 7
shows a way to adapt it, by adding a series of smaller, concentric, copies of the face that
needs to be triangulated, and connecting them by triangles in some simple way. For a face
with r vertices, around r/4 inner copies are sufficient. The approximation algorithm can also
be adjusted to this version of the problem.

Total volume reduction. Minimizing the total decrease in volume due to the lowering
is also a criterion of interest, but it is in essence very similar to minimizing the total displace-
ment, because the volume change related to the lowering of one vertex is independent from
the other vertices. Both the NP-hardness proof and the algorithms presented above can be
adapted in a quite straightforward way to work for this version of the problem.

4 Conclusions and Future Work

This paper studied the removal of local minima from triangulated terrains by modifying
the heights of the vertices. Two major techniques were analyzed, lifting and lowering, with
the objective of removing all local minima while minimizing the total displacement of the
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Figure 8: Three approaches to remove the local minimum at height 1: (i) by lifting: (1→10)
and (5→10) (cost 14), (ii) by lowering: (10→1) and (3→1) (cost 11), and (iii) by combining
both: (1→5) and (10→5). The combined approach, with cost 9, outperforms the other two.

vertices. For the lifting technique, we showed how to use contour trees to facilitate finding
which vertices need to be lifted to remove each local minimum.

The lowering technique presented many interesting challenges. We showed that one local
minimum can be removed efficiently, but as soon as the number of minima is not constant
the problem becomes NP-hard. With that in mind, we proposed an approximation algorithm
with factor 2 ln k.

There are many directions for further research, specially for the lowering approach. Ap-
proximation algorithms with better factors are one of them. There are some better ap-
proximation algorithms for the Node-Weighted Steiner Tree problem, like the ones of Guha
and Khuller [9], which improve the 2 ln k factor of Klein and Ravi [10] to 1.5 ln k or even
(1.35 + ε) ln k, but it is unclear how to adapt them to our problem.

In this paper the approaches of lifting and lowering were analyzed separately. However,
there are cases where a combination of both can result in a smaller total displacement. A
simple example is shown in Figure 8. Moreover, such an approach would make more sense
since both the underestimation and overestimation error present in the terrain could be com-
pensated.

The combined problem is automatically NP-hard, since it generalizes the lowering ap-
proach. Moreover, it seems to get considerably more complicated. To illustrate this, take
the problem of removing one single given local minimum. For the lowering approach this can
be solved rather easily by reducing it to a shortest path problem. In the combined version,
where any vertex can be either lowered or lifted, we are no longer looking for an optimal path
to remove the minimum. An optimal solution will consist of some vertices in the basin of
the minimum — including the minimum itself — being lifted to some height h and then a
minimum cost breaching path connecting the lifted vertices to a lower minimum. The height
h can be anything between the height of the minimum and the height of the lowest saddle
vertex of the basin (note that the extreme values correspond to the pure lowering and lifting
approaches). Therefore in order to find the optimal way to remove a single minimum, we
must find the value of h that minimizes the cost of the lifting plus the cost of the lowering.
O(n) different values are possible. For the general case of removing all local minima, it is not
clear how to integrate this two-step removal into the approximation algorithm here presented,
while maintaining the approximation factor guarantee.

Finally, there are many other variants of the problem that can be worth studying in more
detail, like removing not all but a given set of local minima (the approximation algorithm
presented here can be adapted for that variant as well), constraining the vertical displacement
of any vertex to be within some interval, and the use of different cost functions.
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