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Abstract

We analyze the minimum and maximum number of empty pseudo-triangles defined by any
planar point set. We consider the cases where the three convex vertices are fixed and where
they are not fixed. Furthermore, the pseudo-triangles must either be star-shaped or can be
arbitrary.

1 Introduction

Counting empty convex k-gons in planar point sets is a classic problem in combinatorial geometry
that goes back to Erdős. In particular, he asked for the smallest number N(k) such that any set
P of at least N(k) points contains the vertex set of a convex k-gon whose interior does not contain
any point of P . A related question asks for the minimum number of empty convex k-gons any set
of points must contain.

These questions naturally generalize to other polygons that do not need to be convex. In
particular, we are interested in pseudo-triangles, which are simple polygons that have exactly
three convex vertices with internal angles less than π, see Figure 1. A pseudo-triangle is the “most
reflex” polygon possible and can be considered the natural counterpart of convex polygons. In
this note we study the number of empty pseudo-triangles that are contained in planar point sets.
Since not every pseudo-triangle is star-shaped (see, for example, the rightmost pseudo-triangle in
Figure 1) we consider this question both for star-shaped and general pseudo-triangles. Somewhat
surprisingly, the answers differ by orders of magnitude.

Figure 1: Empty pseudo-triangles in a point set.

Concerning the number of empty convex polygons, it was shown in [3, 4, 5] that for any set
P of n points in general position, there are Ω(n2) subsets of three, four, five, and six points
that form empty convex triangles, quadrilaterals, pentagons, and hexagons. These bounds are
tight. Furthermore, there are arbitrarily large sets of points that do not contain any empty convex
heptagon. Trivially, for any constant k, the maximum number of empty convex k-gons is Θ(nk),
which is obtained by taking n points in convex position.

In this note we consider the minimum and maximum number of pseudo-triangles that are
contained in a set P of n points. If we do not require the pseudo-triangles to be empty of points
in P , then we can have exponentially many of them. For example, place one point p0 at the origin
and all other n − 1 points on the lower left quarter of the circle (x − 1)2 + (y − 1)2 = 1. Then
p0 together with any subset of P \ {p0} of size ≥ 2 forms a pseudo-triangle, so there are at least
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2n−1 − n of them. The minimum number of pseudo-triangles, empty or not, is cubic (e.g., for
points in convex position, see Theorem 5).

Hence we concentrate on empty pseudo-triangles. First we assume that a triangle △uvw is
given together with a set P of n points inside it. We analyze the number of empty pseudo-triangles
that have u, v, and w as the convex vertices, and all other vertices must be points of P . In this
setting we have four combinatorial questions, namely the minimum and maximum number of
empty general or star-shaped pseudo-triangles. We give tight upper and lower bounds for each
question; our results are summarized in the table below. Observe that the (asymptotic) number
of empty pseudo-triangles in the general case can be quadratic or cubic, depending on the point
set, but in the star-shaped case we always get the same, quadratic bound.

Section 2 general star-shaped

minimum Θ(n2) Θ(n2)
maximum Θ(n3) Θ(n2)

If the convex vertices of the empty pseudo-triangles are not specified, then we get the same
four questions that should be settled with an upper and a lower bound. Most of the ideas used
before can be extended. We obtain the results summarized in the table below.

Section 3 general star-shaped

minimum Θ(n3) Θ(n3)
maximum Θ(n6) Θ(n5)

2 Pseudo-triangles with given corners

Let u, v, and w be three points in the plane, and let P be a set of n points inside the triangle
△uvw. We assume that no three points of P ∪ {u, v, w} lie on a line. Any pseudo-triangle with
u, v, and w as the convex vertices has a concave chain between u and v, denoted C(u, v), and
also concave chains C(v, w) and C(w, u). For an empty pseudo-triangle, any point of P lies on
one of the three chains or in one of the three convex polygons C(u, v) ∪ vu, C(v, w) ∪ wv, and
C(w, u) ∪ uw. If a point lies in C(u, v) ∪ vu, then we say that the point is excluded by the chain
C(u, v) (and analogous terminology is used for exclusion by C(v, w) and C(w, u)). We denote the
line that passes through two points p and q by ℓ(p, q).

Observation 1 If P is partitioned into Pu,v ∪ Pv,w ∪ Pw,u, such that all points in Px,y lie on
C(x, y) or are excluded by C(x, y) (with x, y ∈ {u, v, w} and x 6= y), then at most one empty
pseudo-triangle exists that has this partition. It is formed by the edges of the convex hulls of
Pu,v ∪ {u, v}, Pv,w ∪ {v, w}, and Pw,u ∪ {w, u}, where uv, vw, and wu are removed.

