
Edges and Switches, Tunnels and Bridges

D. Eppstein

M. van Kreveld

E. Mumford

B. Speckmann

Department of Information and Computing Sciences, Utrecht University

Technical Report UU-CS-2007-042

www.cs.uu.nl

ISSN: 0924-3275



Edges and Switches, Tunnels and Bridges

D. Eppstein1 M. van Kreveld2 E. Mumford3 B. Speckmann3

1Department of Computer Science, University of California, Irvine, USA.

eppstein@ics.uci.edu
2Department of Information and Computing Sciences, Utrecht University, The Netherlands.

marc@cs.uu.nl
3 Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands.

e.mumford@tue.nl and speckman@win.tue.nl

Abstract

Edge casing is a well-known method to improve the readability of drawings of non-planar graphs.

A cased drawing orders the edges of each edge crossing and interrupts the lower edge in an appropriate

neighborhood of the crossing. Certain orders will lead to a more readable drawing than others. We

formulate several optimization criteria that try to capture the concept of a “good” cased drawing.

Further, we address the algorithmic question of how to turn a given drawing into an optimal cased

drawing. For many of the resulting optimization problems, we either find polynomial time algorithms

or NP-hardness results.

1 Introduction

Drawings of non-planar graphs necessarily contain edge crossings. The vertices of a drawing are com-
monly marked with a disk, but it can still be difficult to detect a vertex within a dense cluster of edge
crossings. Edge casing is a well-known method—used, for example, in electrical drawings and, more
generally, in information visualization—to alleviate this problem and to improve the readability of a
drawing. A cased drawing orders the edges of each crossing and interrupts the lower edge in an appro-
priate neighborhood of the crossing. One can also envision that every edge is encased in a strip of the
background color and that the casing of the upper edge covers the lower edge at the crossing. See Fig. 1
for an example.

If there are no application specific restrictions that dictate the order of the edges at each crossing,
then we can in principle choose freely how to arrange them. Certain orders will lead to a more readable
drawing than others. In this paper we formulate several optimization criteria that try to capture the
concept of a “good” cased drawing. Further, we address the algorithmic question of how to turn a given
drawing into an optimal cased drawing.

Definitions. Let G be a graph with n vertices and m edges and let D be a drawing of G with k crossings.
We want to turn D into a cased drawing where the width of the casing is given in the variable casingwidth .
To avoid that the casing of an edge covers a vertex we assume that no vertex v of D lies on (or very close
to) an edge e of D unless v is an endpoint of e. Further, no more than two edges of D cross in one point
and any two crossings are far enough apart so that the casings of the edges involved do not interfere.
With these assumptions we can consider crossings independently. Without these restrictions the problem
changes significantly—optimization problems that are solvable in polynomial time can become NP-hard.
In Section 5 we discuss in detail the effects of removing the restrictions on the input.

We define the edge crossing graph GDC for D as follows. GDC contains a vertex for every edge of D
and an edge for any two edges of D that cross. Let C be a crossing between two edges e1 and e2. In

Figure 1: Normal and cased drawing of a graph.

2



Edges and Switches, Tunnels and Bridges 3

e1

e2

C1

C2

Figure 2: Tunnels and bridges. Figure 3: Stacking and weaving.

a cased drawing either e1 is drawn on top of e2 or vice versa. If e1 is drawn on top of e2 then we say
that C is a bridge for e1 and a tunnel for e2. In Fig. 2, C1 is a bridge for e1 and a tunnel for e2. The
length of a tunnel is casingwidth/ sinα, where α ≤ π/2 is the angle of the edges at the crossing. A pair
of consecutive crossings C1 and C2 along an edge e is called a switch if C1 is a bridge for e and C2 is a
tunnel for e, or vice versa. In Fig. 2, (C1, C2) is a switch.

Stacking and weaving. When we turn a given drawing into a cased drawing, we need to define a
drawing order for every edge crossing. We can choose to either establish a global top-to-bottom order
on the edges, or to treat each edge crossing individually. We call the first option the stacking model and
the second one the weaving model, since cyclic overlap of three or more edges can occur (see Fig. 3).

Quality of a drawing. Globally speaking, two factors may influence the readability of a cased drawing
in a negative way. Firstly, if there are many switches along an edge then it might become difficult to
follow that edge. Drawings that have many switches can appear somewhat chaotic. Secondly, if an edge
is frequently below other edges, then it might become hardly visible. These two considerations lead to
the following optimization problems for a drawing D.

MinTotalSwitches Minimize the total number of switches.

MinMaxSwitches Minimize the maximum number of switches for any edge.

MinMaxTunnels Minimize the maximum number of tunnels for any edge.

MinMaxTunnelLength Minimize the maximum total length of tunnels for any edge.

MaxMinTunnelDistance Maximize the minimum distance between any two consecutive tunnels.

Cased drawings are also used in certain types of mazes where paths may cross (see, for example, Fig. 4).
For this application the paths between junctions should be difficult to follow and the whole picture
should look somewhat chaotic. This motivates the problem of maximizing the number of switches of a
drawing D.

MaxTotalSwitches Maximize the total number of switches.

Figure 4: “Help the fox eat the rabbit.”



4 1 Introduction

c edges

Figure 5: Optimal drawing in the weaving model for MinTotalSwitches.

