
On Problems without Polynomial Kernels

Hans L. Bodlaender

Rodney G. Downey

Michael R. Fellows

Danny Hermelin

Technical Report UU-CS-2007-046

November 2007

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

On Problems Without Polynomial Kernels

Hans L. Bodlaender1?, Rodney G. Downey??2,
Michael R. Fellows? ? ?3, and Danny Hermelin†4

1 Department of Information and Computing Sciences,
Utrecht University, 3508 TB Utrecht 80.089 - Netherlands

hansb@cs.uu.nl
2 School of Mathematics, Statistics and Computer Science,

Victoria University of Wellington, Wellington 600 - New Zealand
rod.downey@vuw.ac.nz

3 The University of Newcastle, Callaghan NSW 2308 - Australia
michael.fellows@newcastle.edu.au
4 Department of Computer Science,

The University of Haifa, Haifa 31905 - Israel
danny@cri.haifa.ac.il

Abstract. Kernelization is a strong and widely-applied technique in the design of fixed-parameter
algorithms. In a nutshell, a kernelization algorithm is a polynomial-time transformation that transforms
any given parameterized instance to an equivalent instance of the same problem, with size and parameter
bounded by a function of the parameter in the input. A kernelization algorithm is called a polynomial
kernel if the size and parameter of the output are polynomially-bounded by the parameter of the input.

In this paper, we give evidence that a wide range of FPT problems do not have polynomial kernels.
Our evidence relies on hypothesis made in the classical world (i.e. P vs. NP), and evolves around a
new type of algorithm for classical decision problems, called a distillation algorithm, which might be
of independent interest. Using the notion of distillation algorithms, we develop a generic lower-bound
engine which allows us to show that a variety of FPT problems, fulfilling certain criteria, cannot have
polynomial kernels unless the polynomial hierarchy collapses. These include important FPT problems
such as k-Path, k-Minor Order Test, k-Planar Graph Subgraph Test, and several others. We
also show that a polynomial kernel for parameterized problems fulfilling a slightly different criteria
implies a distillation algorithm for all coNP-complete problems. Example of such problems are k-
Pathwidth, k-Treewidth, and k-Cutwidth. Moreover, our framework also allows us to establish
kernelization lower bounds for optimization problems (e.g. Minimum Dominating Set) parameterized
by treewidth, cliquewidth, max. degree, and so forth. In the last part of the paper, we study sub-
exponential kernelization algorithms, and look into these types of kernelizations from a more structural
point of view.

Our results are the first negative results concerning polynomial kernels for natural FPT problems.
Apart from these, the only previously known techniques for showing lower bounds were limited to
linear lower bounds. We believe our results provide a glimpse of what makes polynomial kernelization
intrinsically hard in certain type of problems, and also offer an accessible platform for showing similar
results.

? This author was partially supported by project BRICKS (Basic Research for Creating the Knowledge Society).
?? Research supported by the Marsden Fund of New Zealand.

? ? ? Research supported by the Australian Research Council Center of Excellence in Bioinformatics.
† Supported by the Adams Fellowship of the Israel Academy of Sciences and Humanities.

1

1 Introduction

Kernelization is a central technique used in parameterized algorithms, and in other techniques
for coping with NP-hard problems. In this paper, we introduce a new method which allows us
to show that many problems do not have small kernels under reasonable complexity-theoretic
assumptions. We believe that this material is significant and will have wide applications. For
instance, learning of our material, three other teams of authors, namely Fortnow et al. [27],
Chen et al. [15], and Buhrman [9] have applied the concepts in this paper to other arenas.

Parameterized complexity extends classical complexity theory in a way that allows a
refined categorization of tractable and intractable computational problems. This is done by
a two-dimensional analysis of problems instances – one dimension used as usual for measuring
the input-length, and the other used for measuring other structural-properties of the input,
e.g. its witness size. A problem is considered tractable, if there is an algorithm solving it
with any super-polynomial running-time confined strictly to the parameter. As an example,
consider the k-Vertex Cover problem:

k-Vertex Cover:

Instance: A graph G, and k ∈ N in unary.

Question: Does G have a vertex cover of size k?

Parameter: k.

When viewed classically, this problem is NP-complete. However, its parameterized variant
can be solved in O(2kn) time [18] (see [33] for improvements), which is practical for instances
with small parameter values, and in general is far better than the O(nk+1) running time of
the brute-force algorithm. More generally, a problem is said to be fixed-parameter tractable
if it has an algorithm running in time f(k)p(n) (FPT-time), where f is any computable
function solely in the parameter k, and p(n) is a polynomial in the total input length n [18].
The class of all all fixed-parameter tractable problems is denoted by FPT. The first class of
fixed-parameter intractable problems is W[1], and it is known that if FPT = W[1] then n
variable 3-SAT can be solved in 2o(n) time [12].

A fundamental and very powerful technique in designing FPT algorithms is kerneliza-
tion. In a nutshell, a kernelization algorithm for a parameterized problem is a polynomial-time
transformation that transforms any given instance to an equivalent instance of the same prob-
lem, with size and parameter bounded by a function of the parameter in the input. Typically
this is done using so-called reduction rules, which allow to safely reduce the instance to an
equivalent “smaller” instance. In this sense, kernelization can be viewed as polynomial-time
preprocessing which has universal applicability, not only in the design of efficient FPT algo-
rithms, but also in the design of approximation and heuristic algorithms [31]. For instance,
Weihe showed in the late 90’s that a simple reduction rule can be applied to efficiently solve
the problem of covering all European trains with train stations that facilitate maintenances
and repairs [40]. Nemhauser and Trotter’s classical kernelization algorithm for k-Vertex
Cover [35] is widely used as a preprocessing step in many approximation algorithms for
this problem (see e.g. [4, 34]).

As an example of kernelization, consider the following algorithm for k-Vertex Cover
suggested by Sam Buss which is now folklore: Given an instance (G, k) for k-Vertex Cover,

2

if there exists a vertex v in G with at least k+1 neighbors, remove v from G (along with all of
its incident edges) and decrease k by one. This reduction rule is safe since any k-vertex cover
of G (if one exists) must include v, as otherwise all edges incident to v cannot be covered
with at most k vertices. Continuing to apply this rule until no longer possible, the graph G′

in the remaining instance (G′, k′) has maximum degree k′ ≤ k. Since k′ vertices of maximum
degree k′ can cover at most k′2 edges, we know that either G′ does not have a vertex cover of
size k′, or G′ has size (excluding isolated vertices) O(k′2) = O(k2). This algorithm exemplifies
the power of kernelization in that sometimes very simple and easily implementable reduction
rules allow for a dramatic reduction in the total input size. Nevertheless, the reader should
not be mislead to thinking that all kernelization algorithms are that simple. Indeed, an
increasing amount of research over the years has lead to the development of some rather
sophisticated and involved kernelization techniques, see e.g. [14, 20, 26, 30, 32].

