Optimal Higher Order Delaunay
Triangulations of Polygons

Rodrigo 1. Silveira

Marc van Kreveld

Department of Information and Computing Sciences, Utrecht University
Technical Report UU-CS-2007-034

WWW.CS.uu.nl

ISSN: 0924-3275

Optimal Higher Order Delaunay Triangulations of Polygons*

Rodrigo 1. Silveira Marc van Kreveld

Department of Information and Computing Sciences,
Utrecht University, 3508 TB Utrecht, the Netherlands

{rodrigo, marc}@cs.uu.nl

Abstract

This paper presents an algorithm to triangulate polygons optimally using order-k
Delaunay triangulations, for a number of quality measures. The algorithm uses properties
of higher order Delaunay triangulations to improve the O(n?) running time required for
normal triangulations to O(k?nlogk + knlogn) expected time, where n is the number of
vertices of the polygon. An extension to polygons with points inside is also presented,
allowing to compute an optimal triangulation of a polygon with A > 1 components inside
in O(knlogn)+0(k)"*2n expected time. Furthermore, we show experimental results that
suggest that, in practice, it can be used to triangulate point sets optimally for small values
of k. This represents the first practical result on optimization of higher order Delaunay
triangulations for k > 1.

1 Introduction

One of the best studied topics in computational geometry is the triangulation. When the
input is a point set P, it is defined as a subdivision of the plane whose bounded faces are
triangles and whose vertices are the points of P. When the input is a polygon, the goal is to
decompose it into triangles by drawing diagonals.

Triangulations have applications in a large number of fields, including computer graphics,
multivariate analysis, mesh generation, and terrain modeling. Since for a given point set or
polygon, many triangulations exist, it is possible to try to find one that is the best according
to some criterion that measures some property of the triangulation.

The properties of interest are application-dependent, but are generally either local prop-
erties of the triangles (like area, height or minimum angle) or global properties of the trian-
gulation (such as total edge length). For example, in automatic mesh generation for finite
element methods, criteria like minimizing the minimum/maximum angle and height of the
triangles are related to the error of the finite element approximation [3,21]. In the context
of terrain modeling, terrains are many times represented by triangulated irreqular networks,
which are triangulations where each point has an elevation. When terrain models need to be
realistic, for example in visualization or terrain analysis for hydrology, criteria like avoiding
ill-shaped triangles and having few local minima are particularly relevant [6, 18].

*This research has been partially funded by the Netherlands Organisation for Scientific Research (NWO)
under FOCUS/BRICKS grant number 642.065.503 (GADGET) and under the project GOGO.

Figure 1: A Delaunay triangulation (k = 0) (left), and an order-2 triangulation (right). Light
gray triangles are first order, the medium gray ones are second order.

For a given set of points P, a well-known triangulation is the Delaunay triangulation.
It is defined as a triangulation where the circumcircle of the three vertices of any triangle
does not contain any other point of P. It is unique when no four points are cocircular,
and can be computed in O(nlogn) time for n points. The Delaunay triangulation has a
large number of known properties, and it optimizes several measures, like max min angle or
min max smallest enclosing circle, among others. This is the reason why its triangles are said
to be well-shaped. However, for many applications, the Delaunay triangulation is not flexible
enough. For example, when used for terrain modeling, the triangulation does not take the
third dimension into account, which may result in artifacts like interrupted valley lines or
artificial local minima.

To overcome this limitation, Gudmundsson et al. [11] define higher order Delaunay tri-
angulations, a class of well-shaped triangulations where a few points are allowed inside the
circumcircles of the triangles. A triangle is said to be order-k Delaunay if its circumcircle
contains at most k£ points. A triangulation is order-k Delaunay if all its triangles are order-k
Delaunay (see Figure 1). For k = 0, each non-degenerate point set has only one higher order
Delaunay triangulation, equal to the Delaunay one. As the parameter k is increased, more
points inside the circumcircles imply a reduction in the shape quality of the triangles, but also
an increase in the number of triangulations that are considered, and hence greater flexibility
to optimize some other criterion, while limiting the badness of the shape of the triangles. The
concept of higher order Delaunay triangulation has been successfully applied to several areas,
including terrain modeling [7], minimum interference networks [1] and multivariate splines
[20].

In this paper we focus mainly on triangulations of polygons. Optimal polygon triangu-
lation has been a subject of study for a long time, both because it has applications of its
own, like in finite element methods, and also because it gives insight into the generally harder
problem of optimal point set triangulation. When the goal is to optimize only one criterion,
optimal polygon triangulations can be computed in polynomial time for many measures. The
constrained Delaunay triangulation [5], which generalizes the standard definition in order to
force certain edges into the triangulation, can be used to triangulate polygons, with triangle
shape properties similar to the ones of the Delaunay triangulation. Many other measures can
be optimized using a dynamic programming algorithm attributed to Klincsek [16], and also,
independently, proposed by Gilbert [10]. This approach allows to find in O(n?) time an opti-
mal triangulation of a simple polygon for any decomposable measure. Intuitively, a measure is
decomposable if the measure of the whole triangulation can be computed efficiently from the
measures of two pieces, together with the information on how the pieces are glued together.
See [3] for a formal definition. Decomposable measures include the following: min or max

Figure 2: Three different triangulations of a polygon: the constrained Delaunay triangulation
(left), the minimum weight triangulation (center), and the minimum weight triangulation
constrained to order-2 Delaunay triangulations (right). The third one combines nicely shaped
triangles with the minimization of the weight.

angle, min or max circumcircle, min or max length of an edge, min or max area of triangle,
and the sum of the edge lengths. The algorithm by Klincsek can be extended to other mea-
sures that are not decomposable, like maximum vertex degree. For convex polygons, the min
or max area of triangle measures can be optimized even faster, in O(n?logn) time [15].

