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Abstract

Many computational problems related to probabilistic networks are complete for com-
plexity classes that have few ’real world’ complete problems. For example, the decision
variant of the inference problem (pr) is PP-complete, the map-problem is nppp-complete
and deciding whether a network is monotone in mode or distribution is co-nppp-complete.
We take a closer look at monotonicity; more specific, the computational complexity of de-
termining whether the values of the variables in a probabilistic network can be ordered,
such that the network is monotone. We prove that this problem – which is trivially co-

nppp-hard – is co-npnppp-hard in networks which allow a succinct representation of the
conditional probabilities.

1 Introduction

Probabilistic networks [1] (also called Bayesian or belief networks) represent a joint probabil-
ity distribution on a set of statistical variables. A probabilistic network is often described by
a directed acyclic graph and a set of conditional probabilities. The nodes represent the sta-
tistical variables, the arcs (or lack of them) represent (in)dependencies induced by the joint
probability distribution. Probabilistic networks are often used in decision support systems
such as medical diagnosis systems (see e.g. [2] or [3]). Apart from their relevance in practical
situations, they are interesting from a theoretical viewpoint as well.

Many problems related to probabilistic networks happen to be complete for complexity
classes that have few ’real world’ complete problems. For example, the decision variant of the
inference problem Pr (is the probability of a specific instantiation of a variable greater than
p) is PP-complete [4], where the exact inference problem is #P-complete [5]. The problem
of finding the most probable explanation (mpe), i.e., the most likely instantiation to all
variables, has an NP-complete decision variant [6]. On the other hand, the Partial map
problem, determining whether there exists an instantiation to a subset of all variables (the
so-called map variables), such that the maximum aposteriori probability of the other variables
is greater than p, is nppp-complete [7]. Determining whether a network is monotone (in mode
or in distribution) is co-nppp-complete [8].

Monotonicity is often studied in the context of probabilistic classification, where a net-
work is constructed of evidence variables (like observable symptoms and test results), non-
observable intermediate variables, and one or more classification variables. Informally, the
conditional probability of a variable C given evidence variables E is monotone, if higher or-
dered instantiations to E always lead to higher values of C (isotone) or always lead to lower
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2 PRELIMINARIES 2

values of C (antitone). The question whether these relations are monotone is particularly
relevant during the construction and verification of the network. Often, domain experts will
declare that certain relations ought to be monotone, and the conditional probabilities in the
network should then respect these assumptions. When a violation of monotonicity of a cer-
tain relation is found, the encoded probabilities should be reconsidered, by elicitating better
estimations or using more data to learn from.

While complexity results are known for the Monotonicity problem when all variables
have fixed orderings, no such results have been obtained yet for the related problem where no
such fixed order is presumed. Nevertheless, while variables sometimes have a trivial ordering
(e.g., always > sometimes > never), such an ordering might be arbitrary, and determining
a ’good’ ordering might reduce the part of the network where monotonicity is violated. This
problem is interesting from a theoretical viewpoint as well. If we can determine whether
adding this extra ‘degree of freedom’ to the Monotonicity problem ‘lifts’ the complexity of
the problem into a broader class, we gain some insight in the properties and power of these
types of complexity classes.

In the remainder of this paper, some preliminaries are introduced in Section 2, and various
monotonicity problem variants and their computational complexity are discussed in Section
3. In Section 4, we present an (alternative) proof for the co-nppp-completeness of a restricted
version of the Monotonicity problem as presented in [8]. This proof technique is then used

in Section 5 to show that the Monotonicity problem with no fixed orderings, is co-npnppp-
hard if we allow a succinct conditional probability representation of the variables. Finally, in
Section 6 these results are discussed and the paper is concluded.

2 Preliminaries

Before formalizing the problems for which we want to determine their computational com-
plexity, we first need to introduce some definitions and notations. Throughout this paper, we
will refer to the Brain tumor network, shown in Figure 1, as a running example. This net-
work, adapted from [9], captures some fictitious and incomplete medical knowledge related to
metastatic cancer. The presence of metastatic cancer (modeled by the variable MC) typically
induces the development of a brain tumor (B), and an increased level of serum calcium (ISC).
The latter can also be caused by Paget’s disease (PD). A brain tumor is likely to increase
the severity of headaches (H) the patient will suffer. Long-term memory (M) is probably
impaired, or even malfunctioning. Furthermore, it is likely that a CT-scan (CT ) of the head
will find a tumor if it is present, but it may also reveal other anomalies, like a fracture or
a lesion, which might indicate an increased serum calcium. Note that in this network, MC,
PD, B, and ISC are binary variables, while M , H and CT have multiple values.