It is clear that any (decidable) language which has a kernelization algorithm is in FPT.
Somewhat more surprising, but still very simple to show, is that all problems in FPT have
kernelization algorithms [11]. This is seen by considering the two cases f(k) ≥ n and f(k) < n
separately, where f(k) is the parameter-dependent time-bound of the algorithm solving the
given problem. Since every FPT problem has a kernelization algorithm, it is interesting to
study problems that are kernelizable in a stricter sense - for example, problems which allow
kernelization algorithms that reduce instances to a size which is polynomially bounded by
the parameter. Such problems are said to have a polynomial kernelization algorithm, or
a polynomial kernel. For instance, the kernelization algorithm of Buss discussed above is a
polynomial kernel, and so k-Vertex Cover has a polynomial kernel. Other problems known
to have polynomial kernels include k-Leaf Spanning Tree [8], k-Feedback Vertex
Set [5, 10], k-Planar Dominating Set [1], k-Cluster Editing [29], k-Hitting Set
for Sets of Bounded Size [36], and many more.

On the other hand, there are also several problems for which no polynomial kernel has yet
been found. These clearly include all problems known to be W[1]-hard, as the existence of a
kernel for such a problem would imply W[1] = FPT. So we focus on parameterized problems
known to be in FPT. A great number of such problems, are problems shown to be in FPT
using heavy machinery such as color-coding [2], the graph minor technique [21], or tree-
decomposition dynamic programming [3]. Usually, the algorithms given by these frameworks
are impractical in practice. For instance, consider the k-Path problem:

k-Path:

Instance: A graph G, and k ∈ N in unary.

Question: Does G have a simple path of length k?

Parameter: k.

This problem can be solved in O(2O(k)n2 lg n) time using the color-coding technique of
Alon, Yuster, and Zwick [2]. This time complexity might seem similar to the complexity of
the algorithm for k-Vertex Cover mentioned above, however the hidden constant in the
O(k) exponent is quite large, ruling-out any possibility for practical usefulness. Nevertheless,
an efficient polynomial kernel could be a promising path in making this algorithm practical.
Does k-Path have a polynomial kernel? k-Minor Order Test and k-Treewidth are
other good examples, as both serve as highly time-consuming subroutines in most algorithms

3

deploying the graph minor technique or tree-decomposition dynamic programming. Do k-
Minor Order Test and k-Treewidth have polynomial kernels?

Questions such as these are the motivating starting point of this paper. Clearly, if P = NP
then all parameterized problems based on NP-complete problems have constant size kernels.
Thus, any method we generate to show that a problem is unlikely to have a polynomial
kernel will entail a complexity-theoretic hypothesis. For developing such a hypotheses, we
introduce the notion of a distillation algorithm. Intuitively speaking, a distillation algorithm
for a given problem functions like a Boolean OR gate of problem-instances – it receives as
input a sequence of instances, and outputs yes-instance iff at least one of the instances in
the sequences is also a yes-instance. The algorithm is allowed to run in time polynomial in
the total length of the sequence, but must output an instance whose size is polynomially
bounded by the size of the maximum-size instance in its input sequence.

We study the possibility of the existence of distillation algorithms for NP-complete prob-
lems, and conjecture that this is highly implausible. As evidence for this, we use an argument
of Fortnow and Santhanam to show that a distillation algorithm for any NP-complete prob-
lem would imply the collapse of the polynomial hierarchy to the third level.. This allows us
to prove, via a carefully defined parametric-analog of distillation, the unlikelihood of poly-
nomial kernels for FPT problems such as k-Path, k-Minor Order Test and others. In
particular, our study gives rise to the following theorem.

Theorem 1. Unless PH = Σ3
p, none of the following FPT problems have polynomial kernels:

– k-Path, k-Cycle, k-Exact Cycle and k-Short Cheap Tour.
– k-Graph Minor Order Test and k-Bounded Treewidth Subgraph Test.
– k-Planar Graph Subgraph Test and k-Planar Graph Induced Subgraph

Test.
– k, σ-Short NonDeterministic Turing Machine Computation.
– w-Independent Set, w-Clique and w-Dominating Set.

Here, w-Independent Set, w-Clique, and w-Dominating Set denote the classical In-
dependent Set, Clique, and Dominating Set problems parameterized by the treewidth
of their given graphs. These are given as mere examples. Many other graph-theoretic prob-
lems parameterized by the treewidth of the graph could have been used in the theorem.

We next turn to study distillation of coNP-complete problems. Although we are unable
to relate the existence of distillation algorithms for coNP-complete problems to any known
complexity conjecture, we can still show that polynomial kernels for some important FPT
problems not captured by Theorem 1, imply distillation algorithms for coNP-complete prob-
lems.

Theorem 2. Unless all coNP-complete problems have distillation algorithms, none of the
following FPT problems have polynomial kernels:

– k-Cutwidth, k-Modified Cutwidth, and k-Search Number.
– k-Pathwidth, k-Treewidth, and k-Branchwidth.
– k-Gate Matrix Layout and k-Front Size.
– w-3-Coloring and w-3-Domatic Number.

4

Both theorems above are unique in the sense that there are no previous results showing
the unlikelihood of polynomial kernelization for any FPT problem. The only other negative
results concerning kernelization are linear lower bounds that are either obtained through
inapproximability results or through the dual-parameter approach. For instance, k-Vertex
Cover cannot have a kernel of size 1.36 · k unless P = NP [31], due to the lower bounds
on the approximation factor guarantee of any approximation for the optimization variant of
this problem [17]. k-Planar Vertex Cover cannot have a kernel of size (4/3− ε) · k for
any ε > 0 (unless P = NP), due to the dual-parameter approach [14]. We note that these
methods have rather limited applicability, and in any case cannot deal with polynomial lower
bounds. Indeed, finding methods for showing polynomial lower bounds for kernel sizes has
been stated as a major open problem in Guo and Niedermeier’s recent SIGACT kernelization
survey [31].

In the last part of the paper, we study sub-exponential kernels, i.e kernelization algorithms
that reduce instances to a size which is sub-exponentially bounded by the parameter. In
particular, we prove that there are problems solvable in O(2kn) time which (unconditionally)
do not have any sub-exponential kernel of size 2o(k). Furthermore, we show that there are
problems whose unparameterized classical versions are outside of P, but still they admit
arbitrary small sub-exponential kernels. That is, kernelization algorithms with output size
bounded by (1 + ε)k, for any ε > 0.

2 Preliminaries

Throughout the paper, we let Σ denote a finite alphabet, and N the set of natural numbers.
A (classical) problem L is a subset of Σ∗, where Σ∗ is the set of all finite length strings over
Σ. In natural cases, the strings in L will be an encoding of some combinatorial object, e.g.
graphs. We will call strings x ∈ Σ∗ which are proper encodings, input of L, regardless of
whether x ∈ L. We will often not distinguish between a combinatorial object and its string
encoding, using for example G to denote both a graph and a string in Σ∗.

A parameterized problem is a subset L ⊆ Σ∗ × N. In this way, an input (x, k) to a
parameterized language consists of two parts, where the second part k is the parameter. A
parameterized problem L is fixed-parameter tractable if there exists an algorithm which on a
given (x, k) ∈ Σ∗ × N, decides whether (x, k) ∈ L in f(k)p(n) time, where f is an arbitrary
computable function solely in k, and p is a polynomial in the total input length (including
the unary encoding of the parameter) n = |x|+ k. Such an algorithm is said to run in FPT-
time, and FPT is the class of all parameterized problems that can be solved by an FPT-time
algorithm (i.e. all problems which are fixed-parameter tractable). For more background on
parameterized complexity, the reader is referred to [5, 18, 24].