Triangulating point sets optimally is in general more difficult than triangulating polygons.
For example, the minimum weight triangulation can be computed for polygons in cubic time
using Klincsek’s algorithm, but is NP-hard for point sets [19]. Only a few methods exist for
optimal triangulations of point sets. The edge insertion paradigm [2] can be used to optimize
several measures in O(n?logn) or O(n?) time (depending on the measure). A triangulation
of a point set minimizing the maximum edge length can be computed in O(n?) time [8]. The
greedy triangulation, which lexicographically minimizes the sorted vector of length edges, can
be constructed in O(nlogn) time [17].

Our problem is more involved, since we aim at optimizing a measure over higher order
Delaunay triangulations, therefore enforcing well-shaped triangles at the same time that op-
timizing some other measure. Figure 2 shows an example. There are not many results on
optimal higher order Delaunay triangulations. For the case k = 1, the triangulations have a
special structure that allows a number of measures (for example max or min area triangle,
total edge length, number of local minima in a terrain) to be optimized in O(nlogn) time [11].
A few other measures, like minimizing the maximum area ratio of edge-adjacent or vertex-
adjacent triangles, can also be optimized efficiently [23]. Other measures like maximizing the
number of convex edges or minimizing the maximum vertex degree have been shown to be
NP-hard [23]. For k > 1, fewer results are known. Minimizing local minima in a terrain is
NP-hard for orders at least n®, where € is any positive constant [7].

In this paper we present an extension of the algorithm by Klincsek [16] that allows to
optimize a decomposable measure for a simple polygon over order-k Delaunay triangulations.
A straightforward extension of Klincsek’s algorithm leads to O(kn?® + n?logn) running time.
Our main contribution is improving this to O(k%*nlogk + knlogn), by exploiting properties
of this special class of triangulations. This represents a substantial improvement, given that
small values of k are most important [7]. Moreover, we also explain how some other measures
that are not decomposable can be optimized following the same approach, using a more
complicated dynamic programming algorithm.

We note that throughout this paper we use the standard definition of order of a triangle,
as in [7,11,12,20], which does not take the boundary edges of the polygon into account.
This implies that for a given polygon and value k, our algorithm may find that no order-k
triangulation of that polygon exists. In such a case, it is always possible to increase k until

a triangulation is found. The authors recently studied possible definitions of the order of a
triangle that take a set of constraining edges into account [22], which guarantee that a polygon
can always be triangulated for any k. However, although seven different definitions for this
notion of constrained order were proposed in [22], no single definition can be regarded as the
most appropriate one.

We also explain how to extend our algorithm to triangulate polygons with points inside,
and present experimental results on the structure of order-k Delaunay triangulations that
show that in practice, the same approach can be used to triangulate point sets for small
values of k£ optimally. This constitutes the first practical result on optimization of higher
order Delaunay triangulations for k£ > 1.

The remainder of this paper is organized as follows. In the next section we introduce higher
order Delaunay triangulations more formally, together with some results that will be needed
later. Section 3 presents an algorithm to triangulate polygons optimally, for decomposable
measures, using order-k Delaunay triangulations. Some non-decomposable measures that can
also be optimized with a similar method are discussed in Section 4. Section 5 extends the
algorithm to be able to triangulate polygons with points inside. In Section 6 we present
experimental results suggesting that the algorithm of Section 5 can be used to triangulate
point sets efficiently, due to the special structure of order-k Delaunay triangulations, for low
values of k. Finally, in Section 7 we conclude and present some possible directions for further
research.

2 Higher Order Delaunay Triangulations

In this section we present some basic concepts on higher order Delaunay triangulations, to-
gether with some results that will be needed later. From now on we assume non-degeneracy
of the input set P: no four points are cocircular.

Definition 1 (from [11]) A triangle Auvw in a point set P is order-k Delaunay if its cir-
cumcircle C(u,v,w) contains at most k points of P. A triangulation of a set P of points is
an order-k Delaunay triangulation if every triangle of the triangulation is order-k.

Definition 2 (from [11]) Let P be a set of points, and let pG be an edge between two points
p, q € P. pq is an order-k Delaunay edge if there exists a circle that passes through p and
q that has at most k points of P inside. The useful order of an edge is the lowest order of a
triangulation that includes that edge.

For brevity, we will sometimes write order-k instead of order-k Delaunay, and k-OD edge
instead of order-k Delaunay edge. We also assume that k > 1 is a given integer, and write
useful edge instead of useful k-OD edge. Note that the useful order of an edge is at least the
order of that edge.

Lemma 1 (from [11]) Let wv be a k-OD edge, let s1 be the point to the left of vu, such that
the circle C(u, s1,v) contains no points to the left of vii. Let sy be defined similarly but to
the right of vu. Edge wo is a useful k-OD edge if and only if Auvs, and Auvsy are k-OD
triangles.