2.1 Monotonicity in probabilistic networks

Let B = (G,Γ) be a probabilistic or Bayesian network where Γ, the set of conditional prob-
ability distributions, is composed of rational probabilities, and let Pr be its joint probability
distribution. The conditional probability distributions in Γ can be explicit, i.e., represented
with look-up tables, or succinct (implicitly defined), i.e., represented by a polynomial time
computable function. If Γ consists only of explicit distributions then B will be denoted as
an explicit network. Let Ω(V ) denote the set of values that V ∈ V (G) can take. Vertex A is
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Pr(b |mc) = 0.20
Pr(b |mc) = 0.05

Pr(M = norm. |b) = 0.50
Pr(M = imp. |b) = 0.40
Pr(M = malf. |b) = 0.10

Pr(M = norm. |b) = 0.70

Pr(M = imp. |b) = 0.25

Pr(M = malf. |b) = 0.05

Pr(H = sev. |b) = 0.70
Pr(H = mod. |b) = 0.25
Pr(H = abs. |b) = 0.05

Pr(H = sev. |b) = 0.30

Pr(H = mod. |b) = 0.20

Pr(H = abs. |b) = 0.50

Pr(isc |mc, pd) = 0.95

Pr(isc |mc, pd) = 0.80
Pr(isc |mc, pd) = 0.70

Pr(isc |mc, pd) = 0.20

Pr(tum. |b, isc) = 0.80
Pr(tum. |b, isc) = 0.90

Pr(tum. |b, isc) = 0.05

Pr(tum. |b, isc) = 0.10

Pr(fract. |b, isc) = 0.18
Pr(fract. |b, isc) = 0.01

Pr(fract. |b, isc) = 0.55

Pr(fract. |b, isc) = 0.40

Pr(les. |b, isc) = 0.02
Pr(les. |b, isc) = 0.09

Pr(les. |b, isc) = 0.40

Pr(les. |b, isc) = 0.50

Figure 1: The Brain tumor network

denoted as a predecessor of B if (A,B) ∈ A(G). For a node B with predecessors A1, . . . , An,
the configuration template A is defined as Ω(A1)× . . .×Ω(An); a particular instantiation of
A1, . . . , An will be denoted as a configuration of A.

Monotonicity can be defined as stochastical dominance (monotone in distribution) or in a
modal sense (monotone in mode). For variable set E, with value assignments e and e′ (e ≺ e′)
and variable set C, the network is isotone in distribution if Pr(C |e) is stochastically dominant
over Pr(C |e′). The network is isotone in mode if the most probable instantiation of C given
assignment e is lower ordered than the most probable instantiation of C given assignment
e′. In practice, C will normally be a single variable of interest (e.g., the main classifier or
output variable in the network), and E will normally denote the set of observable variables.
Without loss of generality, we will assume in the remainder that C is a singleton variable,
rather than a set of variables. Monotonicity can be defined on a global scale, or locally (only
relations between endpoints of arcs in the network are considered). The latter is relevant
when constructing qualitative probabilistic networks (See for example [10]). In this paper, we
discuss global monotonicity in distribution only; the reader can refer to [11] for a discussion of
local monotonicity. We distinguish between weak and strong notions of global monotonicity.

Definition 1 (global monotonicity [8]). Let FPr be the cumulative distribution function
for a node V ∈ V (G), defined by FPr(v) = Pr(V ≤ v) for all v ∈ Ω(V ). Let C ∈ V (G) and
let E ⊆ V (G) \ {C}, and let E be the configuration template of E. C is strongly monotone
in E, if either

e � e′ → FPr(c |e) ≤ FPr(c |e′) for all c ∈ Ω(C) and all e, e′ ∈ E , or
e � e′ → FPr(c |e) ≥ FPr(c |e′) for all c ∈ Ω(C) and all e, e′ ∈ E

C is weakly monotone in E, if C is strongly monotone in {Ei}, for all variables Ei ∈ E.
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In our running example, we might want to know whether MC is monotone in M and H,
i.e., whether the probabilities in the network are such, that more severe symptoms always
make metastatic cancer more likely. It follows that MC is weakly monotone in {M,H}, since
MC is isotone in H (more severe headaches make metastatic cancer more likely) and it is
antitone in M (better functioning long term memory makes metastatic cancer less likely). For
that reason, MC is not strongly monotone in {M,H}, given the ordering severe > moderate
> absent) for H and normal > impaired > malfunctioning) for M .

