
Geodesic Disks and Clustering in a Simple

Polygon

Magdalene G. Borgelt

Marc van Kreveld

Jun Luo

Department of Information and Computing Sciences, Utrecht University

Technical Report UU-CS-2007-043

www.cs.uu.nl

ISSN: 0924-3275

Geodesic Disks and Clustering in a Simple Polygon ∗

Magdalene G. Borgelt

European Centre for Soft Computing

Mieres, Asturias, Spain

Email: magdalene@borgelt.net

Marc van Kreveld

Dept. of Computer Science,

Utrecht University

Email: marc@cs.uu.nl

Jun Luo

Dept. of Computer Science,

Utrecht University

Email: ljroger@cs.uu.nl

Abstract

Let P be a simple polygon of n vertices and let S be a set of N points lying in the
interior of P . A geodesic disk GD(p, r) with center p and radius r is the set of points in
P that have a geodesic distance ≤ r from p (where the geodesic distance is the length of
the shortest polygonal path connection that lies in P). In this paper we present an output
sensitive algorithm for finding all N geodesic disks centered at the points of S, for a given

value of r. Our algorithm runs in O((n + (kn)
2
3 + k) logc n) time, for some constant c and

output size k. It is the basis of a cluster reporting algorithm where geodesic distances are
used.

1 Introduction

Motivation. Clustering is the determination of relatively large subsets of a set that are in each
other’s proximity [15, 17, 18]. It is one of the most important and generally applicable techniques
in data analysis. Often, the original data is a set of objects with various attribute values which
are used as coordinates in a two- or higher-dimensional space. A cluster is a subset of the objects
with similar attribute values, and a clustering of the objects is a partitioning into subsets so that
objects in the same subset are similar, whereas objects in different subsets are not similar. To
determine similarity, or distance, between two objects, a distance measure is needed, for which
any Lp-metric (like the Euclidean metric) can be used.

In geographic situations, an important type of clustering is for sets of points in the real
world [22, 24]. The coordinates of the points do not stand for attribute values but for a spe-
cific location. Depending on the origin of the points, the real world may also include other objects
like obstacles that influence the distance between points, and therefore the clusters. Obstacles can
be bodies of water that are not crossed by certain land animals, or large open areas that are not
used by forest animals like squirrels.

Suppose that we are given a set S of N points in a geographic situation like an island, and we
wish to find clusters. Clusters are large enough subsets of S that lie within a region of a maximum
radius. The value m that represents the minimum size of a cluster, and the radius r that represents
the maximum extent of a cluster region, are fixed and specified by domain experts (biologists).
Distances need to be measured by paths that go over the island only, which means that the length
of a geodesic shortest path determines the distance. The geometric problem that arises is: Given
a set S of N points inside a simple polygon P with n vertices, determine all subsets of S of size

∗This research has been partially funded by the Netherlands Organisation for Scientific Research (NWO) under
FOCUS/BRICKS grant number 642.065.503.

1

pi

pj

r

Figure 1: Polygonal island with points, each with a radius-r Euclidean circle shown. The three
open markers are centers of circles that contain four points. Only the rightmost one gives a cluster
center if geodesic distances within the polygon are used.

at least m for which a center point q exists that has geodesic distance at most r to all points in
the subset (see Figure 1).

Related research. There is a large body of literature on clustering. Several papers discuss
clustering in the presence of obstacles. COD-CLARANS [27] handles obstacles by replacing the
Euclidean distance between two points by their geodesic distances. AUTOCLUST+ [10] uses
the Delaunay triangulation for clustering, and uses the distance in the subgraph of the Delaunay
triangulation where edges that intersect obstacles are removed. In DBCluC [26], two points may
only be in the same cluster if the connecting line segment does not intersect any obstacle. For
more on clustering with respect to obstacles, see [6] for a recent survey.