Figure 3: At most k& + 1 points can be a third point.

We extend the basic definitions and lemma above with one more lemma.

Lemma 2 Let uwv be a useful k-OD edge. There are O(k) order-k triangles that have uv as
one of their edges.

Proof: We will show that wt can be part of at most k+ 1 triangles on each side. Imagine
we slide a circle in contact with u and v until it touches a first point r1 to the right of the edge
(see Figure 3). This could potentially be a third point of a triangle that includes uv because
it is possible for the circumcircle of triangle Aurjv to contain less than k£ + 1 points. If we
slide the circle again until it touches a second point 2, we now know that the circle contains
at least one point (7). Continuing in this way it can be seen that the circle defined by wu,
v and the (k + 1)-th touching point, 741, contains at least k points, hence no further point
can be a third point because then the circle would contain k£ + 1 points. Since an identical
argument can be applied to the left side, we conclude that at most O(k) triangles can have
uv as one of its edges. X

Next we show that all the order-k triangles formed by useful k- OD edges can be computed
efficiently.

Lemma 3 Let P be a set of n points in the plane. In O(k*nlogk + knlogn) expected time
one can compute all order-k triangles of P that are incident to at least one useful k-OD edge.

Proof: An order-k triangle must meet two conditions: its circumcircle must contain at
most k points and it must be empty. For a set of n points there are O(kn) useful k-OD edges
[11], and by Lemma 2, a given useful edge can be part of O(k) order-k triangles. This makes
the total number of order-k triangles O(k?n).

All the useful edges can be computed in O(k?n + knlogn) expected time [11]. Moreover,
without increasing the previous asymptotic running time, we can store for every useful edge
uv, the two sets of points that are contained in the two circles that determine its usefulness
(see Lemma 1). There are at most k of these points on each side. For each side, we will sort
the points according to the order in which they are touched when sliding a circle in contact
with v and v (in the same way as in the proof of Lemma 2). This can be done in O(klogk)
time by sorting the centers of the circles.

To find out which third points can make an order-k triangle, we need to count the number
of points inside each circumcircle. This can be done using the two sorted lists of points as
follows. We explain how to do it for the right side, the left side is identical. Let L = {l,),...,l1 }
be the sorted points to the left of ud, and R = {r1, ..., ¢} the ones to its right. See Figure 4.
The circumcircle of Auwvry, denoted C(u,v,r1), contains by definition no points to the right

Figure 4: Finding k-OD triangles incident to uw.

of uv and 1 points to its left. For the second point, 72, we know that C(u,v,r2) contains
exactly one point to the right of ut (namely, r1). To find out how many points it contains to
the left of ud, we check whether I, is inside C(u, v,72) or not. If it is, then C(u,v, r2) contains
exactly 7 points to the left of wv. If it is outside, we go through L until we find the first l;
that is inside C(u,v,72). That implies C(u,v,72) contains exactly j points to the left of uv.
This is then repeated for 73,74, ...,7¢. The running time is linear in k because both lists are
scanned only once, from left to right. Hence, for each useful edge w0 we can find part of the
triangles incident to w0 whose circumcircles contain at most & points in O(klogk) time.

Notice that this algorithm, when applied to one edge uv, does not necessarily find all the
order-k triangles adjacent to wo. It may happen that some of the order-k triangles adjacent
to it have a third point that is not among the points included in the two circles defining
the usefulness of wd, because these circles contain at most k points, but may contain less.
However, it can be shown that if that is the case, any triangle missing will be considered when
processing one of the other two edges that make the triangle. This guarantees that, at the
end, all the order-k triangles incident to a useful edge will be taken into account.

Still, some of these triangles may contain points inside, so we need to discard the ones
that are not empty. Let Auvz and Auvy be two triangles, and let a, (ay) denote the angle
of Auvz at u (at v), and 3, (By) the same for Auvy. It is easy to see that Auvz contains
point y if and only if 5, < «,, and 8, < a,,. Each triangle can be represented by a point in the
plane using its angles at v and at v. The empty triangles are the ones lying on the lower-left
staircase of the point set, and can be found in O(klog k) time by a sweep line algorithm.

The total time needed to find the triangles for one useful edge is O(klog k). Since there are
O(kn) useful edges, all the useful edges and order-k triangles can be computed in O(k?n log k+
knlogn) expected time, proving Lemma 3. X

3 Triangulating polygons

As mentioned in the introduction, Klincsek’s algorithm allows to triangulate polygons opti-
mally for a large number of measures using dynamic programming. In this paper we have
the additional requirement that the resulting triangulation must be order-k, therefore the
classical algorithm must be adapted to include only order-k triangles.

The input of the algorithm is a polygon P, defined by its vertices in clockwise order:
D0, D1, - -+, Pn—1. The output is a k-OD triangulation of optimum cost (as long as one exists).

The dynamic programming algorithm finds an optimal solution by combining solutions of
smaller problems in a systematic way. The typical algorithms have O(n3) running time and

Figure 5: Dynamic programming method. The value of an optimal triangulation of P; ¢ is
stored in L[1, 6].

use an n X n matrix L, which in our problem has the following meaning: L[i, j] is the cost
of the optimal k-OD triangulation of the polygon P; ;, defined by the edges of P between p;
and pj, plus edge p;p;. See Figure 5 for an illustration.