Note that all networks that are strongly monotone in some set E are also weakly monotone,
but not vice versa: whereas the strong variant assumes a partial order on all configurations
of E, the weak variant allows independent isotone or antitone effects for all variables in E.
Put in another way: we could make a weakly monotone network also strongly monotone by
reversing the order of the values of some variables in E, such that all effects are antitone or
all effects are isotone. In our example, we could reverse the order of the values of M to make
MC also strongly monotone in {M,H}.

Typically, monotonicity is relevant in the construction phase of a network. The probabil-
ities associated with the network are often elicited from estimations by experts, or learned
from data. In both cases, the network properties induced by these probabilities might not
reflect the actual situation. For example, medical experience related to brain tumors may
dictate that more severe symptoms always increase the likeliness of metastatic cancer. When
a domain expert insists that a certain relation ought to be monotone, the joint probability
distribution should be such that this property is reflected in the network [12]. If monotonicity
is violated, the probability distribution in the network can be revised in cooperation with the
expert.

The above notions of monotonicity assume an implicit ordering on the values of the
variables involved. Such an ordering is often trivial (e.g., b > b and severe > moderate >
absent) but sometimes it is arbitrary, like an ordering of the anomalies that may be found
using a CT-scan. Nevertheless, a certain ordering is necessary to determine whether the
network is monotone, or to determine which parts of the network are violating monotonicity
assumptions. Thus, for nodes where no a priori ordering is given, we want to order the values
of these nodes in such a way that either the whole network becomes monotone, or – if no
such ordering exists – the number of relations where monotonicity is violated is minimized.
We define the notion of an interpretation of V to denote a certain ordering on the values of
V . Note that the number of distinct interpretations of a node with k values equals k!, as each
permutation of the k values is a distinct interpretation.

Definition 2 (interpretation). Let Ω(V ) denote the set of values of V ∈ V (G). An inter-
pretation of V , denoted IV , is defined as a total ordering on Ω(V ). The interpretation set IV
is defined as the set of all possible interpretations of V .

We will often omit the subscript of an interpretation if no confusion of variables is possible;
for arbitrary interpretations we will often use σ and τ .

Suppose that monotonicity between metastatic cancer MC and the observations CT
and M is demanded in the Brain tumor network. The reader can infer that monotonic-
ity is preserved if CT is ordered tumor > fracture > lesion, but is violated when CT is
ordered tumor > lesion > fracture, for example. Thus, the relevant variables in the net-
work for this monotonicity query can be ordered such that MC is monotone in {CT,M}.
Note that MC is not monotone in {CT,M,H} for any ordering of the variables, since
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Pr(mc | H = abs.,M = norm.,CT = tum.) > Pr(mc | H = abs.,M = norm.,CT = les.), but
Pr(mc |H = abs.,M = malf.,CT = tum.) < Pr(mc |H = abs.,M = malf.,CT = les.).

If monotonicity is violated in a network, it is important to minimize the number of prob-
abilities that need to be reconsidered. Thus, when constructing networks, one should find an
ordering that minimizes the offending context. In this paper,we will investigate the computa-
tional complexity of this problem.

2.2 Computational complexity

In the remainder, we assume that the reader is familiar with basic concepts of computational
complexity theory, such as the classes P, NP and co-NP, hardness, completeness, oracles, and
the polynomial hierarchy (PH). For a thorough introduction to these subjects, we refer to
textbooks like [13] and [14].

In addition to these concepts, we use the counting hierarchy (CH) [15, 16]. The counting
hierarchy closely resembles (in fact, contains) the polynomial hierarchy, but also involves the
class PP (probabilistic polynomial time), i.e., the class of languages L accepted by a non-
deterministic Turing Machine where the majority of the paths accept a string s if and only
if s ∈ L. Recall that the polynomial hierarchy can be characterized by alternating existential
and universal operators applied to P, where ∃PP equals Σp

1 = NP, ∀PP equals Πp
1 = co-NP,

while ∀P∃P∀P . . . P equals Πp
k and ∃P∀P∃P . . . P equals Σp

k, where k denotes the number of
alternating quantifiers.