2.1 General pseudo-triangles

Theorem 1 Given three points u, v, w and a set P of n points inside △uvw, the maximum number
of empty pseudo-triangles with u, v, w as the convex vertices is Θ(n3).

Proof: The lower bound is an easy construction, see Figure 2. To prove the upper bound, let
pi, pj , and pk be any three points of P . We analyze the number of pseudo-triangles such that
edge upi is on the chain C(u, v), edge vpj is on the chain C(v, w), and edge wpk is on the chain
C(w, u). Clearly, if any of the three edges intersect, then no pseudo-triangle exists of this type.
Otherwise, we extend the edges upi, vpj , and vpj in a special way.

Assume first that ℓ(u, pi) is below ℓ(v, pj) ∩ ℓ(w, pk). Then we let point qi = ℓ(u, pi)∩ ℓ(v, pj),
point qj = ℓ(v, pj) ∩ ℓ(w, pk), and point qk = ℓ(w, pk) ∩ ℓ(u, pi), see Figure 3. If △qiqjqk contains
points of P , then no pseudo-triangle exists of this type: Either the pseudo-triangle would not be
empty, or the concavity of one of the chains is compromised. Furthermore, all points in △uvqi

must be excluded via the chain C(u, v), all points in △vwqj must be excluded via the chain
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Figure 2: Sometimes Ω(n3) pseudo-triangles.
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Figure 3: Always O(n3) pseudo-triangles, first case.

C(v, w), and all points in △wuqk must be excluded via the chain C(w, u). This fully defines the
partition as in Observation 1, so we count at most one pseudo-triangle.

Next assume that ℓ(u, pi) is above ℓ(v, pj) ∩ ℓ(w, pk); note that due to the specification of
pi, pj , and pk, this case is not symmetric to the previous one. The argument, however, is still
analogous. This time we let point qi = ℓ(u, pi) ∩ ℓ(w, pk), point qj = ℓ(v, pj) ∩ ℓ(u, pi), and point
qk = ℓ(w, pk) ∩ ℓ(v, pj), see Figure 4. If △qiqjqk contains points of P , then no pseudo-triangle
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Figure 4: Always O(n3) pseudo-triangles, second case.

exists of this type: Either the pseudo-triangle would not be empty, or the concavity of one of the
chains is compromised, or the chains would intersect. The rest of the argument is exactly as in
the previous case, so we again count at most one pseudo-triangle.

All remaining cases (ℓ(u, pi) contains ℓ(v, pj)∩ ℓ(w, pk), or some chain(s) do not contain points
of P ) are straightforward to analyze. Since there are 6 ·

(

n

3

)

choices for pi, pj , and pk, the upper
bound follows. �
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Figure 5: Sometimes O(n2) pseudo-triangles.

Theorem 2 Given three points u, v, w and a set P of n points inside △uvw, the minimum number
of empty pseudo-triangles with u, v, w as the convex vertices is Θ(n2) (assuming non-degeneracy).

Proof: This time we begin with the upper bound, which is an easy construction shown in
Figure 5. All points of P are placed on a circular arc centered at w (any minor perturbation can
be used to remove this degeneracy). There are only O(n) choices for the chain C(v, w), only O(n)
choices of the chain C(w, u), and given these choices, the chain C(u, v) is completely specified
since we only count empty pseudo-triangles. The quadratic upper bound follows.

Next we prove the lower bound. We need to show that any set P gives Ω(n2) pseudo-triangles.
Let (pi, pj) be any pair of points from P . If ℓ(pi, pj) does not intersect uv then we assign the pair
to uv. Similarly, if ℓ(pi, pj) does not intersect vw then we assign the pair to vw, and if ℓ(pi, pj)
does not intersect wu then we assign the pair to wu. Due to non-degeneracy, we assign each pair
from P to exactly one side of △uvw.

By symmetry and the pigeon-hole principle we may assume that uv is assigned Ω(n2) pairs
of points. Make each pair ordered so that upi, pipj , pjv is a concave chain that does not self-
intersect. Let q = ℓ(u, pi) ∩ ℓ(v, pj), see Figure 6, and let q′ be infinitesimally above q. Then an
empty pseudo-triangle exists that excludes the points of P ∩ △uvq′ via the chain C(u, v), that
excludes the points of P ∩△vwq′ via the chain C(v, w), and that excludes the points of P ∩△wuq′

via the chain C(w, u). Furthermore, upi and vpj are the extreme edges of C(u, v). Hence, for
any other pair (pk, pl) assigned to uv we get a different pseudo-triangle. Since Ω(n2) edges were
assigned to uv, there are Ω(n2) different pseudo-triangles. �

The non-degeneracy assumption in the theorem above is essential. If all points of P lie on a line
that also passes through w, for example, then there are only O(n) different empty pseudo-triangles.