There are also several papers that compute clusters in a point set instead of a clustering of
a point set. Laube et al. [19] compute all subsets of size at least m for which a circle of size at
most r can be placed around the subset, using higher-order Voronoi diagrams [5]. Approximation
algorithms were given in [12]. The problem of finding the cluster with m points and smallest
radius has also been addressed extensively. Such problems have been given for squares and for
circles, see for instance [8, 9, 16].

A recent approach to geographic clustering is given by Gudmundsson et al. [11]. The basic
assumption is that in certain situations, there are regions where points can occur and regions
where they cannot occur, and therefore a subset of points is a cluster if (i) the subset is large
enough, (ii) the region has small enough radius, and (iii) the area where points can occur is small
enough. The situation corresponds to nesting locations of sea birds on a group of islands, since
nests cannot be in the water. Note that the Euclidean distance is still valid in this situation.

Problems concerning the geodesic distance with respect to a simple polygon have been studied
mostly in the past. Among them are the computation of the geodesic center of a given simple
polygon, and its geodesic diameter [4, 23]. Given a simple polygon P with n edges in the plane and
a set of point sites in its interior or on its perimeter, Aronov [3] studied computing the Voronoi
diagram of the set of sites with respect to geodesic distance.

Results of this paper. We solve our cluster reporting problem using geodesic distances inside
a polygon by inverting the problem: we generate boundaries of radius-r geodesic disks centered at
the points of S, and find points that lie inside at least m geodesic disks. A geodesic disk GD(p, r)
with radius r and center p is the set of points in P that have a geodesic distance ≤ r from p. It
is easy to see that a geodesic disk is a shape that is bounded by circular arcs (not necessarily of
the same radius) and pieces of the perimeter of P (see Figure 2). The main problem that arises
is the computation of the N geodesic disks of the points of S inside polygon P . We present an
output-sensitive algorithm for this problem that runs in O((n + (kn)

2
3 + k) logc n) time for some

constant c and output size k. Note that k = Ω(N) and O(n · N). To appreciate this result, note
that a direct approach to computing a geodesic disk would treat each point p ∈ S separately

2

P

p
r

Figure 2: Boundary of a geodesic disk in a simple polygon. The dotted circle is a normal radius-r
circle.

by computing the shortest path tree of p inside P , and then determining the circular arcs and
boundary parts inside each funnel [13]. This procedure takes O(n) time per geodesic disk, and
O(n · N) time in total. In our application we expect k to be significantly smaller than Θ(n · N),
hence the objective to design an output-sensitive algorithm.

Overview of this paper. The remainder of this paper is organized as follows. Section 2 gives
the general algorithm to compute a geodesic disk in an output-sensitive manner. It is based on
two data structures, which are presented in Section 3. In Section 4 we show how to produce the
geodesic disk boundaries from the output of the queries. The analysis of the algorithm is given in
Section 5, and Section 6 shows how the geodesic clusters are determined.

2 A query algorithm to compute a geodesic disk boundary

Let S = {p1, p2, · · · , pN} be a set of N points inside or on the perimeter of a simple polygon
P = {v1, v2, · · · vn} whose n vertices are given in clockwise order. For a fixed real number r, we
present an algorithm that computes all geodesic disks GD(pi, r), for i = 1, . . . , N .

The boundary of P is denoted as ∂P . For two vertices vi, vj ∈ ∂P , let ∂P [vi, vj] be the part

of boundary of P in clockwise order from vi to vj . A ray
−→

pvi is a half line which starts at p and

goes through vi. For a point p in P that is visible from vi, vj , we have two rays
−→

pvi and
−→

pvj . We

use wedge(p, vi, vj) to denote the wedge which starts from ray
−→

pvi and rotates around p clockwise

until it reaches ray
−→

pvj . Before illustrating our algorithm to compute a geodesic disk GD(p, r) in
P , we assume there exist two query algorithms that use preprocessed data structures. We will
discuss the details of the data structures and query algorithms in Section 3.