A convenient way to relate the counting hierarchy to the polynomial hierarchy is by
introducing an additional operator C, where Cp0 equals P, Cp1 equals PP, and in general
Cpk+1 = C ·Cpk = (Cpk)

pp. Interesting complexity classes can be defined using these operators
∃P , ∀P and C in various combinations. For example, ∃PCP equals the class nppp, ∀PCP
equals co-npppand ∃P∀PCP equals npnppp . Default complete problems for these kind of
complexity classes are defined by Wagner [15] using quantified satisfiability variants. In this
paper we consider in particular the complete problems Majsat, E-Majsat, A-Majsat, EA-
Majsat, and AE-Majsat, which will be used in the hardness proofs. These problems are

proven complete by Wagner [15] for the classes PP, nppp, co-nppp, npnpppand co-npnppp ,
respectively. In all problems, we consider a Boolean formula φ with n variables Xi, with
1 ≤ i ≤ n, and we introduce quantifiers to bound subsets of these variables.

Majsat
Instance: Let X denote the set of variables of φ.
Question: Does at least half of the instantiations of X satisfy φ?

E-Majsat
Instance: Let 1 ≤ k ≤ n, let XE denote the set of variables X1 to Xk and let XM denote
the set of variables Xk+1 to Xn.
Question: Is there an instantiation of XE, such that at least half of the instantiations of
XM satisfy φ?

A-Majsat
Instance: Let 1 ≤ k ≤ n, let XA denote the set of variables X1 to Xk and let XM denote
the set of variables Xk+1 to Xn.
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Question: Does, for every possible instantiation of XA, at least half of the instantiations
of XM satisfy φ?

EA-Majsat
Instance: Let 1 ≤ k ≤ l ≤ n, let XE, XA, and XM sets of variables X1 to Xk, Xk+1 to
Xl, and Xl+1 to Xn, respectively.
Question: Is there an instantiation of XE, such that, for every possible instantiation of
XA, at least half of the instantiations of XM satisfy φ?

AE-Majsat
Instance: Let 1 ≤ k ≤ l ≤ n, let XA, XE, and XM sets of variables X1 to Xk, Xk+1 to
Xl, and Xl+1 to Xn, respectively.
Question: Is there, for all instantiations of XA, a possible instantiation of XE, such that
at least half of the instantiations of XM satisfy φ?

In the remainder, we denote the complement of a problem P as not-P, with ’yes’ and ’no’
answers reversed with respect to the original problem P. Note that, by definition, if P is in
complexity class C, then not-P is in co-C, and, likewise, if not-P is in C, then P is in co-C.

2.3 Succinct conditional probability representation

Normally, probabilistic networks are specified by a directed acyclic graph (e.g., using an
adjacency list or matrix) and, for each variable, a conditional probability table. This table
specifies, for each value of the variable and for each configuration of its parents, the probability
of the variable having that particular value given this configuration. Normally, such probability
tables are explicitly specified by a look-up table (e.g., a matrix). In some cases, however, the
values and the probabilities are such, that they can be encoded in a more efficient data
structure. Take for example a variable C with parents X1 . . . X4, who have values T and F
with uniform probability. C has values c0 . . . c4 and acts as a counting variable. The probability
of C having value ci is exactly the probability that i out of C’s four parents have value T .
For example, Pr(C = c0) = 1

16 and Pr(C = c2) = 6
16 . Given the above description as an

input, we can compute the probability of C having a particular value (given an instantiation
to X) in polynomial time. In line with formalizations of succinct representations of graphs,
e.g. [17, 15], we will assume that the probability of any value can be calculated using a family
of boolean circuits, which characterizes polynomial time computations [18].

Note that this definition of succinct conditional probability representation does not enforce
that a particular interpretation can be encoded or evaluated in polynomial time. A succinct
encoding of the values of a variable, can evaluate to exponentially many values and their
probabilities; thus, it need not be the case that a polynomial succinct encoding exists of all
individual interpretations.

3 Monotonicity variants and their complexity

In this paper, we study the computational complexity of various variants of global mono-
tonicity. The following problems are defined on a probabilistic network B = (G,Γ), where
G = (V,A) is a directed acyclic graph, C ∈ V (G) and E ⊆ V (G) \ {C}.
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X1 X2

X3∨

¬¬

∧
Vφ

Figure 2: The probabilistic network corresponding to ¬(x1 ∨ x2) ∧ ¬x3

1. The strong Global Monotonicity problem is the problem of deciding whether C is
strongly globally monotone in E, given an interpretation of all V ∈ V (G). This problem
has been proven co-nppp-complete [8] for explicit networks.

2. The weak Global Monotonicity problem is the problem of deciding whether C is
weakly globally monotone in E, given an interpretation of all V ∈ V (G).