To relate notions from parameterized complexity and notions from classic complexity
theory with each other, we use a natural way of mapping parameterized problems to classical
problems. The mapping of parameterized problems is done by mapping (x, k) to the string
x#1k, where # /∈ Σ denotes the blank letter and 1 is an arbitrary letter in Σ. In this way, the
unparameterized version of a parameterized problem L is the langauge L̃ = {x#1k | (x, k) ∈
L}.

We next give a formal definition for the central notion of this paper:

5

Definition 1 (Kernelization). A kernelization algorithm, or in short, a kernel for a pa-
rameterized problem L ⊆ Σ∗ × N is an algorithm that given (x, k) ∈ Σ∗ × N, outputs in
p(|x|+ k) time a pair (x′, k′) ∈ Σ∗ × N such that

– (x, k) ∈ L ⇔ (x′, k′) ∈ L,
– |x′|, k′ ≤ f(k),

where f is an arbitrary computable function, and p a polynomial. Any function f as above
is referred to as the size of the kernel.

That is, if we have a kernel for L, then for any (x, k) ∈ Σ ×N, we can obtain in polynomial
time an equivalent instance with respect to L whose size is bounded by a function of the
parameter. If the size of the kernel is polynomial, we say that the parameterized langauge L
has a polynomial kernel.

3 A Generic Lower-Bounds Engine

In the following we develop the main engine for proving Theorems 1 and 2. This engine evolves
around the notion of distillation algorithms for NP-complete problems. We first introduce this
notion, and then use an argument of Fortnow and Santhanam [27] to show that a distillation
algorithm for any NP-complete problem implies the collapse of the polynomial hierarchy to
at least three levels. We then carefully define a parametric-analog of a distillation algorithm
which we call a composition algorithm. Following this, we show that if a compositional
parameterized problem has a polynomial kernel, then its unparameterized counterpart has
a distillation algorithm. We begin with the central notion of our framework:

Definition 2 (Distillation). A distillation algorithm for a classical problem L ⊆ Σ∗ is an
algorithm that

– receives as input a sequence (x1, . . . , xt), with xi ∈ Σ∗ for each 1 ≤ i ≤ t,
– uses time polynomial in

∑t
i=1 |xi|,

– and outputs a string y ∈ Σ∗ with
1. y ∈ L ⇐⇒ xi ∈ L for some 1 ≤ i ≤ t.
2. |y| is polynomial in max1≤i≤t |xi|.

That is, given a sequence of t instances of L, a distillation algorithm gives an output
that is equivalent to the sequence of instances, in the sense that a collection with at least
one yes-instance (i.e. instance belonging to L) is mapped to a yes-instance, and a collection
with only no-instances is mapped to a no-instance. (In a certain sense, this functions like a
Boolean OR operator.) The algorithm is allowed to use polynomial-time in the total size of
all instances. The crux is that its output must be bounded by a polynomial in the size of the
largest of the instances from the sequence, rather than in the total length of the instances
in the sequence.

It seems highly implausible that NP-complete problems have distillation algorithms. The
evidence for this in the following lemma, which shows that a distillation algorithm for an
NP-complete problem implies a collapse in the polynomial hierarchy (see [39] for formal
definition). The proof was provided by Fortnow and Santhanam in private communication,
and is differed to the Appendix due to space limitation.

6

Lemma 1 ([27]). If any NP-complete problem has a distillation algorithm then PH = Σ3
p.

Proof. Let L be an NP-complete problem with a distillation algorithm A, and let L denote
the complement of L. We show that using A, we can design a non-deterministic Turing-
machine (NDTM) that, with the help of polynomial advice, can decide L in polynomial-
time. This will that show coNP ⊆ NP/poly, and combined with Yap’s theorem [41] (coNP ⊆
NP/poly ⇒ PH ⊆ Σ3

p), this will prove the statement in the theorem.

Let n ∈ N be a sufficiently large integer. Denote by Ln the subset of strings of length
at most n in the complement of L, i.e. Ln = {x /∈ L : |x| ≤ n}. By its definition, given
any x1, . . . , xt ∈ Ln, the distillation algorithm A maps (x1, . . . , xt) to some y ∈ Lnc , where
c is some constant independent of t. Any sequence containing a string xi /∈ Ln is mapped
to a string y /∈ Lnc . The main part of the proof consists in showing that there exists a set
Sn ⊆ Lnc , with |Sn| polynomially bounded in n, such that for any x ∈ Σ≤n we have the
following:

– If x ∈ Ln, then there exist strings x1, . . . , xt ∈ Σ≤n with xi = x for some i, 1 ≤ i ≤ t,
such that A(x1, . . . , xt) ∈ Sn.

– If x /∈ Ln, then for all strings x1, . . . , xt ∈ Σ≤n with xi = x for some i, 1 ≤ i ≤ t, we have
A(x1, . . . , xt) /∈ Sn.

Given such a set Sn ⊆ Lnc as advice, a NDTM M can decide whether a given x ∈ Σ≤n is in L
as follows: It first guesses t strings x1, . . . , xt ∈ Σ≤n, and checks whether one of them is x. If
not, it immediately rejects. Otherwise, it computes A(x1, . . . , xt), and accepts iff the output
is in Sn. It is immediate to verify that M correctly determines (in the non-deterministic
sense) whether x ∈ Ln. In the remaining part of the proof, we show that there exists such
an advice S ⊆ Lnc as required above.

We view A as a function mapping strings from (Ln)t to Lnc , and say a string y ∈ Lnc

covers a string x ∈ Ln if there exist x1, . . . , xt ∈ Σ≤n with xi = x for some i, 1 ≤ i ≤ t,
and with A(x1, . . . , xt) = y. Clearly, our goal is to find polynomial-size subset of Lnc which
covers all strings in Ln. By the pigeonhole principle, there is a string y ∈ Y for which A
maps at least |(Ln)t|/|Lnc | = |Ln|t/|Lnc | tuples in (Ln)t to. Taking the t’th square root,
this gives us |Ln|/|Lnc |1/t distinct strings in Ln which are covered by y. Hence, by letting
t = lg |Lnc | = O(nc), this gives us a constant fraction of the strings in Ln. It follows that
we can repeat this process recursively in order to cover all strings in Ln with a polynomial
number of strings in Lnc . ut

We next introduce the notion of a composition algorithm for parameterized problems. In
some sense, one can view a composition algorithm as the parametric-analog of a distillation
algorithm.

Definition 3 (Composition). A composition algorithm for a parameterized problem L ⊆
Σ∗ × N is an algorithm that

– receives as input a sequence ((x1, k), . . . , (xt, k)), with (xi, k) ∈ Σ∗×N+ for each 1 ≤ i ≤ t,
– uses time polynomial in

∑t
i=1 |xi|+ k,

– and outputs (y, k′) ∈ Σ∗ × N+ with
1. (y, k′) ∈ L ⇐⇒ (xi, k) ∈ L for some 1 ≤ i ≤ t.