1. CLSF(p, vi, vj): the inputs are a point p in P and two vertices vi, vj of P , where p can see
vi, vj . The query reports the closest line segment or vertex from p among the line segments
and vertices of ∂P [vi, vj] that are visible from p. If the output is a vertex, then we can use
either line segment which is on ∂P [vi, vj] and is incident to that vertex as the output.

2. FVSP(p, vi): the inputs are a point p in P and a vertex vi of P , the query reports the first
vertex of the shortest path from p to vi.

The inputs of the algorithm GD(p, vi, vj , r
′) are a point p inside P , two vertices vi, vj of P

such that p is visible to vi, vj , and the radius r′. The output is the set of line segments of ∂P [vi, vj]
such that the shortest path distances from p to those line segments are ≤ r′. To compute the
geodesic disk itself, some straightforward extra work is needed; this is deferred to section 4. At
the beginning, p is some point of S, r′ = r, and vi = vj , where vi is a vertex of P that is visible to
p, which means the query range is the whole boundary of P . The algorithm runs as follows: using
CLSF(p, vi, vj) we find the closest line segment from p among all line segments of ∂P [vi, vj]. Let
that closest line segment be vqvq+1. If the distance from p to vqvq+1 is larger than r, then we are
done. Otherwise vqvq+1 is reported and there exists a closest point a ∈ vqvq+1.

3

Lemma 1 The closest point a to p (by geodesic distance in P) of the line segment reported by
CLSF(p, vi, vj) is visible from p.

Proof. Suppose the line segment [vq, vq+1] is reported by CLSF(p, vi, vj) and the closest point of
[vq, vq+1] to p is a. If a is not visible from p, then the first vertex vb of the shortest path from p
to a is inside or on the boundary of wedge(p, vi, vj) and vb ∈ ∂P [vi, vj]. So there is at least one
line segment [vb, vb+1] or [vb−1, vb] which is ∈ ∂P [vi, vj] that is closer to p than [vq, vq+1].

We assume without loss of generality that a is vertically above p (see Figure 3). The shortest
path from p to vq is a convex chain and its vertices are vertices of P . Let this convex chain be
pvl1vl2vl3 . . .vlkvq. We know that pvl1vl2vl3 . . . vlkvq is on the left side of the line though p, a.
Similarly, we have the shortest path from p to vq+1 which is a convex chain pvh1

vh2
vh3

. . . vh
k′

vq+1

on the right side of the line through p, a.
∂P [vi, vj] is partitioned into several parts: ∂P [vi, vl1], ∂P [vl1 , vl2], ∂P [vl2 , vl3], . . . , ∂P [vlk , vq],

∂P [vq+1, vh
k′

], . . . , ∂P [vh2
, vh1

], ∂P [vh1
, vj]; see Figure 3. They give rise to subproblems that

we solve sequentially and recursively. Since the subproblems on the left are the same as those
on the right, we discuss the situation on the left. First, we solve subproblems GD(p, vi, vl1 , r)
and GD(p, vh1

, vj , r) recursively. For all other parts ∂P [vl1 , vl2], ∂P [vl2 , vl3], . . . , ∂P [vlk , vq], as
long as the shortest path distance from p to vlt (1 ≤ t ≤ k) is < r, we solve the subproblem
GD(vlt , vlt+1, vlt+1

, r− (|pvl1 |+ · · ·+ |vlt−1
vlt |)) recursively. We don’t need to compute the whole

shortest path from p to vq. We only need to find pvl1 by FVSP(p, vq). If the distance from p to
vl1 is < r, then we find vl1vl2 by FVSP(vl1 , vq), and so on.

There is one special case. If the output of CLSF(p, vi, vj) is vi or vj , then there are two cases:
(assume that vi is the one reported by CLSF(p, vi, vj))

1. If vi+1 is inside wedge(p, vi, vj), then the algorithm continues normally.

2. If vi+1 is outside wedge(p, vi, vj), then we need to do a ray shooting query with
−→

pvi. Suppose
−→

pvi first hits vkvk+1, which is a line segment of ∂P [vi, vj]. Then the shortest paths from p
to vk and vk+1 separate ∂P [vi, vj] into several subparts and the problem becomes several
subproblems. We can solve those subproblems sequentially and recursively as above.