3. The Global E-Monotonicity problem is the problem of deciding whether there
exists an interpretation of all V ∈ V (G), such that C is globally monotone in E.

Note that, if there exists an interpretation such that C is weakly monotone in E, there
also exists an interpretation such that C is strongly monotone in E, making a distinction
between weak and strong ’E’-variants redundant.

The weak Global Monotonicity and Global E-Monotonicity problems will be
discussed in Sections 4 and 5. In these sections, we use a proof technique introduced by Park
and Darwiche [7] to construct a probabilistic network Bφ from a given Boolean formula φ
with n variables. For all variables Xi(1 ≤ i ≤ n) in this formula, we create a variable Xi in G,
with possible values T and F and a uniform probability distribution. For each logical operator
in φ, we create an additional variable in G, whose parents are the variables that correspond
to the input of the operator, and whose conditional probability table is equal to the truth
table of that operator. For example, the ∧-operator would have a conditional probability of
1 if and only if both its parents have the value T , and 0 otherwise. Furthermore, we denote
the top-level operator in φ with Vφ. In Figure 2 such a network is constructed for the formula
¬(x1 ∨ x2) ∧ ¬x3. Now, for any particular instantiation x of the set of all variables X in the
formula we have that the probability of Vφ, given the corresponding configuration equals 1
if x satisfies φ, and 0 if x does not satisfy φ. Without any instantiation, the probability of
Vφ is #q

2n , where #q is the number of satisfying instantiations of X. Using such constructs,
Park and Darwiche proved that the decision variant of the map problem is nppp-complete;
we will use this construct as a starting point to prove completeness results for weak Global
Monotonicity and Global E-Monotonicity in the following sections.

4 Weak Global Monotonicity

In this section, we present a proof for weak Global Monotonicity (with explicit rep-
resentations) using the technique of Park and Darwiche [7]. Note that strong Global
Monotonicity has been proven to be co-nppp-complete in [8] using a reduction from the
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Figure 3: Construct for hardness proof Monotonicity

decision variant of the Partial map-problem, and that co-nppp-hardness of the weak variant
can be proven by restriction. We construct a reduction from A-Majsat, the relevant satisfia-
bility variant discussed in Section 2, in order to facilitate our main result in the next section.
First, we state the decision problem for which we prove co-nppp-hardness:

weak Global Monotonicity
Instance: Let B = (G,Γ) be a Bayesian network where Γ is composed of explicitly repre-
sented rational probabilities, and let Pr be its joint probability distribution. Let C ⊆ V (G)
and E ⊆ V (G) \ {C}.
Question: Is B weakly monotone in distribution in E?

Below, we will prove that any instance (φ,XA,XM) of A-Majsat can be translated to
a probabilistic network that is monotone, if and only if (φ,XA,XM) is satisfiable. As an
example, let us consider the formula φ = ¬(x1∧x2)∨¬x3 (see Figure 3), and let XA = {x1, x2}
and XM = {x3}. This is a ’yes’-instance of A-Majsat because, for every configuration of
XA, at least half of the configurations of XM satisfies φ. From φ we construct a network
Bφ as described in the previous section. Furthermore, a node C (’classifier’) and a node S
(’select’) is added, with arcs (S,C) and (Vφ, C), where Vφ is the top node in Bφ. S has values
T and F with uniform distribution, and C has conditional probabilities as denoted in Table 1.
The proof of theorem 3 shows that in the thus constructed network, Pr(C |S ∧XA) is weakly
monotone in distribution, if and only if the corresponding A-Majsat-instance (φ,XA,XM)
is satisfiable.

c1 c2 c3
S = T ∧ Vφ = T 0.5 0.25 0.25
S = T ∧ Vφ = F 0.5 0.25 0.25
S = F ∧ Vφ = T 0.25 0.375 0.375
S = F ∧ Vφ = F 0.375 0.5 0.125

Table 1: Conditional probability table for C

Theorem 3. weak Global Monotonicity is co-nppp-complete.
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Proof. To prove membership of co-nppp, we consider not-weak Global Monotonicity
and prove membership of nppp. In this complement problem we must decide whether there
exist instantiations to the evidence variables E such that B is not monotone in distribution.
This is clearly in nppp: we can non-deterministically choose instantiations e1 � e2 to E and
values c < c′ ∈ Ω(C), and verify that FPr(c | e1) ≤ FPr(c′ | e1), but FPr(c′ | e2) ≤ FPr(c | e2)
since Pr is pp-complete.