7

2. k′ is polynomial in k.

Hence, given a sequence of instances for L, a composition-algorithm outputs an equivalent
instance to this sequence in same sense of a distillation algorithm, except that now the
parameter of the instance is required to be polynomially-bounded by the maximum of all
parameters in the sequence, rather than the size of the instance bounded by the maximum
size of of all instances.

We call classical problems with distillation algorithms distillable problems, and parameter-
ized problems with composition algorithms compositional problems. Despite the similarities
between the two definitions, as we shall soon see, the existence of parametric-distillations for
some parameterized problems is much more plausible than the existence of distillations for
their unparameterized counterparts. Nevertheless, there is still a deep connection between
distillation and composition, obtained via polynomial kernelization. In particular, in the fol-
lowing lemma we prove that combining a composition algorithm for a parameterized problem
L, with a polynomial kernel for it, admits a distillation algorithm for the unparameterized
counterpart of L.

Lemma 2. Let L be a compositional parameterized problem whose unparameterized version
L̃ is NP-complete. If L has a polynomial kernel, then L̃ is also distillable.

Proof. Let x̃1, . . . , x̃t ∈ Σ∗ be instances of L̃, and let (xi, ki) ∈ Σ∗×N+ denote the instance of

L derived from x̃i, for all 1 ≤ i ≤ t. Since L̃ is NP-complete, there exist two polynomial-time
transformations Φ : L̃ → SAT and Ψ : SAT → L̃, where SAT is the problem of deciding
whether a given boolean formula is satisfiable. We use the composition and polynomial
kernelization algorithms of L, along with Φ and Ψ , to obtain a distillation algorithm for L̃.
The distillation algorithm proceeds in three steps.

Set k = max1≤i≤t ki. In the first step, we take the subsequence in ((x1, k1), . . . , (xt, kt)) of
instances whose parameter equals `, for each 1 ≤ ` ≤ k. We apply the composition algorithm
on each one of these subsequence separately, and obtain a new sequence ((y1, k

′
1), . . . , (yr, k

′
r)),

where (yi, k
′
i), 1 ≤ i ≤ r, is the instance obtained by composing all instances with parameters

equaling the i’th parameter value in {k1, . . . , kt}. In the second step, we apply the polynomial
kernel on each instance of the sequence ((y1, k

′
1), . . . , (yr, k

′
r)), to obtain a new sequence

((z1, k
′′
1), . . . , (zr, k

′′
r)), with (zi, k

′′
i) the instance obtained from (yi, k

′
i), for each 1 ≤ i ≤ r.

Finally, in the last step, we transform each z̃i, the unparameterized instance of L̃ derived
from (zi, k

′′
i), to a Boolean formula Φ(z̃i). We output the instance of L̃ for which Ψ maps the

disjunction of these formulas to, i.e. Ψ(
∨

1≤i≤r Φ(z̃i)).
We argue that this algorithm distills the sequence (x̃1, . . . , x̃t) in polynomial time, and

therefore is a distillation algorithm for L̃. First, by the correctness of the composition and
kernelization algorithms of L, and by the correctness of Φ and Ψ , we have

Ψ(
∨

1≤i≤r Φ(z̃i)) ∈ L̃ ⇐⇒
∨

1≤i≤r Φ(z̃i) ∈ SAT
⇐⇒ ∃i, 1 ≤ i ≤ r : Φ(z̃i) ∈ SAT

⇐⇒ ∃i, 1 ≤ i ≤ r : z̃i ∈ L̃
⇐⇒ ∃i, 1 ≤ i ≤ r : (zi, k

′′
i) ∈ L

⇐⇒ ∃i, 1 ≤ i ≤ r : (yi, k
′
i) ∈ L

⇐⇒ ∃i, 1 ≤ i ≤ t : (xi, ki) ∈ L

⇐⇒ ∃i, 1 ≤ i ≤ t : x̃i ∈ L̃.

8

Furthermore, as each step in the algorithm runs in polynomial-time in the total size of its
input, and since the output of each step is the input of the next step, the total running-time
of our algorithm is polynomial in

∑t
i=1 |x̃i|. To complete the proof, we show that the final

output returned by our algorithm is polynomially bounded in n = max1≤i≤t |x̃i|.
The first observation is that since each x̃i is derived from the instance (xi, ki), 1 ≤ i ≤ t,

we have r ≤ k = max1≤i≤t ki ≤ max1≤i≤t |x̃i| = n. Therefore, there are at most n instances in
the sequence ((y1, k

′
1), . . . , (yr, k

′
r)) obtained in the first step of the algorithm. Furthermore,

as each (yi, k
′
i), 1 ≤ i ≤ r, is obtained via composition, we know that k′i is bounded by

some polynomial in ` ≤ k ≤ n. Hence, since for each 1 ≤ i ≤ r, the instance (zi, k
′′
i) is the

output of a polynomial kernelization on (yi, k
′
i), we also know that (zi, k

′′
i) and z̃i have size

polynomially-bounded in n. It follows that
∑r

i=1 |z̃i| is polynomial in n, and since both Φ
and Ψ are polynomial-time, so is Ψ(

∨
1≤i≤r Φ(z̃i)). ut

4 Applications

Lemmas 1 and 2 which together form our lower bound engine together imply that any compo-
sitional parameterized problem whose unparameterized counterpart is NP-complete cannot
have a polynomial kernel, unless the polynomial hierarchy collapses. In the following we ex-
emplify the strength of our lower bound engine by giving several examples of compositional
FPT problems that are based on unparameterized classical NP-complete problems. We focus
only on natural examples, and in particular, we complete the proof of Theorem 1. Due to
space considerations, most of the proofs in this section are differed to the Appendix.

Let us call a parameterized problem L ⊆ Σ∗ × N a parameterized graph problem, if for
any (x, k) ∈ L, x is an encoding of a graph.

Lemma 3. Let L be a parameterized graph problem such that for any pair of graphs G1 and
G2, and any integer k ∈ N, we have (G1, k) ∈ L∨ (G2, k) ∈ L ⇐⇒ (G1 ∪G2, k) ∈ L, where
G1 ∪G2 is the disjoint union of G1 and G2. Then L is compositional.

Proof. Given (G1, k), . . . , (Gt, k), take G to be the disjoint union G1∪ · · · ∪Gt. The instance
(G, k) satisfies all requirements of Definition 3. ut

As an immediate corollary of the simple lemma above, we get that our case-study prob-
lem k-Path is compositional, and thus is unlikely to have a polynomial kernel. Indeed, the
disjoint union of two graphs has a k-path iff one of the graphs has a k-path. Two other
similar examples are the k-Cycle and k-Exact Cycle problems, which respectively ask
to determine whether a given graph has a (not necessarily induced) subgraph which is iso-
morphic to a cycle with at least k vertices and a cycle with exactly k vertices. Both these
problems are also in FPT by the color-coding technique of Alon et al. [2], and are compo-
sitional by the lemma above. Another example is k-Short Cheap Tour, which given an
edge-weighted graph, asks whether there is a tour of length at least k in the graph with total
weight not more than some given threshold. This problem is in FPT due to [37], and is again
compositional according to Lemma 3.

