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Abstract

We describe an algorithm for abstract interpretation of an intermediate language in a
Haskell compiler, itself also written in Haskell. It computes approximations of possible values
for all variables in the program, which can be used for optimizing the object code. The
analysis is done by collecting constraints on variables, which are then solved by fixpoint
iteration. The set of constraints grows while solving, as possible values of unknown functions
become known. The constraints are collected by decorating the abstract syntax tree with an
attribute grammar based preprocessor for Haskell. An introduction to this preprocessor is
also given.

1 Introduction

Early implementations of lazy functional languages were usually based on graph rewriting tech-
niques. Substitution is done in evaluation of a β-redex

(λx . b) a ⇒ b [ x / a ]

either directly by walking through a copy of b and replacing occurences of x, or indirectly by
compilation to SKI-combinators [14] or super-combinators [7].
Later, other approaches were taken which compile to an abstract machine model based on stacks
and continuations. The instructions of this “STG-machine” can be mapped to those of traditional
hardware architectures [12].
Lazy evaluation of functional languages is implemented by, instead of calling functions directly,
building “closures” of functions, i.e. heap records containing a reference to the function and to its
arguments. Such a closure is forced to evaluation when the result is actually needed, viz. when it
is used in a case-expression or passed in a strict argument position.
In a naive implementation, the function reference can be a tag, and a special evaluation function
performs case distinction on this tag. Peyton Jones et al. describe an encoding [12], in which the
tag is actually a pointer to an information table, which in turn contains a pointer to the code of
the function. Evaluating a closure now amounts to just calling that code. The double indirection
in this encoding can be reduced to a single indirection by having the “tag” point directly to the
code, and putting the rest of the information table just before that code in memory [10].
Either way, evaluation involves calling code through an indirection pointer. On modern pipelined
processors, this is a costly operation, as it stalls the prefetching pipeline. Therefore, Boquist
proposes to return to the naive encoding [3]. To avoid the overhead of calling the evaluation
function which does the case distinction between tags, the evaluation function is “inlined” whenever
used. To prevent copying the large body of the evaluation function, each occurence of the case
analysis is pruned to contain only those cases that can actually occur in that particular instance.
This way, evaluation amounts to a few tests and conditional jumps, and indirect jumps are avoided
completely. Branch prediction schemes that are built in in pipelined processors can deal with the
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conditional jumps efficiently. Also, the conditional jumps are very local, and are likely to have
their target within the instruction cache.
To do the pruning it is necessary to know for each closure what its possible tags are. This is to
be determined by a global control flow analysis. Boquist sketches an algorithm for this abstract
interpretation [4]. Here we present a full implementation we employ in our experimental Haskell
compiler [6].
Algorithms are often described in some mathematical formalism. A problem of mathematical
notation is that it lacks sophisticated data structures. We feel it is paradoxical that for describing,
e.g., the subtleties of the Haskell type system, one often uses mathematical notation which itself
is almost untyped. So, where a mathematical description ought to be more abstract than an
implementation, sometimes it is cluttered with low-level encodings of data structures in terms of
lists and tuples.
A way out of this paradox is to use Haskell itself as the description language. We consider a paper
like “Typing Haskell in Haskell” [8] to be better readable than many a formal treatise on the same
subject. An added benefit is that the description is actually executable code, which makes an
error-prone translation from specification to implementation obsolete.
To be useful as an algorithm description intended for human readers, we try to abstract from trivial
details as much as possible. Although Haskell has many mechanisms for abstraction, we think
that for tree processing algorithms it is helpful to use notions derived from the realm of attribute
grammars [9]. In order not to loose executability of our implementation, we use a preprocessor
that translates the attribute grammar notions to plain Haskell. To make the paper self-contained,
we include a description of this preprocessor as well.
The aim of this paper is twofold:

1 (technical) to give a concise, executable description of the abstract interpretation algorithm
that is needed to avoid indirect jumps when evaluating a closure in a lazy functional language;

2 (methodological) to provide a case study for the use of Haskell and attribute grammar related
techniques for the description of an algorithm, to show that is enables a concise and clear
representation.

In section 4 we present the actual algorithm. Before that, we introduce the language to be analyzed
in section 3, and the attribute grammar preprocessor for Haskell in section 2.

2 Tree walk methodology

2.1 Defining semantics

Functional languages are famous for their ability to parameterize functions not only with numbers
and data structures, but also with functions and operators. The standard textbook example
involves the functions sum and product , which can be defined separately by tedious inductive
definitions:

sum [ ] = 0
sum (x : xs) = x + sum xs
product [ ] = 1
product (x : xs) = x ∗ product xs

but, once this pattern has been generalized in a function foldr that takes as additional parameters
the base value and the operator to apply in the inductive case:

foldr op e [ ] = e
foldr op e (x : xs) = x ‘op‘ foldr op e xs

could easily have been defined as specializations of the general case:
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sum = foldr (+) 0
product = foldr (∗) 1

Indeed, good generalizations might have unexpected applications in other domains:

concat = foldr (++) [ ]
sort = foldr insert [ ]
transpose = foldr (zipWith (:)) (repeat [ ])