The matrix can be filled in a recursive way. The simplest entries are the ones of the form
L[i,i 4+ 1], which have cost 0. The recursive formula for L[z, j] is:

Lli, j] = min (u(pi, pq, p;) @ Lli, q] ® Llg, j]) (1)
1<q<y

The expression pu(p;i,pg,p;) denotes the cost of triangle Ap;pypj, and the operator &
represents a way to combine the values of the subproblems. Their precise meaning depends
on the measure being optimized. Edges p;p; and p,p; must be diagonals. Triangles that
are not contained entirely inside P or are not k-OD have cost +o00. Checking the latter
(verifying that there are no more than k points inside the circumcircle of the triangle) would
take O(log n+ k) time [11], but if we precompute all the order-k triangles for each useful edge
(see Section 2) and store them in a perfect hashing table [9], we can find out in O(1) time if
the triangle is among the order-k triangles.

We can take advantage of the properties of higher order Delaunay triangulation to reduce
the running time significantly. The main steps of the algorithm are the following (details are
given below). In the preprocessing phase we compute all the useful edges and filter out the
ones that are not fully contained inside the polygon. The order-k triangles adjacent to each
useful edge are precomputed. The triangulation algorithm proceeds by applying Equation (1),
using a perfect hashing table to store the solutions to the subproblems already computed.

For a given edge p;p;, the number of possible third points to form a triangle is not O(n),
as in the normal triangulation problem, but O(k) (see Lemma 2). If for every edge we
precompute these O(k) points, we can improve the O(n3) dynamic programming running
time to O(kn?), after spending O(k*nlogk + knlogn) time in the precomputation of the
useful edges and the order-k triangles (see Lemma 3).

Every time an edge is considered as a candidate to be in an optimal triangulation, we must
also check that it does not intersect the polygon boundary and that it does not lie outside
the polygon. This check can be done in O(logn) time per edge using an algorithm for ray
shooting in polygons [13]. This adds an O(knlogn) term to the preprocessing time, which
does not increase the previous asymptotic running time.

Finally, the matrix L has O(n?) cells, each corresponding to one potential edge. However,
we know that only O(kn) edges will be useful, so it is not necessary to keep a data structure
of quadratic size. In order to avoid wasting time and space on edges that are not useful,

we will not use the standard matrix-based dynamic programming algorithm, but we will use
a memoized version instead. The idea is to use Equation (1) to compute L[0,n — 1], and
maintain a perfect hashing table where we will store all the subproblems already solved.
Notice that each subproblem L[i, j] is associated with the insertion of an edge p;p;, which
must be useful k-OD. Hence, only O(kn) subproblems will be computed and stored. The
same table used to store the order-k triangles incident to an edge can be extended to also
store the value of the subproblem associated with that edge. To solve one particular problem
O(k) time is needed, yielding a total running time of O(k?n), plus O(k?nlogk + knlogn)
preprocessing time.

Theorem 1 In O(k?nlogk + knlogn) expected time one can compute an optimal order-k
Delaunay triangulation of a simple polygon with n vertices that optimizes a decomposable
measure.

4 Non-decomposable measures

The approach described above can also be used to optimize some other, non-decomposable,
measures. The challenging part is adapting the recursive formula to make the subproblems
independent. We show below how this can be done for minimizing the maximum vertex degree,
minimizing the number of local minima (if the points have an elevation), and optimizing
functions of quadrilaterals, such as minimizing the maximum area ratio of triangles sharing
an edge.

Interestingly, a similar approach also allows to find the lowest order completion of a
polygon and a set of diagonals, that is, finding a higher order Delaunay triangulation, with
the lowest possible order, which contains the given diagonals. The more general problem of
finding a lowest order completion of a point set with respect to a set of edges is still open;
polynomial time algorithms are known only for k& < 3 [12].

4.1 Minimizing the maximum vertex degree

When the goal is to minimize the maximum vertex degree, a formula like Equation (1) must
be adapted to take into account that a vertex can be shared by two different subproblems. A
more complicated version of the formula that achieves this is presented in [14] in the context of
triangulating a face of a graph. It can also be used for a polygon, leading to an algorithm that
runs in time O(n*logn). When the triangulation must be order-k, the adaptations presented
in the previous sections result in an expected running time of O(k?n?logn).

Theorem 2 Given a polygon with n vertices, an order-k Delaunay triangulation that mini-
mizes the mazimum vertex degree can be computed in O(k*n®logn) expected time.

4.2 Minimizing the number of local minima

A common way to model a terrain is by a TIN (triangulated irregular network), that is, a
triangulated point set where each point has an elevation, and linear interpolation over the
triangles is assumed. In many applications of GIS, like terrain analysis for hydrology, lo-
cal minima, which can be defined as vertices whose neighbors have all higher elevation, are
considered artifacts that should be avoided [18]. An interesting problem is triangulating a

terrain while minimizing the total number of local minima, over order-k Delaunay triangu-
lations. Only heuristics are known for the case k > 1 [7]. Here we show how to triangulate
a polygon while minimizing the number of local minima, assuming that each vertex has an
elevation. This is clearly a less natural problem than the one for point sets, but we believe it
is still of interest.