Pvq−1 vq+2

vl1−1

vl2−1

vh1−1

a

p

vq
vq+1vl2+1

vl2

vl1+1

vl1

vh1+1

vh1

vj

vi

Figure 3: Illustration of the algorithm.

Lemma 2 The algorithm GD(p, vi, vj , r
′) reports all line segments of ∂P [vi, vj] that have geodesic

distance at most r′ from p at most once, and vertices at most twice.

Proof. All recursive problems use a partition of the boundary into disjoint parts, except at the
vertices vl1vl2vl3 ...vlk and vh1

vh2
vh3

...vh
k′

vq+1 themselves. In all recursive problems of the form
GD(vlt , vlt+1, vlt+1

, r′ − (|pvl1 | + · · · + |vlt−1
vlt |)), all line segments of ∂P [vlt+1, vlt+1

] will have
vl1 , . . . , vlt as the last vertices on the geodesic shortest path to p. Hence the recursive problem
statements are valid.

4

3 Data structures for CLSF and FVSP

In this section we describe the two data structures and query algorithms needed in the algorithm
for geodesic disks. We also used a ray shooting data structure; this is standard with O(log n)
query time in preprocessed simple polygons [7].

3.1 Closest boundary point in subpolygon queries

In this section we discuss how to find, for a given query point p and two vertices vi and vj of a
simple polygon P , the point of the boundary of P between vi and vj that is closest to p. Vertices
vi and vj can also be the answer to the query. We assume that pvi and pvj lie completely inside
P (in other words: p sees vi and vj). To compute geodesic disks, we only need to solve the query
problem with this restriction. The closest point q that is found must also be such that segment
pq lies inside P .

Assume that some point q on the boundary of P between vi and vj is the point closest to p.

Because pq lies inside P and p sees vi and vj , the angle of
−→

pq must be between the angles of
−→

pvi

and
−→

pvj .
Without the restriction that pq must be inside P , we could have built a binary search tree T on

v1, . . . , vn, and construct a Voronoi diagram preprocessed for planar point location as associated
structure with every internal node of T . A query would be answered by determining the search
paths in T to vi and vj , and for all maximal subtrees strictly between these search paths, query
the associated structure. But then a point may be found that does not see p inside the whole
polygon P (see Figure 4).

p

vi

vj

case 3

case 2

case 4

P
W

Figure 4: Edges of P of cases 2, 3, and 4 (cases 3 and 4 are shown thicker). Note that the vertex
of ∂P [vi, vj] closest to p, the square, is not in W .

The solution is to adapt the data structure so that we only query inside the wedge W bounded
by the rays

−→

pvi and
−→

pvj . We have to take care to treat edges that lie partially inside this wedge
correctly. We use five different data structures to handle all cases. In each case the main tree T
is a binary search tree on v1, . . . , vn, and the final associated structure is a planar point location
structure on some Voronoi diagram. The first few associated structures (levels between the main
tree and the point location structure) allow us to select the vertices or edges to which the case
applies [1, 2]. The five cases are the following.

• Case 1: vertices inside W .

• Case 2: edges of which both endpoints lie inside W .

• Case 3: edges that intersect the ray
−→

pvi, have one endpoint inside W , and whose angle with
−→

pvi is less than π/2, measured inside the wedge and closer to p (see Figure 4).

• Case 4: edges that intersect the ray
−→

pvj , have one endpoint inside W , and whose angle with
−→

pvj is less than π/2, measured inside the wedge and closer to p (see Figure 4).

5

• Case 5: edges that intersect both rays
−→

pvi and
−→

pvj , and both angles are less than π/2.

For the first case we use a partition tree as the main tree. For the second case we use two
levels of partition trees. We treat the third case in more detail, the fourth case is the same and
the fifth case can be treated in the same manner.