In fact, Lemma 3 implies that any parameterized problem which asks to determine
whether a given graph H is a “subgraph of some kind” of another given graph G, for almost

9

any natural notion of subgraph, is compositional when parameterized by the size of H. For
example, consider the k-Minor Order Test problem, famously in FPT due to Robertson
and Seymour’s celebrated Graph Minor Theorem. This problem asks to decide whether a
given graph H is a minor of another given graph G, and the parameter k is the numeric
encoding of H (i.e. the position of H in some canonical ordering of simple graphs). Clearly, if
we slightly relax the problem and require H to be connected, the disjoint union construction
of Lemma 3 above gives a composition algorithm for this problem. If H is not connected, we
can connect it by adding a new global vertex adjacent to all other vertices in H, and then
add such a global vertex to each Gi, 1 ≤ i ≤ t. By similar arguments we can also show that
k-Bounded Treewidth Subgraph Test – the problem of determining whether a given
bounded treewidth graph occurs as a subgraph in another given graph (in FPT again via
color-coding [2]) – is also compositional. Other two good examples are k-Planar Graph
Subgraph Test and k-Planar Graph Induced Subgraph Test, both in FPT due
to [19].

As an example of a non graph-theoretic problem which is compositional, consider the
parameterized variant of Cook’s generic NP-complete problem [16] – the k, σ-Short Non-
Deterministic Turing Machine Computation problem. In this problem, we receive
as input a non-deterministic Turing machine M with alphabet-size σ, and an integer k, and
the goal is to determine in FPT-time, with respect to both k and σ, whether M has a com-
putation path halting on the empty input in at most k steps. This problem can be shown to
be in FPT by applying the algorithm which exhaustively checks all global configurations of
M [13].

Lemma 4. k, σ-Short NonDeterministic Turing Machine Computation is com-
positional.

Proof. Given (M1, k, σ), . . . , (Mt, k, σ), we can assume that the alphabet of each Mi, 1 ≤
i ≤ t, is {1, . . . , σ}. We create a new NDTM M , which is the disjoint union of all Mi’s, in
addition to a new unique initial state which is connected the initial states of all Mi by an
ε-edge. (That is, by a non-deterministic transition that does not write anything on the tape,
nor moves the head.) Note that M has alphabet size σ. Letting k′ = 1 + k, the instance
(M, k′, σ) satisfies all requirements of Definition 3. ut

We now turn to proving the last item of Theorem 1. In particular, we show that many
natural NP-complete problems parameterized by treewidth are unlikely to have a polynomial
kernel. We illustrate the technique with one example, and then state the general result
that can be obtained using the same way. Consider the w-Independent Set problem:
Given a graph G, a tree-decomposition T of G of width w ∈ N+, and an integer k ∈
N+, determine whether G has an independent set of size k. We call the unparameterized
variant of the problem above the Independent Set with Treewidth problem. Clearly,
Independent Set with Treewidth is NP-complete by the straightforward reduction
from Independent Set which appends a trivial tree-decomposition to the given instance
of Independent Set. To show that w-Independent Set is compositional, we work with
a ‘guarantee’ version of this problem.

w-Independent Set Refinement:

10

Instance: A graph G, a tree-decomposition T of G, and an independent set I in G.

Question: Does G have an independent set of size |I|+ 1?

Parameter: The width w of T .

The unparameterized variant of w-Independent Set Refinement is Independent
Set Refinement with Treewidth. It is easy to see that this problem is NP-complete
by the following reduction from Independent Set with Treewidth – Given an instance
(G, T , k), construct the instance (G′, T ′, I), where G′ is the graph obtained by adding k new
pairwise non-adjacent vertices I to G which are connected to all the old vertices, and T ′ is
the tree-decomposition obtained by adding the set of new vertices I to each node in T .

Lemma 5. w-Independent Set Refinement is compositional, and furthermore, if w-
Independent Set has a polynomial kernel then so does w-Independent Set Refine-
ment.

Proof. To prove the first part of lemma, suppose we are given t instances
(G1, T1, I1), . . . , (Gt, Tt, It) of w-Independent Set Refinement. Consider the algorithm
which maps this sequence of instances to (G, T , I), with G the disjoint union

⋃t
i=1 Gi, T the

tree obtained by connecting all Ti’s, 1 ≤ i ≤ t, and with I =
⋃t

i=1 Ii. Note that G has an
independent set of size |I| + 1 if and only if there exists an i, 1 ≤ i ≤ t, such that Gi an
independent set of size |Ii| + 1. Moreover, as the width of each tree-decomposition Ti is w,
1 ≤ i ≤ t, T also has width w.

We next show that a polynomial kernel for w-Independent Set implies a polynomial
kernel for w-Independent Set Refinement. For this, suppose w-Independent Set
has a polynomial kernel, and consider a given instance (G, T , I) of w-Independent Set
Refinement. Forgetting I, we create an equivalent instance (G, T) of w-Independent
Set, and apply the polynomial kernelization algorithm on this instance to obtain the in-
stance (G′, T ′), with |G′| and |T ′| polynomially bounded by the width w of T . We now
consider the instance (G′, T ′) as an instance of the unparameterized Independent Set
with Treewidth problem. Using the reduction discussed above, we transform (G′, T ′) in
polynomial-time to an equivalent instance (G′′, T ′′, I ′′) of Independent Set Refinement.
The parameterized instance (G′′, T ′′, I ′′) is equivalent to (G, T , I), and has size polynomial
in the width w of T . ut

The proof of the lemma above implies that to fit a natural NP-complete graph problem
parameterized by treewidth into the context of our lower-bound framework, one has to
basically show two things: First, that the refinement variant of the problem is compositional,
and second, that the unparameterized version of the refinement variant is NP-complete. In
fact, this technique is not necessarily limited to treewidth, but can be used with almost any
other structural parameter such as cliquewidth, max. degree, min. vertex-cover, and so forth.
To complete the proof of Theorem 1, we prove that Dominating Set Refinement with
Treewidth is NP-complete; Clique Refinement with Treewidth can be seen to be
NP-complete by a similar construction shown above. Note that an instance of Dominating
Set Refinement with Treewidth consists of a graph G, a tree decomposition T of
G, and a dominating set D ⊆ V (G), and the goal is to determine whether there exists a
dominating set in G of size |D| − 1.

11

Lemma 6. Dominating Set Refinement with Treewidth is NP-complete.

Proof. We prove the lemma by showing that Dominating Set Refinement is NP-
complete via a reduction from Dominating Set. The fact that Dominating Set Re-
finement with Treewidth is NP-complete will follow immediately.

Let (G, k) be an instance of Dominating Set. We construct an instance (G′, D) of
Dominating Set Refinement by creating k + 1 copies v1, . . . , vk+1 ∈ V (G′) of each
vertex v ∈ V (G), and then connecting all pairs of vertices:

– {vi, vj}, for all 1 ≤ i < j ≤ k + 1 and all v ∈ V (G),
– {ui, vi}, for all 1 ≤ i ≤ k + 1 and all u 6= v ∈ V (G),
– {ui, vj}, for all 1 ≤ i < j ≤ k + 1 and {u, v} ∈ E(G).