Fig. 5 illustrates that the weaving model is stronger than the stacking model for MinTotalSwitches—
no cased drawing of this graph in the stacking model can reach the optimum of four switches. For, the
thickly drawn bundles of c > 4 parallel edges must be cased as shown (or its mirror image) else there
would be at least c switches in a bundle, the four vertical and horizontal segments must cross the bundles
consistently with the casing of the bundles, and this already leads to the four switches that occur as
drawn near the midpoint of each vertical or horizontal segment. Thus, any deviation from the drawing
in the casing of the four crossings between vertical and horizontal segments would create additional
switches. However, the drawing shown is not a stacked drawing.

Related work. If we consider only simple arrangements of line segments in the plane as our initial
drawing, then there is a third model to consider, an intermediate between stacking and weaving: drawings
which are plane projections of line segments in three dimensions. We call this model the realizable model.
Clearly every cased drawing in the stacking model is also a drawing in the realizable model, but not
every cased drawing in the weaving model can be realized (see [10]). The optimal drawing in Fig. 5 can
be realized, hence the realizable model is stronger than the stacking model.

Fig. 6 shows that the weaving model is stronger than the realizable model for MinTotalSwitches—
no cased drawing of this graph in the realizable model can reach the optimum number of 12 switches.
The reasoning is quite similar to the one employed for the construction in Fig. 5. The thickly drawn
bundles of c > 12 parallel edges must be cased as shown (or its mirror image) else there would be at
least c switches in each bundle. The 8 vertical and horizontal “normal” edges must cross the bundles
consistently with the casing of the bundles, and this already leads to the 12 switches as drawn in this
figure. Thus, any deviation from the drawing in the casing of the 16 crossings between the normal edges
would create additional switches. However, the normal edges as drawn here constitute a perfect 4 × 4
weaving which can not be realized (see [10]).

Figure 6: Optimal drawing in the weaving model for MinTotalSwitches.



Edges and Switches, Tunnels and Bridges 5

Model Stacking Weaving

MinTotalSwitches open O((q + 1)k + q5/2 log3/2 k)

MaxTotalSwitches open O((t + 1)k + t5/2 log3/2 k)
MinMaxSwitches open open

MinMaxTunnels O(m log m + k) exp. O(m4)
MinMaxTunnelLength O(m log m + k) exp. NP-hard
MaxMinTunnelDistance O(m log m + k log m) exp. O((m + K) log m) exp.

Table 1: Table of results: n is the number of vertices, m is the number of edges, k = O(m2) is the
number of crossings, K = O(m3) is the total number of pairs of crossings on the same edge, q = O(k) is
the number of odd face polygons, and t = O(k) is the number of s-odd face polygons.

Results. For many of the problems described above, we either find polynomial time algorithms or
NP-hardness results in both the stacking and weaving models. We summarize our results in Table 1.
All our bounds assume that m = Ω(n) and that k = Ω(m). Furthermore, we assume that the input
drawing is given as an arrangement, in particular, all crossings are given as vertices of this arrangement.
Our results are derived for straight line input drawings, but several of them also generalize to curved
drawings. Section 2 presents the results concerning the optimization problems that seek to minimize the
number of switches, Section 3 gives our results on maximizing the number of switches, and Section 4
discusses our solutions to the optimization problems that concern the tunnels. In Section 5 we show that
MinTotalSwitches becomes NP-hard in both the weaving and the stacking model if we allow more
than three edges to cross in one point. We conclude with some open problems.

2 Minimizing switches

In this section we discuss results related to the MinTotalSwitches and MinMaxSwitches problems.
We first discuss some non-algorithmic results giving simple bounds on the number of switches needed,
and recognition algorithms for graphs needing no switches. As we know little about these problems for
the stacking model, all results stated in this section will be for the weaving model.

Lemma 1 Given a drawing D of a graph we can turn D into a cased drawing without any switches if

and only if the edge crossing graph GDC is bipartite.

Corollary 2 Given a drawing D of a graph we can decide in O((n + m) log(n + m)) time if D can be

turned into a cased drawing without any switches.

Proof. We apply the bipartiteness algorithm of [3]. Note that this does not construct the arrangement,
so there is no term with k in the runtime. �

Define a vertex-free cycle in a drawing of a graph G to be a face f formed by the arrangement of the
edges in the drawing, such that there are no vertices of G on the boundary of f . An odd vertex-free cycle

is a vertex-free cycle composed of an odd number of segments of the arrangement.

Lemma 3 Let f be an odd vertex-free cycle in a drawing D. Then in any casing of D, there must be a

switch on one of the segments of f .

Proof. Unless there is a switch, the segments must alternate between those that cross above the previous
segment, and those that cross below the previous segment. However, this alternation cannot continue
all the way around an odd cycle, for it would end up in an inconsistent state from how it started. �

Lemma 4 Given a drawing D of a graph the minimum number of switches of any cased drawing obtained

from D is at least half of the number of odd vertex-free cycles in D.