To prove co-nppp-hardness, we construct a transformation from the A-Majsat problem.
Let (φ,XA,XM) be an instance of this problem, and let Bφ be the network constructed from φ
as described above. Given a particular configuration x of all n variables in XA∪XM, Pr(Vφ |x)
equals 1 if x is a satisfying configuration and 0 if it is not, hence, for any configuration XA,
Vφ ≥ 1

2 if at least half of the instantiations to XM satisfy φ. Since C is conditioned on Vφ, it
follows from Table 1 that if any configuration of XA leads to Pr(Vφ) < 1

2 , then C is no longer
monotone in S ∧XA, since FPr(c1 |S = T ) > FPr(c1 |S = F ), but FPr(c2 |S = T ) < FPr(c2 |
S = F ) as we can calculate1 from the conditional probability table for C. On the other hand,
if (φ,XA,XM) is a satisfying instantiation of A-Majsat, then Pr(Vφ) ≥ 1

2 and thus Bφ is
weakly globally monotone. Thus, if we can decide whether Bφ is weakly globally monotone
in S ∪XA, we are able to decide (φ,XA,XM). Therefore weak Global Monotonicity is
co-nppp-hard.

This completeness result (and the similar result for the strong variant) also holds when
the probability distribution of the variables is succinctly represented, rather than explicitly
represented using look-up tables.

Corollary 4. Global Monotonicity with succinct probability representation is co-nppp-
complete.

Proof. co-nppp-hardness follows directly from Theorem 3. We will now prove membership
of co-nppp. Since the values of ψ are ordered, we can - without loss of generality - assume
that they are represented by natural numbers, with < as a natural ordering. Let us assume
that, for a particular variable ψ, its values and their corresponding probabilities are succinctly
represented by a family of boolean circuits that produces Pr(ψ = k) = pk for any value k and
a configuration of its parents. Assume we are presented two sets of configurations e1 and e2

to a set of variables, including ψ, such that e1 ≺ e2, and FPr(C |e1) > FPr(C |e2). Since ψ
is ordered, we can verify that e1 ≺ e2 in time, polynomial to the input length. Since we can
also calculate FPr(C | e1) and FPr(C | e2) in polynomial time, given access to a PP oracle,
(e1, e1) is a certificate of a counter example that can be verified in polynomial time using a
PP oracle. Hence, even with succinct probability representation, Global Monotonicity ∈
co-nppp.

5 Global E-Monotonicity

We now use the proof technique from the previous section to prove that Global E-Mono-

tonicity is co-npnppp-hard if we allow succinct representations for the conditional proba-
bility distributions. The canonical satisfiability variant complete for that complexity class is

1FPr(c1 | S = T ) = Pr(c1 | Vφ = T ∧ S = T ) · Pr(Vφ = T ) + Pr(c1 | Vφ = F ∧ S = T ) · Pr(Vφ = F ) =
(0.5+ε) ·0.5+(0.5−ε) ·0.5 = 0.5. Likewise, FPr(c1 |S = F ) = 0.25 ·(0.5−ε)+0.375 ·(0.5+ε) = 0.3125+0.125ε.
On the other hand, FPr(c2 |S = T ) = Pr(c1 |S = T ) + Pr(c2 |S = T ) = 0.5 + 0.25 < FPr(c2 |S = F ) = Pr(c1 |
S = F ) + Pr(c2 |S = F ) = (0.3125 + 0.125ε) + (0.4375 + 0.125ε) = 0.75 + 0.25ε.
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AE-Majsat. However, we will use the equivalent complexity class not-EA-Majsat for our
reduction. Thus, instead of ∀P∃PC we use the equivalent problem statement ¬∃P∀PC. The
reader can verify that this is an equivalent problem formulation if we negate the variables that

are bounded by the C operator, and thus that both are complete problems for co-npnppp .
Again, we start with a formal definition of the relevant decision problem:

Global E-Monotonicity
Instance: Let B = (G,Γ) be a Bayesian network where Γ is composed of rational proba-
bilities, and let Pr be its joint probability distribution. Let Ω(V ) denote the set of values
that V ∈ V (G) can take, and let C ∈ V (G) and E ⊆ V (G) \ {C}.
Question: Is there an interpretation IV for all variables V ∈ V (G), such that B is mono-
tone in distribution in E?