For the third case, let T be the main tree with v1, . . . , vn in the leaves. An internal node µ
corresponds to a subchain ∂P [vs, vt]. Let Eµ = {vsvs+1, . . . , vt−1vt} be the edges in this subchain.
To be able to select all edges that have one endpoint in the wedge W we take one endpoint of each
edge and use a partition tree as the second level structure. To select the edges that intersect

−→

pvi

among these, we store the other endpoints in a partition tree as well as the third level structure,
and the points dual to the supporting lines of the edges as the fourth level structure. In the fifth
level structure we select further on the angle condition. This can be done using a binary search
tree on the orientations of the edges. The sixth and last level structure is the point location
structure on the Voronoi diagram of the edges. The fourth and fifth cases use similar multi-level
trees.

For any query wedge, we can use the levels of the tree to select the edges for which each of the
cases apply, and query in the Voronoi diagram to find the closest one. Each of the five cases may
give an answer, and we can simply take the closest one as the actual closest vertex or edge. All
structures use storage O(n logc n) and query time O(

√
n logc n) for some constant c. Combinations

of cutting trees and partition trees allow us to get faster query times at the expense of storage
and preprocessing [1, 2]. For any n ≤ m ≤ n2, we can get storage and preprocessing time of
O(m logc n) and query time O((n/

√
m) logc n).

3.2 First vertex of the shortest path queries

We partition P into O(n) geodesic triangles in O(n) time [7]. The three vertices of a geodesic
triangle are vertices of P . The three edge chains are three shortest concave paths inside P . In
[7] Chazelle et al. show that any line segment interior to P crosses at most O(log n) geodesic
triangles. So the line segment pa in Figure 3 crosses at most O(log n) geodesic triangles. We
observe two properties about the intersections of pa with those O(log n) geodesic triangle edge
chains.

Lemma 3 pa only intersects each geodesic triangle edge chain at most once.

Proof. Since each geodesic triangle edge chain is a shortest path inside P and pa is a line segment
inside P , a shortest path inside P intersects any line segment inside P at most once. Therefore
pa only intersects each geodesic triangle edge chain at most once.

Lemma 4 pa intersects at most two edge chains of one geodesic triangle.

Proof. Suppose pa intersects all three edge chains of a geodesic triangle. Since all three geodesic
triangle edge chains are concave paths inside P , pa must intersect one of edge chains twice, which
contradicts Lemma 3.

Suppose pa crosses a geodesic triangle bcd. According to Lemmas 3 and 4, pa intersects one
(if p is inside bcd) or two edge chains of bcd and pa only intersects those intersected edge chains
once. For an intersected edge chain, suppose the intersected line segment is xx′ and x is on the
left side of pa and x′ is on the right side of pa. Then x is a candidate for the first vertex of the
shortest path from p to vq, and x′ is a candidate for first vertex of the shortest path from p to
vq+1. For a non-intersected edge chain, the vertex on a tangent line through p to this edge chain
is also a candidate for the first vertex of the shortest path from p to vq, provided the edge chain
is on the left side of pa, and symmetrically, a non-intersected edge chain right of pa may provide
a candidate for the first vertex of the shortest path from p to vq+1. We explain those two cases
by focusing on one edge chain b–c:

6

1. pa intersects the edge chain b–c, see Figure 5(a). Suppose the line segment of the edge chain
from b to c intersecting pa is b′b′′, and b′ is on the same side of the line through p and a as
vq. Then b′ is the only possible vertex from b–c that can be the first vertex of the shortest
path from p to vq. Given the edge chain b–c, we can find b′ in O(log n) time.

p

a

b

c d

vq
vq+1

b′

b′′

p

a

b

c d

vq vq+1

(a) (b)

b′

Figure 5: (a) pa intersects the edge chain b–c. b′ is the candidate for FVSP(p, vq). (b) pa does
not intersect the edge chain b–c. The tangent point b′ is the candidate for FVSP(p, vq).