Proof. Let o be the number of odd vertex-free cycles in D. By Lemma 3, each odd vertex-free cycle must
have a switch on one of its segments. Choose one such switch for each cycle; then each segment belongs
to at most two vertex-free cycles, so these choices group the odd cycles into pairs of cycles sharing a
common switch, together with possibly some unpaired cycles. The number of pairs and unpaired cycles
must be at least o/2, so the number of switches must also be this large. �



6 2 Minimizing switches

Figure 7: O(n) edges and Ω(n2) triangles.

f1

f2

Figure 8: A degree-one graph, f1 is an odd
polygon and f2 is an even polygon.

Lemma 5 For any n large enough, a drawing of a graph G with n vertices and O(n) edges exists for

which any crossing choice gives rise to Ω(n2) switches.

Proof. A construction with three sets of parallel lines, each of linear size, gives Ω(n2) vertex-free trian-
gles, and each triangle gives at least one switch (see Fig. 7). �

Lemma 6 For any n large enough, a drawing of a graph G with n vertices and O(n2) edges exists for

which any crossing choice gives rise to Ω(n4) switches.

Proof. We build our graph as follows: make a very elongated rectangle, place n/6 vertices equally spaced
on each short edge, and draw the complete bipartite graph. This graph has (n/6)2 edges. One can prove
that there is a strip parallel to the short side of the rectangle, such that the parts of the edges inside
the strip behave in the same way as parallel ones do with respect to creating triangles when overlapped
the way it is described in the previous lemma. This gives us the desired graph with Ω(n4) triangles, and
hence with Ω(n4) switches. �

We define a degree-one graph to be a graph in which every vertex is incident to exactly one edge; that
is, it must consist of a collection of disconnected edges (see Fig. 8).

Lemma 7 Let D be a drawing of a graph G. Then there exists a drawing D′ of a degree-one graph G′,

such that the edges of D correspond one-for-one with the edges of D′, casings of D correspond one-for-one

to casings of D′, and switches of D correspond one-for-one with switches of D′.

Proof. Form G′ by placing a small circle around each vertex of G. Given an edge e = (u, v) in G, let
ue be the point where e crosses the circle around u and similarly let ve be the point where e crosses
the circle around v. Form D′ and G′ by replacing each edge e = (u, v) in G by the corresponding edge
(ue, ve), drawn as the subset of edge e connecting those points.

As these replacements do not occur between any two crossings along any edge, they do not affect the
switches on the edge. Both drawings have the same set of crossings, and any switch in a casing of one
drawing gives rise to a switch in the corresponding casing of the other drawing. �

In a drawing of a degree-one graph, define a polygon to be a sequence of segments of the arrangement
formed by the drawing edges that forms the boundary of a simple polygon in the plane. Define a face

polygon to be a polygon that forms the boundary of the closure of a face of the arrangement; note that
there may be edges drawn in the interior of this polygon, as long as they do not separate it into multiple
components.

Lemma 8 In a drawing of a degree-one graph, there can be no vertex on any segment of a polygon.

Proof. We have already required that no vertex can lie on an edge unless it is the endpoint of an edge.
And, if a segment contains the endpoint of an edge, it cannot continue past the endpoint to form the
boundary of a polygon. �

Note, however, that a polygon can contain vertices in its interior. Define the complexity of a polygon to
be the number of segments forming it, plus the number of graph vertices interior to the polygon. We say
that a polygon is odd if its complexity is an odd number, and even if its complexity is an even number
(see Fig. 8).



Edges and Switches, Tunnels and Bridges 7

Lemma 9 Let p be a polygon in a drawing of a degree-one graph. Then, modulo two, the complexity

of p is equal to the sum of the complexities of the face polygons of faces within p.

Proof. Each segment of p contributes one to the complexity of p and one to the complexity of some face
polygon. Each vertex within p contributes one to the complexity of p and one to the complexity of the
face that contains it. Each segment within the interior of p either separates two faces, and contributes
two to the total complexity of faces within p, or does not separate any face and contributes nothing to
the complexity. Thus in each case the contribution to p and to the sum of its faces is the same modulo
two. �

Lemma 10 Let p be an odd polygon in a drawing of a degree-one graph. Then there exists an odd face

polygon in the same drawing.

Proof. By Lemma 9, the complexity of p has the same parity as the sum of the complexities of its faces.
Therefore, if p is odd, it has an odd number of odd faces, and in particular there must be a nonzero
number of odd faces. �

Lemma 11 Let D be a drawing of a degree-one graph. Then D has a casing with no switches if and

only if it has no odd face polygon.

Proof. As we have seen, D has a casing with no switches if and only if the edge crossing graph is
bipartite. This graph is bipartite if and only if it has no odd cycles, and an odd cycle in the edge crossing
graph corresponds to an odd polygon in D. For, if C is an odd cycle in the edge crossing graph, it must
lie on a polygon p of D. Each crossing in C contributes one to the complexity of this polygon. Each
edge of D that crosses p without belonging to C either crosses it an even number of times (contributing
that number of additional segments to the complexity of p) and has both endpoints inside p or both
outside p, or it crosses an odd number of times and has one endpoint inside p; thus, it contributes an
even amount to the complexity of p. Thus, p must be an odd polygon. By Lemma 10, there is an odd
face polygon in D. Conversely, any odd face polygon in D can be shown to form an odd cycle in the
edge crossing graph. �

Theorem 12 MinTotalSwitches in the weaving model can be solved in time O((q+1)k+q5/2 log3/2 k),
where k denotes the number of crossings in the input drawing and q denotes the number of its odd face

polygons.