We will see that any instance (φ,XE,XA,XM) of not-EA-Majsat can be translated to
a probabilistic network for which there exists an ordering of the values of its variables that
makes the network monotone, if and only if (φ,XE,XA,XM) is not satisfiable. As an example,
let us consider the formula φ = ¬((x1 ∨ x2) ∧ (x3 ∨ x4)) ∧ x5 (Figure 4), let XE = {x1, x2}
and let XA = {x3, x4} and XM = {x5}. One can verify that this is indeed a ’yes’-instance
of not-EA-Majsat: Whatever instantiation of the variables in XE we choose, there always
exists an instantiation to XA (in particular, x3 = x4 = F ) such that at least half of the
instantiations of XM satisfies φ. Thus, there does not exist an instantiation to XE, such that
for all instantiations to XA at least half of the instantiations of XM does not satisfy φ.

Again, we denote Vφ as the top node in Bφ. We now add three additional variables, C
with values c1, c2, c3, D with values d1, d2, and a variable ψ. This variable is succincly defined
and has (implicit) values w0 to w2m−1 (m =| XE |) that correspond to configurations xE

of XE. These values are ordered by the binary representation of each configuration xE, e.g.,
for an instantiation xE = X1 = F, . . . ,Xm−1 = F,Xm = T the binary representation would
be 0 . . . 01 and therefore this particular configuration would correspond with w1. Likewise,
all possible configurations of XE are mapped to values wi of ψ. Furthermore, there are arcs
(Vφ, C), (ψ,C), (C,D), and from every variable in XE to ψ. The conditional probability
Pr(C | Vφ ∧ ψ) is defined in Table 2, where ε is a sufficiently small number, e.g. ε ≤ 1

2m+3 .
The conditional probabilities Pr(ψ |XE) and Pr(D |C) are defined in Table 3. Note, that the
conditional probability distributions of both ψ and C are defined succinctly.

The conditional probabilities of D are chosen in such a way, that D is monotone in C if and
only if IC = {c1 < c2 < c3}. In the example, the possible values of ψ are numbered as follows:
w0 = {X1 = F,X2 = F}, w1 = {X1 = F,X2 = T}, w2 = {X1 = T,X2 = F}, w3 = {X1 =
T,X2 = T}. For i = 0 . . . 3, the conditional probability table Pr(C | Vφ ∧ ψ = wi) is defined
as in Table 4. We have already seen that, for all configurations to XA, the configuration
X3 = X4 = F of XE ensures that the majority of the possible configurations of XM satisfies
φ. Therefore, for all configurations of XA, there is at least one configuration of ψ (namely,
ψ = w0) such that Vφ ≥ 1

2 . Since C is conditioned on Vφ, we can calculate from the table that
monotonicity is violated: FPr(c1 | ψ = w0) = 0.625 − 0.5ε > FPr(c1 | ψ = w1) = 0.4375 but
FPr(c2 |ψ = w0) = 0.75 − 0.5ε < FPr(c2 |ψ = w1) = 0.75. Thus, independent of the manner
the values of Ω(ψ) are ordered, there is always at least one violation of monotonicity for any
interpretation in Iψ if Vφ ≥ 1

2 . If, on the other hand, there does not exist such configuration
to XE, then Vφ <

1
2 for all possible configurations to XE, and thus there is an ordering of
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Figure 4: Construct for hardness proof E-Monotonicity

Pr(C = c1 |Vφ = T ∧ ψ = wi) = 1
2 −

i
2m+1 − ε if i = 0

1
2 −

i
2m+1 otherwise

Pr(C = c2 |Vφ = T ∧ ψ = wi) = i+1
2m − 1

2m+1

Pr(C = c3 |Vφ = T ∧ ψ = wi) = 1
2 −

i+1
2m+1 + ε if i = 0

1
2 −

i+1
2m+1 otherwise

Pr(C = c1 |Vφ = F ∧ ψ = wi) = 1− i+1
2m

Pr(C = c2 |Vφ = F ∧ ψ = wi) = i+1
2m+1

Pr(C = c3 |Vφ = F ∧ ψ = wi) = i+1
2m+1

Table 2: Conditional probability for C

d1 d2

c1 0.20 0.80 Pr(ψ = wi |xE) = 1 if wi corresponds to xE

c2 0.40 0.60 0 otherwise
c3 0.60 0.40

Table 3: Conditional probabilities for Pr(D |C) and Pr(ψ |X)

the interpretations in Iψ such that Pr(C |XA) is monotone. Note that we cannot assume an
a priori ordering on the values of ψ in this situation: although all configurations of XE lead
to Vφ < 1

2 , some may be closer to 1
2 than others and thus, because of the conditioning on Vφ,

lead to higher values in C. We claim that there is a possible interpretation I for all variables
in XE ∪ {ψ} in the thus constructed network, such that the network is globally monotone, if
and only if the corresponding not-EA-Majsat-instance is satisfiable.