Proceeding as in Section 3, we can insert an edge p;p; and then try all the possible third
points p, to create a triangle Ap;p,p;. However, simply solving the two resulting subpolygons
recursively can lead to counting the same minimum more than once, or counting a vertex as
a minimum when it cannot be, because it is also connected to some lower vertex that is not
part of the current subpolygon.

To account for this we will extend the recursive formula with two extra parameters as
follows: T'(7, j, b, b;) will denote the number of local minima of an optimal triangulation of
P;;. The two new arguments b; and b; are binary values that determine whether p; and p; can
be counted as local minima in the triangulation of the subpolygon. This allows to propagate
this information through the steps of the recursion.

The recursive formula can be adapted by considering for every third point p, three cases,
depending upon which point of the three is the lowest one. Notice that only the lowest vertex
of a triangle can be a local minimum. Let l;;; be the index of the lowest point of {p;, py, p;}.

T[Z7 q, bi7 0] + T[Q?j707 0] l'“]] =1
T[iyjy biv b]] = 2112 T[Za q, 0, O] + T[Q7j70a bj} liqj :]
I min{T(i, ¢,0,1] + Tq, 4,0,0], T[i,q,0,0] + T[q, 5, 1,01} ligj =g

The base case is T'[i,i + 1,b;,b;11], and has value 1 in two cases: when h(p;) < h(pit+1)
and b; = 1, and in the symmetric case h(p;) > h(p;+1) and b;y1 = 1. In the other cases it has
value 0. Notice that, as usual, it must be checked that all the edges inserted are valid.

The extensions described add only a constant number of computations per edge, hence the
asymptotic running time of the algorithm for general triangulations remains O(n3). Adapting
the algorithm to work for order-k Delaunay triangulations can be done following the same
approach used in Section 3. Therefore the running time is also the same.

Theorem 3 Given a polygon with n vertices, where each vertex has a height, a triangulation
of the polygon that minimizes the number of local minima can be computed in O(n?) time. An
order-k Delaunay triangulation that minimizes the number of local minima can be computed
in O(k?nlogk + knlogn) expected time.

4.3 Optimizing a function of a quadrilateral

A function that depends on the two triangles incident to one edge (or, equivalently, on a
quadrilateral), can also be optimized for a polygon using dynamic programming. The opti-
mization of this type of measure over higher order Delaunay triangulations has been studied
for point sets for the special case k = 1 [23]. Some of them can be optimized in O(nlogn)
time whereas others were shown to be NP-hard. Here we present a recursive formula for any
k that allows to triangulate a polygon while optimizing any min max measure of this type
(for example, minimizing the maximum area ratio between adjacent triangles). The same
method works also for optimizing the number of occurrences of some property of a quadrilat-
eral (for example, maximizing the number of convex edges). We explain the idea for a general

Figure 6: Optimizing a function of a quadrilateral. The problem on the left is given by
polygon P; ; and a triangle Ap;p;p;. To compute S[i, j, t], each possible vertex p, is tried and
for each choice, two new subproblems arise: S[i,q, j] and S[q,j,i] (center and right). Each
subproblem is comprised of a subpolygon (shaded) and one extra triangle (dotted lines).

measure function p. As before, the techniques from Section 3 can be used to constrain the
triangulation to be order-k.
The value of an optimal triangulation is defined as:

OPT = min S[i,7 — 2,7 — 1]
(2

for every i such that A(p;—2p;—1p;) is contained in P (indices wrap around), and where S is
recursively defined as:

Sli, j,t] = min (S[i, q,j] & Sla, j, 1] & p(i, q, ;1))
1<q<y

S[i, j, t] represents the optimal value of the subpolygon P; ; augmented with an extra fixed
triangle adjacent to p;p;, namely Ap;p;p;. Figure 6 illustrates the idea. The base cases are
of the form S[i,i + 2,j] = p(i,i + 1,7+ 2,j), and correspond to the value of a triangle on
the boundary of the polygon plus one extra triangle adjacent to it. The main difference with
Equation (1) is that now subproblems are not just subpolygons, but subpolygons with an
attached triangle (external to the subpolygon).

Since the table needed for this algorithm has cubic size, the running time for general
triangulations is O(n?).

For order-k Delaunay triangulation, the approach used in the previous sections reduces
the number of subproblems to be stored to O(k%n), and solving one problem, if the required
subproblems are already computed, takes O(k) time, yielding a triangulation time of O(k3n).
The preprocessing time is the same as in Section 3, therefore the overall expected running
time is O(k®n + knlogn).

Theorem 4 Given a polygon with n vertices, a triangulation of the polygon that optimizes a
minmax function of edge-adjacent triangles, or one that optimizes the number of occurrences
of a property of edge-adjacent triangles, can be computed in O(n*) time. An order-k Delaunay
triangulation that optimizes such a function can be computed in O(k3n + knlogn) expected
time.

5 Triangulating polygons with points inside

In this section we consider the more general problem of finding an optimal triangulation of a
simple polygon that contains 2 components in its interior. A component can be either a point

10

or a connected component made of several points connected by edges. We will denote the
polygon with the components by P. We can reuse the algorithm from the previous section
if we connect one vertex of each component to some other vertex in order to remove all
the loose parts. To find the optimal triangulation we must try, in principle, all the possible
ways to make these connections. The number of them depends on h and on the order k. In
principle, there are O(n) possible k-OD edges that connect a vertex of a component to the
outer boundary, even for constant k. However, we can reduce the number of edges that we
need to consider to O(k).