The “guaranteed” (k + 1)-dominating set of G′ is taken as D = {v1, . . . , vk+1} for some
arbitrary v ∈ V (G). We argue that G has a k-dominating set iff G′ has a k-dominating set.
First, if G has a k-dominating set DG ⊆ V (G), then {v1 | v ∈ DG} is a k-dominating set of
G′. Conversely, if DG′ ⊆ V (G′) is a k-dominating set of G′, then {v | vi ∈ DG′ for some i} is
a k-dominating set of G. This is since there must be an i ∈ {1, . . . , k + 1} with vi /∈ DG′ for
all v ∈ V (G), as |DG′| < k + 1, and therefore for this particular i, any vertex vi ∈ V (G′) is
dominated by some uj ∈ DG′ , j ∈ {1, . . . , k + 1} \ {i}. By our construction, it follows that
either u = v or {u, v} ∈ E(G), and so u dominates v in G. ut

5 Extensions

We next extend the framework presented in the previous section so that it captures other
important FPT problems not captured by Theorem 1. In particular, we provide a complete
proof for Theorem 2. The main observation we use for the former is that an AND-variant
of a composition algorithm for a parameterized problem L, yields a composition algorithm
for L, the complement of L. This observation is useful since a lot of problems have natural
AND-compositions rather then regular compositions. As any FPT problem has a polynomial
kernel iff its complement also has one, showing that a coFPT problem is compositional is
just as good for our purposes as showing that it complement in FPT is compositional.

Lemma 7. Let L be a parameterized graph problem such that for any pair of graphs G1 and
G2, and any integer k ∈ N, we have (G1, k) ∈ L∧ (G2, k) ∈ L ⇐⇒ (G1 ∪G2, k) ∈ L, where
G1 ∪G2 is the disjoint union of G1 and G2. Then L, the complement of L, is compositional.

Proof. Given (G1, k), . . . , (Gt, k), take G to be the disjoint union G1∪· · ·∪Gt. Then (G, k) ∈
L iff (Gi, k) ∈ L for all i, 1 ≤ i ≤ t. But then (G, k) ∈ L iff (Gi, k) ∈ L for any i, 1 ≤ i ≤ t.
It follows that (G, k) satisfies all requirements of Definition 3. ut

There are many FPT problem with a natural composition as above. These include the
classical “width problems” k-Pathwidth, k-Treewidth, and k-Branchwidth (see [7]
for formal definitions and FPT algorithms for these problems). Three closely related rel-
atives of these problems are k-Search Number [6, 22], k-Front Size [7], and k-Gate
Matrix Layout [23], which all have AND-composition by the lemma above. Lemma 7

12

also implies that two other famous FPT “width problems” are AND-compositional, namely,
k-Cutwidth and k-Modified Cutwidth [6, 22].

We prove the last item of Theorem 2 by using refinement variants as done for the treewidth
parameterized problems in Theorem 1. In this context, it is worth mentioning that parti-
tioning problems seem more adaptable to AND-compositions, as opposed to subset problems
which are better suited for regular composition. Recall that w-3-Chromatic Number is
the problem of determining, given a graph G and a tree-decomposition T of G, whether there
exists a partitioning (or coloring) Π of V (G) into three classes, where each class induces an
independent set in G. The parameter is the width of T . The w-3-Domatic Number prob-
lem is defined similarly, except that here the goal is to partition (or domatic-color) V (G),
again into three classes, with each class inducing a dominating set of G. Indeed, we selected
w-3-Chromatic Number and w-3-Domatic Number for Theorem 2 as they are two of
the more well-known graph partitioning problems. Many other natural partitioning problems
could have been selected as well.

The refinement variants of these two problems, w-3-Chromatic Number Refinement
and w-3-Domatic Number Refinement, are defined by adding to the input an appro-
priate vertex-partitioning Π (with respect to the problem definition), of cardinality four for
w-3-Chromatic Number Refinement and two for w-3-Domatic Number Refine-
ment. It is easy to see unparameterized versions of these two problems is NP-complete by
recalling that one can color planar graphs with four colors in polynomial-time (see e.g. [38]),
while it is NP-complete to decide whether a planar graph is 3-colorable, and by recalling that
every graph without an isolated vertex can domatic-colored with two colors in polynomial-
time (see e.g. [28]). Furthermore, it is easy to see that the standard disjoint union algorithm
is an AND-composition for these two problems. Thus, by similar arguments used in Sec-
tion 4, we can conclude that a polynomial-kernel for either w-3-Chromatic Number or
w-3-Domatic Number implies that all coNP-complete problems are distillable.

6 Sub-Exponential Kernels

In this section we turn to explore sub-exponential kernels, i.e. kernelization algorithms that
output an instance which are sub-exponentially bounded by the parameter of the input
instances. We study sub-exponential kernelization from a more structural point of view. In
particular, we show that there are parameterized languages solvable in O(2kn) time, with
no kernelization of size g(k) = 2o(k). Furthermore, we show that there are problems with
classically derived counterparts outside of P that have arbitrarily small exponential kernels
(see definition below). Due to space considerations, the results in this section are presented
without proofs.

In [25], Flum, Grohe, and Weyer introduced the notion of “bounded fixed-parameter
tractability” as an attempt to provide a theory for feasible FPT algorithms. They argued
that for an FPT algorithm to be useful in practice, it should most likely have a running-
time of 2O(k)nO(1) or perhaps 2kO(1)

nO(1). It is tempting to think that the classes of problems
with such running-times will align themselves with the classes of problems having linear
and polynomial kernels respectively. We have already seen evidence in this paper that this
attractive idea fails: k-Path can be solved in 2O(k)nO(1), but is unlikely to have a polynomial

13

kernel (Theorem 1). In the following we show that this idea fails in a sharper sense, and
without having to rely on any complexity assumption.

Theorem 3. There is an FPT langauge L ⊆ Σ∗×N+ solvable in O(2kn) time, n = |x|+ k,
with no kernelization of size g(k) = 2o(k).