Proof. Let D be the drawing which we wish to case for the minimum number of switches. By Lemma 7,
we may assume without loss of generality that each vertex of D has degree one.

We apply a solution technique related to the Chinese Postman problem, and also to the problem of
via minimization in VLSI design [2]: form an auxiliary graph Go, and include in Go a single vertex for
each odd face polygon in D. Also include in Go an edge connecting each pair of vertices, and label this
edge by the number of segments of the drawing that are crossed in a path connecting the corresponding
two faces in D that crosses as few segments as possible. We claim that the minimum weight of a perfect
matching in Go equals the minimum total number of switches in any casing of D.

In one direction, we can case D with a number of switches equal to or better than the weight of the
matching, as follows: for each edge of the matching, insert a small break into each of the segments in
the path corresponding to the edge. The resulting broken arrangement has no odd face cycles, for the
breaks connect pairs of odd face cycles in D to form larger even cycles. Therefore, by Lemma 11, we
can case the drawing with the breaks, without any switches. Forming a drawing of D by reconnecting
all the break points adds at most one switch per break point, so the total number of switches equals at
most the weight of the perfect matching.

In the other direction, suppose that we have a casing of D with a minimum number of switches; we
must show that there exists an equally good matching in Go. To show this, consider the drawing formed
by inserting a small break in each segment of D having a switch. This eliminates all switches in the
drawing, so by Lemma 11, the modified drawing has no odd face polygons. Consider any face polygon in
the modified drawing; by Lemma 10 it must include an even number of odd faces in the original drawing.
Thus, the odd faces of D are connected in groups of evenly many faces in the modified drawing, and
within each such group we can connect the odd faces in pairs by paths of breaks in the drawing, giving
a matching in Go with total weight at most equal to the number of switches in D.



8 3 Maximizing switches

The number of vertices of the graph Go is O(q), where q is the number of odd face polygons in D.
We can construct Go in time O(k + qk) where k is the number of crossings in D by using breadth-first
search in the arrangement dual to D to find the distances from each vertex to all other vertices. A
minimum weight perfect matching in a complete weighted graph with integer weights bounded by k can
be found in time O(q5/2 log3/2 k) using the algorithm of Gabow and Tarjan [5]. Therefore the time for

this algorithm is O((q + 1)k + q5/2 log3/2 k). �

For MinMaxSwitches, we have the following weaker result.

Theorem 13 If the edge crossing graph GDC is planar, then we can assure at most four switches along

any edge in the weaving model.

Proof. Find an edge e that intersects at most five others, take e out, and recursively treat the rest. Put
e back in such a way that it does not increase the switch count of any of the edges it intersects. Edge e
itself will have at most four switches. �

3 Maximizing switches

In this section we describe a solution for the MaxTotalSwitches problem in the weaving model.
We define a twin along an edge e in a cased drawing to be a pair of consecutive crossings along e

such that the crossings are either both bridges or both tunnels for e. Hence every pair of consecutive
crossings along an edge e in a cased drawing forms either a twin or a switch for e. Let np be the number
of all pairs of consecutive crossings along all the edges of a drawing D, and let nt and ns be the number
of twins and switches, respectively, in a given casing of D. Clearly np = ns + nt. Thus the problem of
finding the maximal number of switches for a cased drawing is equivalent to the problem of finding the
minimal number of twins. We call a cased drawing without twins a twin-free casing or a perfect weaving.
The cased drawing obtained from Dc by turning bridges into tunnels and vice versa is the inversion of
Dc and denoted by Dc. If Dc is a perfect weaving then so is Dc.

Thanks to Lemma 7 we can again limit ourselves to considering degree-one graphs only. Let p be a
vertex of a polygon (which is defined as in the previous section). We say that p is a side vertex of the
polygon if the edges of the polygon form a 180◦ angle at p, and p is called a corner vertex otherwise
(see Fig. 9: side vertices are depicted as white squares, corner vertices as black squares). We define the
s-complexity of a polygon as the number of its side vertices. A polygon of odd s-complexity is called
s-odd.

Lemma 14 Let f be an s-odd polygon of a degree-one graph drawing D, then for any casing of D one

of the edges forming f has a twin.

Proof. Let e1, . . . , ek be the edges of D forming f in clockwise order. Then the first crossing of ei along
f in clockwise order is ci,1 = ei ∩ ei−1, for 1 < i ≤ k, c1,1 = e1 ∩ ek, and the last crossing of ei along f
in clockwise order is ci,2 = ei ∩ ei−1 for 1 ≤ i < k, ck,2 = ek ∩ e1.

Assume that a cased drawing Dc of D exists where none of ei, 1 ≤ i ≤ k, has a twin. Then if an edge
ei has an odd number of side vertices between ci,1 and ci,2, then ci,1 and ci,2 are cased the same way,
otherwise they are cased differently. By symmetry we may assume that c1,1 is a bridge. Since in total f
has an odd number of side vertices, ck,2 must be a bridge as well. But this is impossible because c1,1 and
ck,2 are the same crossing. Hence for any cased drawing of D there is an edge in f that has a twin. �

Lemma 15 Let f be a polygon in a drawing of a degree-one graph. Then the parity of the number of

side vertices of f is equal to the parity of the number of graph vertices inside f .