2.2 Star-shaped pseudo-triangles

It turns out that the number of empty star-shaped pseudo-triangles does not vary with P , asymp-
totically, and is always quadratic. The lower-bound proof of Theorem 2 generates only star-shaped

u v

w

pi
pj

q

q′

ℓ(pi, pj)

Figure 6: Always Ω(n2) pseudo-triangles.
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pseudo-triangles, because q′ is always in the kernel. So the minimum number of empty shar-shaped
pseudo-triangles is Ω(n2). It remains to prove that the maximum number of empty star-shaped
pseudo-triangles is also O(n2).

Lemma 1 Given three points u, v, w and a set P of n points inside △uvw, the maximum number
of empty star-shaped pseudo-triangles with u, v, w as the convex vertices is O(n2).

Proof: Consider the set of 3n lines defined by one point of P and one point of {u, v, w}, see
Figure 7. These lines form an arrangement of quadratic size. Let q be any point inside a cell of the

u v

w

q

Figure 7: Always O(n2) star-shaped pseudo-triangles.

arrangement. If we assume that q is in the kernel of the empty pseudo-triangle, then the pseudo-
triangle is completely determined: all points of P ∩△uvq are excluded via the chain C(u, v), and
the analogous statement holds for P ∩ △vwq and P ∩ △wuq. By the choice of lines, no matter
where q lies in its cell, the subsets P ∩△uvq, P ∩△vwq, and P ∩△wuq are the same. Since there
are O(n2) combinatorially distinct positions for q, the lemma follows. �

Corollary 1 Given three points u, v, w and a set P of n points inside △uvw, the minimum and
maximum number of empty star-shaped pseudo-triangles with u, v, w as the convex vertices is
Θ(n2).

3 Pseudo-triangles in point sets

We discuss the case where the convex vertices are not given in advance. The results in the previous
section give rise to some easy results for this case.

Theorem 3 Given a set P of n points in the plane, the maximum number of empty pseudo-
triangles is Θ(n6).

Proof: The upper bound follows by taking all triples of P as u, v, and w and using the result of
Theorem 1.

The lower bound follows by taking the construction of Theorem 1, using only n/2 points inside
△uvw, and replacing u, v, and w by n/6 points each. w is replaced by n/6 points on a horizontal
line, very closely spaced and at w. Similarly, u and v are replaced by n/6 points each, and on
lines that make angles of 60 degrees (for v) and −60 degrees (for u) with the x-axis. �

The same proof adaptations give the result on the maximum number of star-shaped pseudo-
triangles. We simply state the result:

Theorem 4 Given a set P of n points in the plane, the maximum number of empty star-shaped
pseudo-triangles is Θ(n5).
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We will give one more result, namely that any point set gives Ω(n3) different empty star-shaped
pseudo-triangles. It completes the study of the number of empty pseudo-triangles, since a point
set in convex position gives only O(n3) different pseudo-triangles.

Theorem 5 Given a set P of n points in the plane, the minimum number of empty pseudo-
triangles (star-shaped or arbitrary) is Θ(n3).

Proof: We only need to prove two results: there is a set of n points that gives O(n3) empty
not necessarily star-shaped pseudo-triangles, and any point set gives Ω(n3) empty star-shaped
pseudo-triangles. For the former claim, simply take a set of n points in convex position. For the
latter claim, take any three points pi, pj , and pk of P . We will show that an empty star-shaped
pseudo-triangle exists with pi, pj , and pk as the convex vertices. Take any point q in the interior of
△pipjpk, and so that piq, pjq, and pkq do not contain any point of P . Consider the pseudo-triangle
that excludes any points of P ∩ △pipjq via chain C(pi, pj), any points of P ∩ △pjpkq via chain
C(pj , pk), and any points of P ∩ △pkpiq via chain C(pk, pi). Clearly this gives a pseudo-triangle
with pi, pj , and pk as the convex vertices and q in the kernel. All

(

n
3

)

choices of pi, pj , and pk

give different pseudo-triangles. �

4 Conclusions

We have given tight bounds on the minimum and maximum number of empty pseudo-triangles
that either must be star-shaped or may be arbitrary. The constructions and proofs are simple
and elegant. An open question is whether pseudo-triangles that are 9-gons are necessary to have
Ω(n3) and Ω(n6) empty pseudo-triangles in Theorems 1 and 3, or that smaller complexity pseudo-
triangles can also be used.
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