Proof. Let Φ1, Φ2, . . . denote the set of all kernelization algorithms, and let g1, g2, . . . denote
the set of all computable functions which are bounded by 2o(k). We will assume that we have
a linear-time enumeration of all possible pairs 〈Φ, g〉, where for convenience we will actually
assume we have an enumeration {〈Φ`, g`〉 | ` ∈ ω}, with each 〈Φ, g〉 occurring infinitely-many
often. We will say that 〈Φ, g〉 is a proper pair, if g is in fact the size of Φ. Our argument is
via diagonalization. We give an algorithm that decides a langauge L ⊆ Σ∗ × N+ in O(2kn)
time, n = |x|+ k, where for each proper pair 〈Φ, g〉 there is an (x, k) ∈ Σ∗ × N+ such that

(x, k) /∈ L ⇐⇒ Φ(x, k) ∈ L. (1)

Clearly this will imply that Φ is not a kernelization algorithm of L for all proper pairs 〈Φ, g〉.
The langauge L that our algorithm decides will be rather sparse: If there is no ` ∈ N+ with

` = lg lg k, then (x, k) will not be in L for all x ∈ Σ∗. In other words, the non-empty slices
of L will be at least 22k

far apart. Furthermore, L will only contain pairs (x, k) ∈ Σ∗ × N+

with x = 1g`(k), for ` = lg lg k and 1 ∈ Σ. This will ensure us enough time to diagonalize.
Our algorithm proceeds in the following steps:

1. Check whether there exists an ` ∈ N+ with ` = lg lg k. If not, determine (x, k) /∈ L.
2. Compute 〈Φ`, g`〉 and check whether x = 1g`(k). If not, determine (x, k) /∈ L.
3. Run Φ` on input (x, k) for at most 2kn steps. If Φ` does not terminate, determine (x, k) /∈

L.
4. Set (x′, k′) = Φ`(x, k). If |x′|+ k′ > g`(k), determine (x, k) /∈ L.
5. Determine (x, k) /∈ L ⇐⇒ (x′, k′) ∈ L.

There are two important claims we need to make here. First, we need to argue that our
algorithm indeed has a running-time of O(2kn), as promised above. Second, we need to show
that (1) is satisfied for every proper pair 〈Φ, g〉. In other words, we need to show that for
every proper pair 〈Φ, g〉 there is an ` ∈ ω and a pair (x, k) ∈ Σ∗×N+ for which Φ` terminates
on in step 3 of the algorithm.

For bounding the running time of our algorithm, first observe that both steps 1 and 2
can be performed in O(k) time, and that steps 3 and 4 together require O(2kn) time. Step 5
is recursive. To bound the time required for the recursion, first note that step 4 guarantees
that (x, k) 6= (x′, k′), and so the recursion will terminate. (Here is where we actually use the
fact that we only need to diagnolize on proper pairs 〈Φ, g〉.) Moreover, notice that the only
way we will simulate another kernelization algorithm Φ`′ , for some `′ 6= `, is if k′ ≤ lg lg k
and if x′ = 1g`′ (k). This implies that the running-time of Φ`′ will be

2k′
(|x′|+ k′) = 2k′

(g`′(k
′) + k′) ≤ 2lg k(g`′(lg k) + lg k) << k · (2lg k + lg k) = O(k).

It is now easy to see that our algorithm will have less then lg∗ k recursive steps, and in each
step the running-time will decrease at least logarithmically. Hence, our algorithm is O(2kn)
time.

14

To see that (1) is satisfied for every proper pair, let 〈Φ, g〉 be a proper pair, and let nc

denote the running-time of Φ on input (x, k) ∈ Σ∗×N+, with n = |x|+ k and c ∈ N+. Since
g(k) = 2o(k), for (x, k) = (1g(k), k) with k sufficiently large, we will have

2kn = 2k · (g(k) + k) > (g(k) + k)c = nc.

Let k be an integer for which the above holds. Since 〈Φ, g〉 occurs infinitely-many often in
{〈Φ`, g`〉 | ` ∈ ω}, there is an ` ∈ ω with ` > lg lg k and 〈Φ`, g`〉 = 〈Φ, g〉. For this `, Φ` will
terminate on (1g`(k), k) in at most 2kn steps. The theorem follows. ut

We next turn to study problems which admit arbitrarily small exponential kernels. A
parameterized problem L ⊆ Σ∗ × N+ has an arbitrarily small exponential kernel if it has a
kernel of size bound by (1 + ε)k for any ε > 0. Are there problems outside P with arbitrarily
small exponential kernels? Before answering this question, we recall the any FPT algorithm
for a parameterized langauge L ⊆ Σ∗ × N+ with running-time f(k)(|x| + k)c yields a ker-
nelization for L with size g(k) = f(k). To see this, note that when f(k) ≤ |x|+ k the above
algorithm is polynomial, and a trivial canonical O(1) kernel can be computed in this case.
When f(k) > |x| + k, (x, k) is already kernelized. We will use this simple observation, first
noted in [11], to prove the following:

Theorem 4. There is a parameterized problem, whose classically derived problem is not in
P, with an arbitrarily small exponential kernel.

Proof. The proof is similar to the proof of Theorem 3. We construct L 6∈ P, such that each
slice of L has only a single element, with non-empty slices at least 22k

apart, and such that
for each ε > 0 there is an algorithm accepting L in time O((1 + ε)k(|x|+ k)). To make sure
that L 6∈ P, we will use for diagonalization a linear-time enumeration {Φ` | ` ∈ ω} of all
polynomial-time procedures, with each procedure occurring in {Φ` | ` ∈ ω} infinitely-many
often, and where (|x|+ k)c` the running-time of Φ` on inputs (x, k) ∈ Σ∗ × N+ with |x|+ k
sufficiently large. We will also consider a polynomial-time computable sequence {ε`}`∈ω, of
descending rational numbers with lim` ε` = 0.

Our algorithm, given (x, k) ∈ Σ∗ × N+, will automatically determine that (x, k) /∈ L, if
x 6= 1 ∈ Σ. For pairs (x, k) with x = 1, our algorithm will first check whether there is some
` ∈ N+ with ` = lg lg k, and if not, it again determines (x, k) /∈ L. Otherwise, it computes
Φ` and ε`, and checks whether Φ` terminates on (x, k) in at most (1 + ε`)

k(|x|+ k) steps. If
not, it determines (x, k) /∈ L, and if so, it determines (x, k) ∈ L ⇐⇒ Φ`(x, k) /∈ L.

Bounding the running-time of this algorithm can be done as in the proof of Theorem 3.
Indeed, the algorithm has less then lg∗ k recursive steps, where in each step the running-time
decreases at least logarithmically, implying that the total-running time will be dominated
by the first recursive step, i.e. by O((1 + ε)k(|x|+ k)). Furthermore, for sufficiently large k,
we have (1 + ε`)

k ≥ kc` , and so we will indeed be able to diagonalize on any procedure Φ
occurring in {Φ` | ` ∈ ω}. The theorem therefore follows, recalling that an f(k)nc algorithm
implies an f(k) kernelization. ut

7 Conclusions

In this paper we presented a generic framework which allowed us to show that a wide
variety of FPT problems are unlikely to have a polynomial kernel. Our results form the first

15

polynomial lower-bounds on kernelization sizes of natural FPT problems, and provide an
initial glimpse into what makes polynomial kernelization intrinsically hard in certain type of
problems. There are many future directions of research and open questions stemming from
our work. To conclude the paper, we give below an incomplete list which contains four of
the more important ones:

– First and foremost, in light of Theorem 2, can one relate the non-existence of distillation
algorithms for coNP-complete problems to any known complexity conjecture? In this
regard, Buhrmann has shown in private communication that there are oracles relative to
which no distillation algorithm exists for coNP-complete problems [9].

– Is there a way to base the non-existence of polynomial kernels for any FPT problem on a
conjecture in parameterized complexity, e.g. FPT 6= XP or FPT 6= W[t] for some t ∈ N+?

– In light of the last items of Theorem 1 and Theorem 2, can one give evidence for the
non-existence of polynomial kernels for all NP-complete graph problems parameterized
by treewidth?