Proof. If an edge e of D contains part of the boundary of f we call it a boundary edge for f , otherwise
we say that e is an external edge for f . Let e be an external edge for f . Each crossing of e with the
boundary of f is a side vertex of f—see Fig. 9. If e intersects the boundary of the polygon an odd
number of times, then it has only one vertex inside it. If it intersects the boundary of f an even number
of times, then it either has both vertices inside f or both outside f . Hence the parity of the number ns,1

of times that edges external for f cross f ’s boundary is equal to the parity of the number nv,1 of the end
vertices these edges contribute to the interior of f .



Edges and Switches, Tunnels and Bridges 9

c1
c2

c3

s1

s2

s3

e1

e2

Figure 9: Gray edges do not contribute to the boundary of the gray polygon f ; s1, s2 and s3 are the side
vertices formed by external edges that cross the boundary of f , and c1, c2 and c3 are the side vertices
formed by pairs of boundary edges for f . c1 and c2 are charged to e2 and c3 is charged to e1.

Now let e be a boundary edge for f . We say that a side vertex v is charged to e if v ∈ e but the
segments of e incident to v are not part of f ’s boundary, see Fig. 9 for an example. This way each side
vertex formed by a pair of boundary edges is only charged to one of the edges.

If both ends of e lie outside f then an even number of side vertices of f is charged to e. The same
happens if both ends of e lie inside f . If f contains only one end of e then e is charged by an odd number
of side vertices of f . Hence the number ns,2 of side vertices of f formed by pairs of boundary edges and
the number nv,2 of vertices contributed by boundary edges to the interior of f have the same parity. The
total number of side vertices of f is ns,1 + ns,2, and the total number of vertices inside f is nv,1 + nv,2.
These numbers have the same parity. �

Lemma 16 If a drawing has an s-odd polygon, then it also has an s-odd face polygon.

Proof. Let f be an s-odd polygon in a drawing D, and assume it has k vertices inside it. Then k is
the sum of the numbers of the vertices inside all face polygons inside f . Since k is odd, there is a face
polygon of odd s-complexity inside f . �

Consider an arrangement of closed or infinite curves in the plane such that every vertex of the arrangement
has even degree. We can naturally extend the notion of a cased drawings to such an arrangement.

Lemma 17 Let A be an arrangement of closed or infinite curves in the plane where every vertex has

even degree. Then A has a perfect weaving.

Proof. It is well known (see [6]) that the faces of the arrangement A can be two-colored such that no
two edge-adjacent faces have the same color. Consider such a two-coloring of the faces into red and blue
faces. At any crossing c of two curves, choose the order such that the curve that has red to its left when
going away from c is above the curve that has red to its right. Then any edge bounding any face of the
arrangement has a tunnel and a bridge. �

Lemma 18 A drawing D of a degree-one graph where all vertices lie on the outer face has a perfect

weaving.

Proof. We can see such a graph as an arrangement of lines in the plane (by extending the edges beyond
their vertices). Then D has a perfect weaving by the previous lemma. �

Lemma 19 A drawing D of a degree-one graph has a twin-free cased drawing if and only if it has no

s-odd polygons.

Proof. Let D be a degree-one graph drawing without s-odd face polygons. For each internal face of D
we pairwise connect the vertices inside it. The edges that have the vertices on the outer face we extend
infinitely beyond their outer face vertices. The obtained arrangement of curves in the plane has a perfect
weaving by Lemma 17. It is easy to see that removing the added connections leaves us with a perfect
weaving of D. �

Given a drawing, the casing with maximal number of switches can be found in almost exactly the same
way as the drawing with minimal number of switches.



10 4 Minimizing tunnels

(b)

f1 f2
2

(a)

f1 f2

(c)

f1 f2

Figure 10: (a) A degree-one graph drawing D with two s-odd faces f1 and f2. The dotted line represents
the path connecting them that crosses minimum number of edges possible. (b) The auxiliary graph Gs

for D. (c) D with (gray) helper edges added along the path connecting f1 and f2.

Theorem 20 MaxTotalSwitches in the weaving model can be solved in time O((t+1)k+t5/2 log3/2 k),
where k denotes the number of crossings in the input drawing and t denotes the number of its s-odd face

polygons.

Proof. We apply the same technique used in the proof of Theorem 12. We construct an auxiliary graph
Gs that contains a vertex for each s-odd face polygon. Then we connect each pair of vertices with an
edge and label them in exactly the same way as the edges of graph Go. Then the minimum total number
of twins in any casing of D is equal to the minimum weight perfect matching of Gs.

First we show that we can always have a casing with at most as many twins as the weight of the
matching. For each edge of the matching, consider its path in the arrangement and the edges that it
crosses. For each crossed edge e of the arrangement we add a short edge that crosses only edge e, see
Fig. 10. We refer to these little edges and their end vertices as helper edges and vertices.

The resulting graph has no s-odd faces and can be cased as a perfect weaving. We remove the helper
edges and vertices, getting at most one twin per removed edge. The resulting casing has as many twins
as there were helper edges, hence the number of twins in the resulting graph is at most the weight of the
matching.

Now assume we have a casing with minimum number of twins. We place a helper edge between the
edges forming the twin along an edge e such that the helper edge crosses only e and case the crossing
along e opposite with respect to the twins along e. The obtained drawing is cased and has no more
twins. Hence it has no s-odd face polygons by Lemma 19.