Lemma 4 Let P be a polygon with h components inside. There is a collection of O(k)" sets,
of h edges each, such that: (i) for every set in the collection, the edges in the set connect all
the components in P to the outer boundary; (ii) any order-k Delaunay triangulation includes
the edges of some set in the collection.

Proof: First we show that for a given component in P, any order-k triangulation 1" of
P must connect the component to the rest of the polygon by one of O(k) edges. Let u be
the topmost point among the boundary points of the components inside the polygon. Every
vertex above wu is part of the outer polygon boundary. Let wv be an edge of the Delaunay
triangulation of the point set induced by P and its components (ignoring the edges), with v
higher than w. Since wv is a Delaunay edge, we know from [11] that the useful k-OD edges
that cross it have O(k) endpoints on each side of wv. If wo is not part of T', at least one of the
useful edges that cross it must be. Let Ty be the first of these edges (the first one encountered
when going from u to v along wv) in T, then triangle Auxy must be part of 7. This implies
that edges ux and uy are part of it as well. Hence, either wo or one of the O(k) possible edges
of type uz (for z = x or z = y) must be in 7', and connects v to a higher point of the outer
boundary of P.

Following the same idea, for each of the h components we can find a set of O(k) useful
k-OD edges such that any triangulation 7" connects each component using one of these O(k)
edges. The result follows. X

Using the previous result, our algorithm will try the O(k)" different ways to connect the
loose components in P. Let Py,---, P, be the O(k)" different polygons that are tried, and let
H; be the set of new boundary edges of F;. For each P;, besides computing the boundary, we
must compute the intersections between the O(kn) useful edges and the new h edges in H;,
which were added to connect the loose components. This is because during the triangulation
we need to consider only edges that make the polygon simply-connected.

The computation of these intersections can be done once and maintained between suc-
cessive polygons without increasing the asymptotic running time. During the preprocessing
phase, we will compute all the intersections between useful k-OD edges. A useful k-OD edge
can intersect O(k?) other useful k-OD edges [11]. Therefore the total number of intersections
is O(k3n), and they can be computed in time O(kn log kn + k*n)=0(knlogn + k3n) [4]. We
store for each useful edge all the other useful edges that it intersects and in addition we keep
a counter. The counter will be used to keep track of how many edges in H; each useful edge
intersects.

The algorithm will iterate through the polygons in such a way that two consecutive poly-
gons P; and P,y differ only in the edge chosen for one of the components. Then during the
(7 + 1)-th step the counters for H; are already computed, and one can compute the counters
for H;y1 very easily, as follows: let e,y be the edge that is removed and e;, the new edge

11

Figure 7: Fixed edges: k =1 (left), k = 2 (center) and k = 4 (right).

(that is, H;y1 = Hi\{eout} U {ein}). Firstly, all the O(k?) useful edges that intersect e,y
must have their counters decreased by one. Secondly, all counters of the O(k?) edges that
intersect e;,, are incremented by one. Both sets of edges were previously computed during the
preprocessing phase and can be accessed in constant time. Hence the time needed to update
the intersection information from one polygon to the next one is O(k?).

We conclude that the total time required to compute all the new intersections is O(kn log n+
k3n) for the preprocessing and O(k?) per polygon. Note that the useful edges and order-k
triangles do not need to be recomputed, since they only depend on the point set, which has
not changed.

Triangulating each generated polygon using the algorithm from the previous section takes
O(k?n) time, yielding a total time of O(k?*nlogk + nklogn + knlogn + k3n) + O (k)" (k% +
k*n)=0(knlogn) + O(k)"*2n (because h > 1).

Theorem 5 An optimal order-k Delaunay triangulation of a simple polygon with n boundary
vertices and h > 1 components inside that optimizes a decomposable measure can be computed
in O(knlogn) + O(k)"*2n expected time.

6 Application to point sets

Any point set can be optimally triangulated using the results of Section 5 if it is seen as a
polygon made of its convex hull with points inside. In general, this will lead to a running time
exponential in n, so this is of no practical use. For low order Delaunay triangulations, the
situation is better. Given a point set and an order k, there are fized edges that are present
in any order-k triangulation, and partition the convex hull of the point set into a number
of polygons with components inside (Figure 7). For k = 1, it is known that these polygons
are always empty triangles or quadrilaterals [11], which simplifies the optimization of several
measures. As k increases, the number of fixed edges decreases until it is reduced to little more
than the convex hull. Moreover, for £ > 1 the polygons may be larger and may have many
components inside. However, our experiments on the structure of higher order Delaunay
triangulations suggest that in practice, for small values of k, the appearance of such polygons
is rather unlikely.