2. pa does not intersect the edge chain b–c and b–c is on the same side of the line through p
and a as vq, see Figure 5(b). The only candidate for the first vertex from p to vq on the edge
chain b–c is the vertex on a line through p that is tangent to the edge chain b–c. Given the
edge chain b–c, we can find that tangent vertex in O(log n) time.

Any geodesic triangle intersecting pa gives at most three candidate vertices. To decide whether
a candidate vertex y is the first vertex of the shortest path from p to vq, we do a ray shooting

query with
−→

py . The first vertex of the shortest path from p to vq is y if and only if py does not

intersect any other line segment of ∂P and the first intersection point of
−→

py after y with ∂P is on
vqvq+1. This can also be tested in O(log n) time. Since there are O(log n) geodesic triangles we
need to check, the total running time of FVSP(p, vq) is O(log2 n).

4 Computing the geodesic disk boundary

The algorithm as presented so far finds the set of edges of P that have some point at geodesic
distance at most r from p, and a set of circular arcs that contain points at geodesic distance
exactly r from p. To determine the boundary of the geodesic disk itself, we must combine this
information into a simple polygon that has straight edges and circular arcs. Whenever an edge
vqvq+1 is detected to be part of the boundary of the geodesic disk, we have the point p (or a vertex
of P) which is the query center, and we have a wedge W in which the circular arc of radius r is
valid. The following cases can be distinguished (we only treat the case of the left of the closest
point a, like in Section 2):

• If vqvq+1 intersects the circular arc inside W , then we have found the (left) intersection point
on vqvq+1 that gives a vertex of the geodesic disk.

• If vqvq+1 does not intersect the circular arc inside W , but W contains all of vqvq+1 left of
point a, then all of vqa is part of the boundary of the geodesic disk.

• Otherwise, we repeat the above tests iteratively with vl1 , vl2 , . . ., until we either find an
intersection point left of a, or discover that all of vqa is part of the boundary of the geodesic
disk.

7

p

vl1

vl2

vq
vq+1

Figure 6: Finding the intersection points of the edges of P with the circular arcs that form the
geodesic disk boundary.

In Figure 6, the edge vqvq+1 is found when p was the query center. The dashed lines show
the wedge in which p is valid as an arc center, and we test whether the edge vqvq+1 intersects the
circular arc inside the wedge. In the figure we only find the intersection point (square) when we
test with vl2 .

The tests can easily be integrated into the algorithm that finds the edges of P within geodesic
distance r. Hence, the algorithm can also determine the boundary of the geodesic disk centered
at p.

5 Complexity analysis

If the output size of N geodesic disks is O(k), then the algorithm will perform O(k) FVSP and
CLSF queries. The preprocessing is O(n) time, plus the time needed to build the multi-level trees
of Subsection 3.1. We observed that a preprocessing time/query time trade-off exists: O(m logc n)
preprocessing time leads to O((n/

√
m) logc n) query time. Assume we know k in advance. Then

we can choose m to be such that the total query time and preprocessing time are of the same
order: k · (n/

√
m) logc n = m logc n, giving m = (kn)

2
3 (provided n ≤ m ≤ n2).

Unfortunately, the output size k is not known, so we can not balance query time and pre-
processing time easily. To overcome this problem, we will guess k, run the algorithm, and if it
turns out that the guess was too low, we double our guess of k and start again: We build a data
structure with slightly higher preprocessing time and slightly faster queries. Our initial guess is
k′ = max(n

1
3 , 2N), since we know that k ≥ N . Since we also know that k ≤ n ·N , we will restart

the algorithm at most log2 n times. The running time is O((n+(k′n)
2
3 +k′) logc n) in each round.

Summation over the rounds yields O((n + (kn)
2
3 + k) logc n) time, for some constant c.

The adaptations made to find the boundaries of the geodesic disks themselves do not influence
the asymptotic running time.