We added an even number of helper vertices in total: an odd number of helper vertices to each s-odd
face and an even number of helper vertices to each s-even face. Now for each face that has more than
one helper vertex we pair the helper vertices arbitrarily and connect each pair with a so-called connector

edge. As a result we have a set of paths of helper vertices, where helper and connector edges alternate
in each path. Each s-odd face of our arrangement contains exactly one end point of such a path. Each
path is non-trivial (it contains at least two vertices). Hence the set of paths forms a perfect matching
with weight equal to the number of twins in the casing. �

4 Minimizing tunnels

In this section we present three algorithms that solve MinMaxTunnels, MinMaxTunnelLength, and
MaxMinTunnelDistance in the stacking model. We also present algorithms for MinMaxTunnels

and MaxMinTunnelDistance in the weaving model. MinMaxTunnelLength is NP-hard in the
weaving model.

4.1 Stacking model

In the stacking model, some edge e has to be bottommost. This immediately gives the number of tunnels
of e, the total length of tunnels of e, and the shortest distance between two tunnels of e. The idea of the
algorithm is to determine for each edge what its value would be if it were bottommost, and then choose
the edge that is best for the optimization to be bottommost (smallest value for MinMaxTunnels and
MinMaxTunnelLength, and largest value for MaxMinTunnelDistance). The other m − 1 edges
are stacked iteratively above this edge. It is easy to see that such an approach indeed maximizes the



Edges and Switches, Tunnels and Bridges 11

minimum, or minimizes the maximum. We next give an efficient implementation of the approach. The
idea is to maintain the values of all not yet selected edges under consecutive selections of bottommost
edges instead of recomputing it.

We start by computing the arrangement of edges in O(m log m + k) expected time, for instance using
Mulmuley’s algorithm [9]. This allows us to determine the value for all edges in O(k) additional time.

For MinMaxTunnels and MinMaxTunnelLength, we keep all edges in a Fibonnacci heap on this
value. One selection involves an extract-min, giving an edge e, and traversing e in the arrangement to
find all edges it crosses. For these edges we update the value and perform a decrease-key operation
on the Fibonnacci heap. For MinMaxTunnels we decrease the value by one and for MinMaxTun-

nelLength we decrease by the length of the crossing, which is casingwidth/ sinα, where α is the angle
the crossing edges make. For MinMaxTunnels and MinMaxTunnelLength this is all that we need.
We perform m extract-min and k decrease-key operations. The total traversal time along the edges
throughout the whole algorithm is O(k). Thus, the algorithm runs in O(m log m + k) expected time.

For MaxMinTunnelDistance we use a Fibonnacci heap that allows extract-max and increase-

key. For the selected edge we again traverse the arrangement to update the values of the crossing
edges. However, we cannot update the value of an edge in constant time for this optimization. We
maintain a data structure for each edge that maintains the minimum tunnel distance in O(log m) time
under updates. The structure is an augmented balanced binary search tree that stores the edge parts in
between consecutive crossings in its leaves. Each leaf stores the distance between these crossings. Each
internal node is augmented such that it stores the minimum distance for the subtree in a variable. The
root stores the minimum distance of the edge if it were the bottommost one of the remaining edges.
An update involves merging two adjacent leaves of the tree and computing the distance between two
crossings. Augmentation allows us to have the new minimum in the root of the tree in O(log m) time
per update. In total this takes O(m log m + k log m) expected time.

Theorem 21 Given a straight-line drawing of a graph with n vertices, m = Ω(n) edges, and k edge

crossings, we can solve MinMaxTunnels and MinMaxTunnelLength in O(m log m + k) expected

time and MaxMinTunnelDistance in O(m log m + k log m) expected time in the stacking model.

4.2 Weaving model

In the weaving model, the polynomial time algorithm for MinMaxTunnels comes from the fact that
the problem of directing an undirected graph, and minimizing the maximum indegree, can be solved in
time quadratic in the number of edges [11]. We apply this on the edge crossing graph of the drawing,
and hence we get O(m4) time. For minimizing tunnel length per edge, we can show:

Theorem 22 MinMaxTunnelLength is NP-hard in the weaving model.

Proof. The reduction is from planar 3-sat, shown NP-hard by Lichtenstein [8]. The reduction is
similar to the one for maximizing minimum visible perimeter length in sets of opaque disks of unit
size [1]. Note that the proof implies that no PTAS exists. The reduction only uses edges that intersect
two or three other edges, so restricting the number of intersections per edge to be constant leaves the
problem NP-hard. Also, the number of orientations of edges is constant.

A cased drawing of a set of line segments has property (A) if every line segment has at most two
tunnels at crossings with a perpendicular segment, or one tunnel at a crossing with a non-perpendicular
segment. Our reduction is such that a planar 3-sat instance is satisfiable if and only if a set of line
segments has a cased drawing with property (A).