We summarize part of the results of experiments carried out on randomly generated
point sets, which show that for small values of k, the polygons created contain only a few
components. The experiments consisted in generating random point sets of between 1000
and 5000 points, and for different values of k, computing the partition into polygons with
components inside given by the fixed edges. The size of the polygons and the number of
components was registered. These are the two factors, besides k, involved in the running
time of the algorithm of Section 5. Tables 1 and 2 show the results for point sets between

12

n = 1000 n = 2000 n = 3000 n = 4000 n = 5000
0.00 /0.00 | 0.00 /0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00
0.00 / 0.00 | 0.00 /0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00
0.00 / 0.03 | 0.00 /0.03 | 0.00/0.04 | 0.00/0.06 | 0.00/0.07
0.00 / 0.44 | 0.00 /0.68 | 0.00/0.80 | 0.00/0.94 | 0.00/0.90
0.01/1.15 | 001/1.35 | 0.01/150 | 0.01/1.53 | 0.01/157
0.05 /222 | 0.05/263 | 0.04/277 | 0.04/291 | 0.04/3.13
018 /552 | 0.17/6.77 | 0.16/6.82 | 0.16/7.38 | 0.16 / 7.87
0.55 / 18.95 | 0.53 /24.19 | 0.52 /29.85 | 0.52 / 31.28 | 0.52 / 35.85
1.45 / 61.05 | 1.47 / 108.70 | 1.47 / 150.83 | 1.52 / 205.30 | 1.53 / 242.75
3.08 / 115.55 | 3.33 / 225.36 | 3.44 / 332.13 | 3.62 / 443.35 | 3.72 / 552.41

© 00 O Uk WINPT

—_
[an}

Table 1: Structure of order-k triangulations: average / maximum number of components per
polygon for random point sets of n points, averaged over 200 runs.

k n = 1000 n = 2000 n = 3000 n = 4000 n = 5000

1] 1.35/2.00 1.35 / 2.00 1.35 / 2.00 1.36 / 2.0 1.35 / 2.00

2| 1.99/6.82 1.99 / 7.41 1.99 / 7.54 2.00 / 7.63 2.00 / 7.77

3 2.84/12.77 2.85 / 13.84 2.84 / 14.60 2.85 / 15.14 2.85 / 15.59

4| 4.02 /2354 4.04 / 25.95 4.04 / 28.02 4.04 / 28.37 4.04 / 29.95

5| 5.80/43.97 5.82 / 52.90 5.83 / 54.55 5.84 / 56.25 5.85 / 59.72

6| 863/91.66 | 868 /10855 | 8.74/115.63 | 8.74/123.63 | 8.78 / 129.58
7|l 13.48 / 222.25 | 13.56 / 263.83 | 13.72 /292.36 | 13.83 / 310.12 | 13.86 / 337.01
8 || 21.71 / 569.40 | 22.40 / 749.15 | 22.76 / 980.10 | 23.21 / 1038.78 | 23.41 / 1223.43
9 || 34.99 / 1294.76 | 37.26 / 2425.46 | 38.32 / 3434.07 | 39.89 / 4716.74 | 40.58 / 5661.38
10 || 49.91 / 1755.54 | 56.27 / 3566.14 | 59.04 / 5341.94 | 62.56 / 7195.49 | 64.77 / 9034.72

Table 2: Structure of order-k triangulations: average / maximum size of polygons for random
point sets of n points, averaged over 200 runs. Since the dynamic programming algorithm
works by considering triangles, the size is given as the number of Delaunay triangles that the
polygon contains.

1000 and 5000 points, and k = 1,...,10. It is worth mentioning that since the convex hull
of the point set limits the growth of the polygons, the results may be influenced slightly by
boundary effects.

Some examples of the polygons found are shown in Figure 8. The images show only the
fixed edges, for each value of k. Each image was chosen after 100 runs as the one containing
a polygon with the largest number of components inside. That polygon is highlighted in red.
It can be seen that for k = 5,6 the largest polygon seems local, whereas for k = 7,8 it extends
over a large part of the point set.

A few observations are in order. The experiments confirm that for £ < 3, it is very
unlikely to find polygons with components inside. Even though for k£ > 2 one can build
examples where that is the case, they hardly arise in random point sets. Even for orders
up to 5 or 6, the size of the polygons and number of components are small enough to be
useful for practical purposes. As a result, finding optimal triangulations that in general are

13

Figure 8: Examples of the subdivision induced by fixed edges for random point sets of 1000
points, and different values of k. For each example the polygon with the largest number of
components is highlighted in red.

NP-hard, like the minimum weight triangulation, can be done in practice if the Delaunay
order is low enough, as long as the measure is decomposable. The small values of k£ are the
most useful in practice, for several reasons. On the one hand, as k increases, the shape of
the triangles deteriorates. On the other hand, previous experimental results [7], related to
realistic terrain modeling, have shown that low values of k are enough to obtain important
improvements on several terrain measures (like the number of local minima), making small
values of k particularly interesting for these applications.

7 Conclusions and Future Work

We studied algorithms to find higher order Delaunay triangulations of polygons that optimize
a decomposable measure. Based on an existing technique for polygon triangulation, we pro-
posed an algorithm to compute an optimal triangulation of a polygon restricted to order-k
triangulations. Their specific properties allowed us to reduce an O(n?) factor to O(k?), a sub-
stantial improvement since k will be, in general, much smaller than n [7]. We also explained

14

how this method can be extended to optimize some non-decomposable measures like number
of local minima, or functions of quadrilaterals like the area ratio of incident triangles.