Theorem 5. Global E-Monotonicity is co-npnppp-hard for networks that allow succinct
conditional probability representations.
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c1 c2 c3
ψ = w0 ∧ Vφ = T 0.5− ε 0.125 0.375 + ε

ψ = w1 ∧ Vφ = T 0.375 0.375 0.25
ψ = w2 ∧ Vφ = T 0.25 0.625 0.125
ψ = w3 ∧ Vφ = T 0.125 0.875 0
ψ = w0 ∧ Vφ = F 0.75 0.125 0.125
ψ = w1 ∧ Vφ = F 0.5 0.25 0.25
ψ = w2 ∧ Vφ = F 0.25 0.375 0.375
ψ = w3 ∧ Vφ = F 0 0.5 0.5

Table 4: Conditional probability for C in the example

Proof. To prove co-npnppp-hardness, we construct a transformation from not-EA-Majsat.
Let (φ,XE,XA,XM) be an instance of this problem, and let Bφ be the network constructed
from φ as described above. If (φ,XE,XA,XM) is not satisfiable, then there exists an instan-
tiation to ψ, such that Pr(Vψ) ≥ 1

2 and thus – again, because of the conditioning of C on Vψ –
monotonicity is violated. But if this is the case, then there exist wi, wj ∈ ψ and c < c′ ∈ C such
that FPr(c |ψ = wi) ≤ FPr(c′ |ψ = wi), but FPr(c′ |ψ = wj) ≤ FPr(c |ψ = wj) independent of
the ordering of the values of ψ. Note that the variable-and operator-nodes have binary values,
making an ordering irrelevant2, and the ordering on C and D is imposed by the conditional
probability Pr(D | C). Thus, if we would be able to decide that there is an interpretation
of the values of the variables of Bφ such that Bφ is globally monotone in distribution, we
are able to decide (φ,XE,XA,XM). On the other hand, given that the network is globally
monotone, we know that there cannot be an instantiation to XE such that (φ,XE,XA,XM)

is satisfied. Hence, Global E-Monotonicity is co-npnppp-hard. It may not be obvious
that the above construction can be made in polynomial time. Note that, regardless how large
XE becomes, both the conditional probabilities Pr(ψ |XE) and Pr(C | Vφ ∧ ψ) can be suc-
cinctly represented using families of polynomial sized circuits. For Pr(ψ |XE) these circuits
are a trivial combination of AND-gates deciding whether wi corresponds to XE. We argue
that a similar family of circuits exists for Pr(C |Vφ ∧ ψ) by noting that the probabilities are
fractions whose denominator has the form 2m, with m =| XE |≤| X |. Therefore, Bφ can be
constructed using succinct inputs in polynomial time.

To prove completeness for co-npnppp , one needs to prove membership as well as hard-

ness. Note that Global E-Monotonicity is in co-npnpppfor a restricted class of networks,
namely networks with either explicit conditional probability representation, or with succinctly
represented interpretations, i.e., networks in which every ordering can be calculated in poly-
nomial time from the input. For a membership proof of that restricted class of networks we
use not-weak Global Monotonicity as an nppporacle. With the aid of this oracle, an
interpretation for the values of the variables that violates monotonicity is an NP member-
ship certificate for not-Global E-Monotonicity , thus by definition the problem is in

co-npnppp . Nevertheless, without this restriction, the NP membership certificate (i.e., the
interpretation of the variables) can grow exponentially large with respect to the succinct

2if Bφ is isotone for x < x̄, it is antitone for x̄ < x and vice versa
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Figure 5: Known complexity results

conditional probability representation, even when using a factorial number notation (see e.g.
page 65–66 of [19]) to represent permutations.

6 Conclusion

In this paper, several variants of the Global Monotonicity problem in probabilistic net-
works were introduced. In Figure 5, the known complexity results for strong and weak global
monotonicity variants with explicit or succinct conditional probability distributions are pre-
sented. The main result is the hardness proof of Global E-Monotonicity with succinct

probability representation. It is established that this problem is co-npnppp-hard. Further-
more it has been shown that the completeness results for weak and strong variants of Global
Monotonicity are preserved when succinct input is used, rather than explicit conditional
probability tables. Unfortunately, a similar complexity result for Global E-Monotonicity
with explicit representation could not be established. This problem is to be situated either in

co-nppp, in co-npnppp , or somewhere in between.
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