We arrange a set of line segments of equal length, using only four orientations. The slopes are −4,
−

1

4
, + 1

4
, and +4. If two perpendicular line segments cross, then one has tunnel length equal to the

width w of the casing at the crossing. If two other line segments cross, then one edge has tunnel length
w/ sin(γ) = 2, 125 · w at the crossing, where γ = 2 · arctan(1

4
) is the (acute) angle between the line

segments. Therefore, a cased drawing with property (A) has tunnel length at most 2, 125 · w, whereas
a cased drawing that does not satisfy property (A) has an edge that has tunnel length at least 3 · w.
This shows the direct relation between property (A) and MinMaxTunnelLength, and provides the
gap that shows that no PTAS exists.

A Boolean variable xi is modeled by a cycle of crossing line segments as in Fig. 11. Along the cycle,
crossings alternate between perpendicular and non-perpendicular, and hence it has even length. The



12 4 Minimizing tunnels

Towards a clause where

the variable is used

Towards a

clause where

the negation

of the variable

is used

Variable

set to true

Towards a clause

where the negation

of the variable is used

Figure 11: Boolean variable and the connection of channels.

variable satisfies property (A) iff the cycle has cyclic overlap, which can be clockwise or counterclockwise.
One state is associated with xi =true, the other is associated with xi = false. In each state, the line
segments of the cycle alternate in allowing an additional, perpendicular line segment to have a bridge
over the line segment of the cycle. In the figure, where the cycle is in the true-state, the line segments
with slope + 1

4
and +4 allow such an extra tunnel under a line segment that is not from the cycle. If

the cycle is in the false-state, the line segments with slope −4 and −
1

4
allow the extra tunnel. We use

the line segments of slope −
1

4
to make connections and channels to clauses where xi occurs, and the line

segments with slope + 1

4
for clauses where xi occurs. Note that the variable can be made larger easily to

allow more connections, in case the variable occurs in many clauses.

Channels are formed by line segments that do not cross perpendicularly. So any line segment of the
channel can have a tunnel at at most one of its two crossings, or else property (A) is violated. Note that a
sequence of crossing line segments with slopes such as −4, +4, + 1

4
, − 1

4
gives a turn in the channel. The

exact position of the crossing is not essential and hence we can easily reach any part of the plane with
a channel, and ending with a line segment of any orientation. A 3-sat clause is formed by a single line

From a variable that

makes the clause true

From variables

that do not make

the clause true

clause

Figure 12: A clause construction.

segment that is crossed perpendicularly by three other line segments, see Fig. 12. Property (A) holds if
the clause line segment has at most two tunnels. This corresponds directly to satisfiability of the clause.

With this reduction, testing if property (A) holds is equivalent to testing if the planar 3-sat instance
is satisfiable, and NP-hardness follows. �

In the remainder of this section we show how to solve MaxMinTunnelDistance. We observe that
there are polynomially many possible values for the smallest tunnel distance, and perform a binary search
on these, using 2-sat instances as the decision tool.

We first compute the arrangement of the m edges to determine all crossings. Only distances between
two—not necessarily consecutive—crossings along any edge can give the minimum tunnel distance. One



Edges and Switches, Tunnels and Bridges 13

δ

e1

e2

e3

e4

e5

Figure 13: The 2-sat formula (x13 ∨ x23) ∧ (x23 ∨ x34) ∧ (x23 ∨ x35) ∧ (x34 ∨ x35).

edge crosses at most m − 1 other edges, and hence the number of candidate distances, K, is O(m3).
Obviously, K is also O(k2). From the arrangement of edges we can determine all of these distances in
O(m log m + K) time. We sort them in O(K log K) time to set up a binary search. We will show that
the decision step takes O(m + K) time, and hence the whole algorithm takes O(m log m + K log K) =
O((m + K) logm) time.

Let δ be a value and we wish to decide if we can set the crossings of edges such that all distances
between two tunnels along any edge is at least δ. For every two edges ei and ej that cross and i < j, we
have a Boolean variable xij . We associate xij with true if ei has a bridge at its crossing with ej , and
with false otherwise. Now we traverse the arrangement of edges and construct a 2-sat formula. Let
ei, ej, and eh be three edges such that the latter two cross ei. If the distance between the crossings is
less than δ, then ei should not have the crossings with ej and eh as tunnels. Hence, we make a clause
for the 2-sat formula as follows (Fig. 13): if i < j and i < h, then the clause is (xij ∨ xih); the other
three cases (i > j and/or i > h) are similar. The conjunction of all clauses gives a 2-sat formula that
is satisfiable if and only if we can set the crossings such that the minimum tunnel distance is at least
δ. We can construct the whole 2-sat instance in O(m + K) time since we have the arrangement, and
satisfiability of 2-sat can be determined in linear time [4].

Theorem 23 Given a straight-line drawing of a graph with n vertices and m = Ω(n) edges, we can solve

MaxMinTunnelDistance in O((m+K) log m) expected time in the weaving model, where K = O(m3)
is the total number of pairs of crossings on the same edge.

5 Removing the restrictions

The restrictions that we impose on the input drawing—no vertex lies on a or very close to an edge, no
more than two edges cross in one point, and crossing are not too close—have a significant influence on
the problems that we study. For example, if we allow edges to partly overlap with vertices, then it is
natural to always draw the vertex on top with a casing around it. In this case, however, there might
be no cased drawing in the stacking model, because three edges that necessarily give cyclic overlap can
easily be constructed. Testing if cyclic overlap occurs, and hence, if a cased drawing in the stacking
model exists can be done by topological sort.