For the more general problem of triangulating a polygon with components inside optimally,
we presented an algorithm that is fixed-parameter tractable for k = O(1).

We also gave experimental evidence suggesting that the specific structure of order-k De-
launay triangulations, for small values of k, makes the algorithm presented here applicable
to point sets. This constitutes the first practical result on optimal higher order Delaunay
triangulations for k£ > 1, allowing to optimize any decomposable function over a class of
well-shaped triangulations.

There are several topics for further research. A first one is studying what other mea-
sures, relevant to specific applications, can be optimized with a similar approach. A second
interesting topic is combining the algorithms presented here with a definition of higher order
constrained Delaunay triangulations [22]. In some applications it may be interesting to have
a definition of the order of a triangle that is influenced by the polygon edges, allowing to
always obtain some triangulation that is close to order-k. The authors noted in [22] that the
choice of such a definition may depend on the application in mind. The algorithms presented
in this paper are general in the sense that they were designed to be able to work for a large
number of measures. Any of the definitions proposed in [22] can easily be plugged in into
the algorithms, but many of the improvements on the running time achieved here would be
lost. Therefore it may be worth studying how to adapt the polygon triangulation algorithms
to some of the definitions proposed in [22].

Acknowledgments. We thank Remco Burema for carrying out the experimental work in
this paper.

References

[1] M. Benkert, J. Gudmundsson, H. J. Haverkort, and A. Wolff. Constructing interference-
minimal networks. In Proc. 32nd Int. Conf. on Current Trends in Theory and Practice
of Computer Science (SOFSEM’06), pages 166—176, 2006.

[2] M. Bern, H. Edelsbrunner, D. Eppstein, S. Mitchell, and T. S. Tan. Edge insertion for
optimal triangulations. Discrete Comput. Geom., 10(1):47-65, 1993.

[3] M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In D.-Z. Du and
F. K. Hwang, editors, Computing in Fuclidean Geometry, volume 4 of Lecture Notes
Series on Computing, pages 47-123. World Scientific, Singapore, 2nd edition, 1995.

[4] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments
in the plane. J. ACM, 39(1):1-54, 1992.

[5] L. P. Chew. Constrained Delaunay triangulations. Algorithmica, 4:97-108, 1989.

[6] L. De Floriani, B. Falcidieno, and C. Pienovi. Delaunay-based representation of surfaces
defined over arbitrarily shaped domains. Comput. Vision Graph. Image Process., 32:127—
140, 1985.

[7] T.de Kok, M. van Kreveld, and M. Loffler. Generating realistic terrains with higher-order
Delaunay triangulations. Comput. Geom. Theory Appl., 36:52—-65, 2007.

15

8]

H. Edelsbrunner and T. S. Tan. A quadratic time algorithm for the minmax length
triangulation. SIAM J. Comput., 22:527-551, 1993.

M. L. Fredman, J. Komlos, and E. Szemeredi. Storing a sparse table with O(1) worst
case access time. J. ACM, 31(3):538-544, July 1984.

P. D. Gilbert. New results in planar triangulations. Report R-850, Coordinated Sci.
Lab., Univ. Illinois, Urbana, 1L, 1979.

J. Gudmundsson, M. Hammar, and M. van Kreveld. Higher order Delaunay triangula-
tions. Comput. Geom. Theory Appl., 23:85-98, 2002.

J. Gudmundsson, H. Haverkort, and M. van Kreveld. Constrained higher order Delaunay
triangulations. Comput. Geom. Theory Appl., 30:271-277, 2005.

J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray, take a
walk. J. Algorithms, 18:403-431, 1995.

G. Kant. Augmenting outerplanar graphs. J. Algorithms, 21:1-25, 1996.

J. M. Keil and T. S. Vassilev. Algorithms for optimal area triangulations of a convex
polygon. Comput. Geom. Theory Appl., 35(3):173-187, 2006.

G. T. Klincsek. Minimal triangulations of polygonal domains. Discrete Math., 9:121-123,
1980.

C. Levcopoulos and D. Krznaric. The greedy triangulation can be computed from the
Delaunay triangulation in linear time. Comput. Geom. Theory Appl., 14:197-220, 1999.

D. Mark. Network models in geomorphology. In M. G. Anderson, editor, Modelling
Geomorphological Systems, chapter 4, pages 73-97. John Wiley & Sons, 1988.

W. Mulzer and G. Rote. Minimum weight triangulation is NP-hard. In Proc. 22nd Annu.
ACM Sympos. Comput. Geom., pages 1-10, 2006.

M. Neamtu. Delaunay configurations and multivariate splines: a generalization of a
result of B. N. Delaunay. Trans. Amer. Math. Soc., 359(7):2993-3004, 2007.

P. P. Pebay and T. J. Baker. A comparison of triangle quality measures. In Proc. 10th
International Meshing Roundtable, pages 327-340, 2001.

R. I. Silveira and M. van Kreveld. Towards a definition of higher order constrained
Delaunay triangulations. In Proc. 19th Annual Canadian Conference on Computational
Geometry, pages 161-164, 2007.

M. van Kreveld, M. Loffler, and R. I. Silveira. Optimization for first order delaunay
triangulations. In Proc. 10th Workshop on Algorithms and Data Structures, pages 175—
187, 2007.

16