Theorem 1 Given a simple polygon P with n vertices, a set S of N points inside P , and a positive
real r, all N geodesic disks centered at the points of S can be computed in O((n+(kn)

2
3 +k) logc n)

time, for some constant c, where k is the total boundary complexity of the geodesic disks.

6 Geodesic clustering in a simple polygon

In this section, we will show how to solve the geodesic clustering problem: given a simple polygon
P with n edges, a set S of N points inside P , a radius r, and a subset size m, find all geodesic
disks with radius r which contain at least m points of S. We define a geodesic cluster center as a
point p in P such that GD(p, r) contains at least m points of S. We define two cluster centers to
be distinct if they contain different subsets of S, otherwise they are equivalent.

8

We compute N geodesic disks with the algorithm described before. Suppose the complexity
of the N geodesic disks is O(k); recall that k = Ω(N) and k = O(n · N). We can compute the
arrangement of the geodesic disks in O(k log k + K) time and O(k + K) space, where K is the
number of intersection points in the arrangement [14]. Since any two geodesic disk boundaries
can have at most two proper intersections, K = O(k + N2). One can expect that for the cluster
reporting application, K is considerably smaller than quadratic in N .

After building the arrangement, we determine for each cell by how many geodesic disks it is
covered. For one cell we do this brute-force in O(k) time. After that, we do an arrangement
traversal (e.g., depth-first) to visit all cells. If we cross a cell boundary that adds a geodesic disk
to the cover, we put a one higher value in the cell, and otherwise we put a one lower value in the
cell. Hence, entering an adjacent cell and determining the value takes only O(1) time. Therefore,
the whole traversal takes time linear in the number of cells.

Reporting all distinct cluster centers comes down to identifying the cells with value at least m.
All points inside such a cell are equivalent cluster centers.

Theorem 2 Given a simple polygon P with n vertices, a set S of N points inside P , a positive
real r, and a positive integer m, all distinct cluster centers can be reported in O((n + (kn)

2
3 +

k) logc n + k log k + K) time, for some constant c, where k is the total boundary complexity of the
geodesic disks, and K is the number of intersection points in the arrangement of N geodesic disks.

7 Conclusions

The main contribution of this paper is a new algorithm to determine N geodesic disks inside a
simple polygon with n vertices. Instead of treating every point separately, we use preprocessed
data structures, which made it possible to develop an output-sensitive algorithm for computing
the geodesic disks. If the output size is k, then the running time is O((n+(kn)

2
3 +k) logc n) time,

for some constant c. We used this algorithm to solve a cluster reporting problem: find all subsets
of the points of at least some size that lie inside a geodesic disk with radius at most a specified
value.

Although the geodesic disk algorithm is output-sensitive, the cluster reporting algorithm is
not in the true sense. It is an open problem to determine clusters with a truely output-sensitive
algorithm. Also, the output-sensitive algorithm for geodesic disks does not have the desired
running time of the form O(f(n) + k) or O(f(n) + k log n), where k is the output size and f(n) =
o(n · N). It is also an open problem to find such an algorithm. An important extension of our
research is to deal with polygons that have holes, or, a set of polygonal obstacles. It is unclear
how to design any output-sensitive algorithm for this case.

References

[1] P.K. Agarwal. Range searching. In J.E. Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, chapter 36, pages 809–838. Chapman & Hall/CRC,
Boca Raton, 2nd ed., 2004.

[2] P.K. Agarwal and J. Erickson. Geometric range searching and its relatives. In Advances in
Discrete and Computational Geometry, volume 223 of Contemporary Mathematics, B. Chazelle,
J.E. Goodman, and R. Pollack (eds), 1–56. AMS, Providence, RI, 1999.

[3] B. Aronov. On the Geodesic Voronoi Diagram of Point Sites in a Simple Polygon. Algorithmica
4:109–140, 1989.