If we remove the restriction that edge crossings are not too close, we may have three edges that intersect
so close that it is not possible for the edges to have a tunnel at the one crossing and a bridge at the
other. Consequently, three such edges must (locally) be stacked, where one edge has a single bridge over
both other edges, and both other edges have a single tunnel. Allowing such “triple crossings” makes the
problem MinTotalSwitches NP-hard.

Theorem 24 If triple crossings of edges are allowed, then MinTotalSwitches is NP-hard in both the

weaving and the stacking model.

Proof. By reduction from planar max-2sat shown NP-hard by [7]. Assume an instance of such a
problem which has n Boolean variables and m clauses. The objective is to satisfy as many of the 2sat

clauses as possible. We reduce the instance to an instance of cased drawing such that the number of
switches is the same as the number of unsatisfied clauses in the planar max-2sat instance.

A variable is an even cycle of bundles of edges. Each bundle consists of m + 1 parallel edges that
are either horizontal or vertical. A horizontal bundle intersects two vertical bundels, and each vertical
bundle intersects two horizontal bundles, see Fig. 14. Since the variables part of the construction is
bipartite, it need not contain any switches. Either all horizontal edges are on top of the vertical ones, or
vice versa. This corresponds to the true and false assignment of the variable, respectively.



14 6 Conclusions and Open Problems

true false

0

switches

false false

1

switch

true true

0

switches

false true

0

switches

m + 1 edges

m + 1 edges

Figure 14: A variable, a channel, and four cases of a clause construction.

We tap off a channel from a variable construction with a single vertical edge as in Fig. 14. The edge
crosses all edges of a horizontal bundle, and to avoid switches, it must be below or above all of them
(depending on whether the vertical edges in the variable are below or above). The channel itself is a
sequence of single edges that leads from the variable construction to a clause construction. A channel has
no switches if the edges alternate in having bridges at both crossings and having tunnels at both crossings.
The parity of the number of edges in a channel determines if the channel arrives at a clause with an edge
that already has a tunnel, or with an edge that already has a bridge. By using horizontal, vertical, and
diagonal edges, we can always get the parity as desired and end with an edge in any orientation. So far,
no switches are needed yet in a MinTotalSwitches cased drawing.

A clause consists of a single edge that has a triple crossing with the two channels that come from
variables that occur in the clause. The clause edge itself cannot have a switch, because it only has the
triple intersection. To avoid switches on the last edges of the channels, we can put the clause edge on
top if both channel edges already have a tunnel, or we can put the clause edge at the bottom otherwise.
If both channel edges already have a bridge, then there is no way to avoid a switch because one of the
them will have to go below the other. There will be exactly one switch; in all other cases there are no
switches at the clause. So we let the parity of any chain be such that the last channel edge be such that
it has a bridge if the variable has a state that gives false in the clause.

The maximum number of switches needed is obviously at most m, the number of clauses of the planar

max-2sat instance. We used bundles of m+1 parallel edges in the variables to make sure that a variable
cannot have a mixed state without giving at least m+1 switches already. If the bundles were just single
edges, then with only two switches, one part of the channels can use the true state and the other part
the false state of the variable, possibly satisfying many more clauses. The use of bundles prevents this
possibility.

Note that the minimum number of switches will be achieved with a stacking drawing. Hence, the
problem is NP-hard in both models. �

6 Conclusions and Open Problems

We presented polynomial time algorithms or NP-hardness results for a number of optimization prob-
lems that are motivated by cased drawings. Naturally, we would like to establish the difficulty of the
MinMaxSwitches problem. We would also like to implement our algorithms to visually evaluate the
quality of the resulting drawings.



Edges and Switches, Tunnels and Bridges 15

References

[1] S. Cabello, H. Haverkort, M. van Kreveld, and B. Speckmann. Algorithmic aspects of proportional
symbol maps. In 14th European Symposium on Algorithms, number 4168 in LNCS, pages 720–731,
2006.

[2] R.-W. Chen, Y. Kajitani, and S.-P. Chan. A graph-theoretic via minimization algorithm for two-
layer printed circuit boards. IEEE Transactions on Circuits and Systems, 30(5):284–299, 1983.

[3] D. Eppstein. Testing bipartiteness of geometric intersection graphs. In Proc. 15th ACM-SIAM

Symposium on Discrete Algorithms, pages 853–861, 2004.

[4] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow problems.
SIAM Journal on Computing, 5(4):691–703, 1976.

[5] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph-matching problems.
Journal of the ACM, 38(4):815–853, 1991.

[6] B. Grünbaum. Two-coloring the faces of arrangements. Periodica Mathematica Hungarica, 11:181–
185, 1980.

[7] L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. S. Snoeyink. Approximating polygons
and subdivisions with minimum link paths. International Journal of Computational Geometry and

Applications, 3(4):383–415, 1993.

[8] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11(2):329–343, 1982.

[9] K. Mulmuley. Computational Geometry: An Introduction through Randomized Algorithms. Prentice
Hall, 1994.

[10] J. Pach, R. Pollack, and E. Welzl. Weaving patterns of lines and line segments in space. Algorithmica,
9(6):561–571, 1993.

[11] V. Venkateswaran. Minimizing maximum indegree. Discrete Applied Mathematics, 143:374–378,
2004.