– Finally, can one obtain sub-exponential lower bounds of any form on the kernel sizes of
some of the problems discussed in this paper?

Acknowledgements

We would like to thank Lance Fortnow, Raul Santhanam, and Harry Buhrman for many
fruitful discussions. In particular, Lance and Raul provided the proof for Lemma 1 of this
paper. The fourth author would also like to thank Moritz Müller for reviewing several prelim-
inary versions, and especially for the countless (and sometimes endless) debates on related
topics.

16

References

1. J. Alber, M.R. Fellows, and R. Niedermeier. Efficient data reduction for DOMINATING SET: A linear problem
kernel for the planar case. In Proceedings of the 8th Scandinavian Workshop on Algorithm Theory (SWAT),
pages 150–159, 2002.

2. N. Alon, R. Yuster, and U. Zwick. Color coding. Journal of the ACM, 42(4):844–856, 1995.
3. S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded decomposability. A survey.

BIT Numerical Mathematics, 25(1):2–23, 1985.
4. R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted vertex cover problem. Annals

of Discrete Mathematics, 25:27–46, 1985.
5. Hans L. Bodlaender. A cubic kernel for feedback vertex set. In Proceedings of the 24th annual Symposium on

Theoretical Aspects of Computer Science (STACS), pages 320–331, 2007.
6. H.L. Bodlaender. Classes of graphs with bounded tree-width. Technical Report RUU-CS-86-22, Department of

Computer Science, University of Utrecht, 1986.
7. H.L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on

Computing, 25:1305–1317, 1996.
8. P.S. Bonsma, T. Brüggemann, and G.J. Woeginger. A faster FPT algorithm for finding spanning trees with many

leaves. In Proceedings of the 28th international symposium on Mathematical Foundations of Computer Science
(MFCS), pages 259–268, 2003.

9. H. Buhrman. Unpublished, 2007.
10. K. Burrage, V. Estivill-Castro, M.R. Fellows, M.A. Langston, S. Mac, and F.A. Rosamond. The undirected feed-

back vertex set problem has a Poly(k) kernel. In Proceedings of the 2nd International Workshop on Parameterized
and Exact Computation (IWPEC), pages 192–202, 2006.

11. L. Cai, J. Chen, R.G. Downey, and M.R. Fellows. Advice classes of paramterized tractability. Annals of Pure
and Applied Logic, 84(1):119–138, 1997.

12. L. Cai and D.W. Juedes. Subexponential parameterized algorithms collapse the W-hierarchy. In Proceedings of
the 28th International Colloquium on Automata, Languages and Programming (ICALP), pages 273–284, 2001.

13. M. Cesati and M. Di Ianni. Computation models for parameterized complexity. Mathematical Logic Quarterly,
43:179–202, 1997.

14. J. Chen, H. Fernau, I.A. Kanj, and G. Xia. Parametric duality and kernelization: Lower bounds and upper
bounds on kernel size. In Proceedings of the 22nd annual Symposium on Theoretical Aspects of Computer Science
(STACS), pages 269–280, 2005.

15. Y. Chen, J. Flum, and M. Müller. Lower Bounds for Kernelizations – Manuscript, 2007.
16. S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual ACM Symposium

on Theory Of Computing (STOC), pages 151–158, 1971.
17. I. Dinur and S. Safra. The importance of being biased. In Proceedings of the 34th Annual ACM Symposium on

Theory of Computing (STOC), pages 33–42, 2002.
18. R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
19. D. Eppstein. Subgraph isomorphism in planar graphs and related problems. In Proceedings of the 6th annual

ACM/SIAM Symposium on Discrete Algorithms (SODA), pages 632–640, 1995.
20. V. Estivill-Castro, M. Fellows, M. Langston, and F. Rosemond. FPT is P-time extremal structure I. In Proceedings

of the 1st workshop on Algorithms and Complexity in Durham (ACiD), pages 1–41, 2005.
21. M.R. Fellows and M.A. Langston. Nonconstructive proofs of polynomial-time complexity. Information Processing

Letters, 26:157–162, 1988.
22. M.R. Fellows and M.A. Langston. On well-partial-order theory and its application to combinatorial problems of

VLSI design. SIAM Journal of Discrete Math, 5(1):117–126, 1992.
23. H. Fernau. Parameterized algorithms: A graph-theoretic approach. PhD thesis, 2005.
24. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
25. J. Flum, M. Grohe, and M. Weyer. Bounded fixed-parameter tractability and log2n nondeterministic bits. In

Proceedings of the 31st International Colloquium on Automata, Languages and Programming (ICALP), pages
555–567, 2004.

26. F.V. Fomin and D.M. Thilikos. Fast parameterized algorithms for graphs on surfaces: Linear kernel and expo-
nential speed-up. In Proceedings of the 31st International Colloquium on Automata, Languages and Programming
(ICALP), pages 581–592, 2004.

27. L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs for NP. Technical
Report 96, Electronic Colloquium on Computational Complexity, 2007.

28. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, New York, 1979.

17

29. J. Gramm, J. Guo, F. Huffner, and R. Niedermeier. Graph-modeled data clustering: Exact algorithms for clique
generation. Mathematical Systems Theory, 38:373–392, 2005.

30. J. Guo and R. Niedermeier. Fixed-parameter tractability and data reduction for multicut in trees. Networks,
46(3):124–135, 2005.

31. J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization. SIGACT News, 38(1):31–45,
2007.

32. J. Guo and R. Niedermeier. Linear problem kernels for NP-hard problems on planar graphs. In Proceedings of
the 34th International Colloquium on Automata, Languages and Programming (ICALP) – to appear, 2007.

33. J. Guo, R. Niedermeier, and S. Wernicke. Parameterized complexity of generalized vertex cover problems. In
Proceedings of the 9th Workshop on Algorithms and Data Structures (WADS), pages 36–48, 2005.

34. D.S. Hochbaum. Efficient bounds for the stable set, vertex cover and set packing problems. Discrete Applied
Mathematics, 6:243–254, 1983.

35. G.L. Nemhauser and L.E. Trotter Jr. Vertex packings: structural properties and algorithms. Mathematical
Programming, 8:232–248, 1975.

36. R. Niedermeier and P. Rossmanith. An efficient fixed-parameter algorithm for 3-Hitting Set. Journal of Discrete
Algorithms, 1:89–102, 2003.

37. J. Plehn and B. Voigt. Finding minimally weighted subgraphs. In Proceedings of the 16th international Workshop
on Graph-theoretic concepts in computer science (WG), pages 18–29, 1990.

38. N. Robertson, D.P. Sanders, P. Seymour, and R. Thomas. Efficiently four-coloring planar graphs. In Proceedings
of the 28th annual ACM Symposium on the Theory Of Computing (STOC), pages 571–575, 1996.

39. L.J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1–22, 1977.
40. K. Weihe. Covering trains by stations or the power of data reduction. In Proceedings of the 1st ACM/SIAM

workshop on ALgorithm ENgineering and EXperiments (ALENEX), pages 1–8, 1998.
41. C.K. Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical Computer Science,

26(3):287–300, 1983.