[4] T. Asano, and G. Toussaint. Computing the Geodesic Center of a Simple Polygon. In Per-
spectives in Computing: Discrete Algorithms and Complexity, D.S. Johnson, A. Nozaki, T.
Nishizeki, and H. Willis (eds.), pages 65–79, 1987.

9

[5] F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data structure.
ACM Comput. Surveys, 23:345–405, 1991.

[6] P. Berkhin. A Survey of Clustering Data Mining Techniques. In Grouping Multidimensional
Data: Recent Advances in Clustering, K. Jacob, N. Charles, T. Marc (eds.), 25–71, 2006.

[7] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and
J. Snoeyink. Ray Shooting in Polygons Using Geodesic Triangulations. Algorithmica 12:54–68,
1994.

[8] A. Datta, H.-P. Lenhof, C. Schwarz, and M. Smid. Static and dynamic algorithms for k-point
clustering problems. J. Algorithms, 19:474–503, 1995.

[9] D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal polytopes. Discr.
& Comput. Geom., 11:321–350, 1994.

[10] V. Estivill-Castro and I. Lee. Autoclust+: Automatic clustering of point-data sets in the
presence of obstacles. TSDM ’00: Proc. of the First Int. Workshop on Temporal, Spatial, and
Spatio-Temporal Data Mining-Revised Papers, pages 133–146, 2001.

[11] J. Gudmundsson, M. van Kreveld, and G. Narasimhan. Region-restricted clustering for geo-
graphic data mining. Proc. 14th Europ. Sympos. Algorithms, pages 399–410, 2006.

[12] J. Gudmundsson, M. van Kreveld, and B. Speckmann. Efficient detection of motion patterns
in spatio-temporal data sets. In GIS 2004: Proc. of the 12th ACM Sympos. on Advances in
GIS, pages 250–257, 2004.

[13] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan. Linear-time Algorithms
for Visibility and Shortest Path Problems inside Triangulated Simple Polygons. Algorithmica
2:209–233, 1987.

[14] D. Halperin. Arrangements. In J. E. Goodman and J. ORourke, editors, Handbook of Discrete
and Computational Geometry, chapter 24, pages 529–562. Chapman & Hall/CRC, Boca Raton,
2nd ed., 2004.

[15] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Academic Press, San Diego,
2001.

[16] S. Har-Peled and S. Mazumdar. Fast algorithms for computing the smallest k-enclosing circle.
Algorithmica, 41:147–157, 2005.

[17] J. Hartigan. Clustering Algorithms. John Wiley & Sons, New York, 1975.

[18] A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs, NJ,
1988.

[19] P. Laube, M. van Kreveld, and S. Imfeld. Finding REMO – detecting relative motion patterns
in geospatial lifelines. In P.F. Fisher, editor, Developments in Spatial Data Handling: proc.
11th Int. Sympos., pages 201–215, 2004.

[20] D. Lee. On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput., C-
31:478–487, 1982.

[21] J. Matoušek. On enclosing k points by a circle. Inform. Process. Lett., 53:217–221, 1995.

[22] H.J. Miller and J. Han. Geographic Data Mining and Knowledge Discovery. Taylor & Francis,
London, 2001.

[23] R. Pollack, M. Sharir, and G. Rote. Computing the Geodesic Center of a Simple Polygon.
Discr. & Comput. Geometry 4:611–626, 1989.

10

[24] D. O’Sullivan and D. Unwin. Geographic Information Analysis. John Wiley & Sons, Hoboken,
NJ, 2003.

[25] G. Toussaint. Computing geodesic properties inside a simple polygon. Revue D’Intelligence
Artificielle, 3(2):9–42, 1989.

[26] O. R. Zäıane and C. Lee. Clustering spatial data in the presence of obstacles: a density-based
approach. Proc. of the 2002 Int. Symposium on Database Engineering & Applications, pages
214–223, 2002.

[27] A.K.H. Tung, J. Hou, and J. Han. Spatial clustering in the presence of obstacles. Proc. of
the 17th Int. Conference on Data Engineering, pages 359–367, 2001.

11