The idea that underlies the definition of foldr , i.e. to capture the pattern of an inductive definition
by having a function parameter for each constructor of the data structure, can also be used for
other data types, and even for multiple mutually recursive data types. A function that can be
expressed in this way was called a catamorphism by Bird, and the collective extra parameters to
foldr -like functions an algebra [2, 1]. Thus, ((+), 0) is an algebra for lists, and ((++), [ ]) is another.
In fact, every algebra defines a semantics of the data structure. When applying foldr -like functions
to the algebra consisting of the original constructor functions, such as ((:), [ ]) for lists, we have
the identity function. Such an algebra is said to define the “initial” semantics.
Outside circles of functional programmers and category theorists, an algebra is simply known as
a “tree walk”. In compiler construction, algebras could be very useful to define a semantics of a
language or, bluntly said, to define tree walks over the parse tree. The fact that this is not widely
done, is due to the following problems:

1 Unlike lists, for which foldr is standard, in a compiler we deal with custom data structures for
abstract syntax of a language, which each need a custom fold function. Morover, whenever
we change the abstract syntax, we need to change the fold function and every algebra.

2 Generated code can be described as a semantics of the language, but often we need additional
semantices: listings, messages, and internal structures (symbol tables etc.). This can be
done by having the semantic functions in algebras return tuples, but this makes them hard
to handle.

3 Data structures for abstract syntax tend to have many alternatives, so algebras end up to
be clumsy tuples containing dozens of functions.

4 In practice, information not only flows bottom-up in the parse tree, but also top-down. E.g.,
symbol tables with global definitions need to be distributed to the leafs of the parse tree to
be able to evaluate them. This can be done by using higher-order domains for the algebras,
but the resulting code becomes even harder to understand.

5 A major portion of the algebra is involved with moving information around. The essense of
a semantics is sparsely present in the algebra and obscured by lots of boilerplate.

Many compiler writers thus end up writing ad hoc recursive functions instead of defining the
semantics by a algebra, or even resort to non-functional techniques. Others succeed in giving
a concise definition of a semantics, often using proof rules of some kind, but thereby loose the
executability. For the implementation they still need conventional techniques, and the issue arises
whether the program soundly implements the specified semantics.
To save the nice idea of using an algebra for defining a semantics, we use a preprocessor for Haskell
[13] that overcomes the abovementioned problems. It is not a separate language; we can still use
Haskell for writing auxiliary functions, and use all abstraction techniques and libraries available.
The preprocessor just allows a few additional constructs, which can be translated into a custom
fold function and algebras, or an equivalent more efficient implementation.

2.2 An Attribute Grammar based preprocessor for Haskell

We describe the main features of the preprocessor here, and explain why they overcome the five
problems mentioned above. To start with, the abstract syntax of the language is defined in a
syntax declaration, which is like a Haskell data declaration with named fields. The difference is
that we don’t have to write braces and commas, and that constructor function names need not be
unique. As an example, we define a fragment of a typical imperative language:
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syntax Stat = Assign dest :: String src :: Expr
| While cond :: Expr body :: Stat
| Group elems :: [Stat ]

syntax Expr = Const num :: Int
| Var name :: String
| Add left :: Expr right :: Expr
| Call name :: String args :: [Expr ]

The preprocessor generates corresponding data declarations (making the constructors unique by
prepending the type name, like Expr Const), and generates a custom fold function. This overcomes
problem 1.
For any desired value we wish to compute over a tree, we can declare a “synthesized attribute”.
Attributes can be declared for one or more data types. For example, we can declare that both
statements and expressions need to synthesize bytecode as well as pretty-printed listing, and that
expressions can be evaluated to an integer value:

attr Expr Stat syn bytecode :: [Instr ]
syn listing :: String

attr Expr syn value :: Int

The preprocessor generates semantic functions that return appropriate tuples, but we can simply
refer to attributes by name. This overcomes problem 2.
The value of each attribute needs to be defined for every constructor of every data type which
has the attribute. As this defines the semantics of the language, these definitions are known as
“semantic rules”, and start with keyword sem. An example is:

sem Stat | Assign
@lhs.listing = @dest .listing ++ ":=" ++ @src.listing ++ ";"

This states that the synthesized listing attribute of an assignment statement can be constructed by
combining the listing attributes of its dest and src children and some fixed strings. The @-symbol
in this context should be read as “attribute”, not to be confused with Haskell “as-patterns”. At the
left of the =-symbol, the attribute to be defined is mentioned; at the right, any Haskell expression
can be given. The @-symbol may be omitted in the destination attribute, as is done in the next
example. This example shows that it is indeed useful that any Haskell expression, with embedded
occurrences of child attributes, can be used in the definition. Also, it shows how to use the value
of terminal symbols ( @num in the example), and how to group multiple semantic rules under a
single sem header:

sem Stat |While
lhs.bytecode = let k = length @cond .bytecode

n = length @body .bytecode
in @cond .bytecode ++ [BEQ (n + 1)]

++ @body .bytecode ++ [BRA (−(n + k + 2))]
sem Expr
| Const lhs.value = @num
| Add lhs.value = @left .value + @right .value

The preprocessor collects and orders all definitions in a single algebra, replacing attribute references
by suitable selections from the results of the tree walk on the children. This overcomes problem 3.
To be able to pass information downward during a tree walk, we can define “inherited” attributes
(the terminology goes back to Knuth [9]). As an example, it can serve to pass an environment,
i.e. a lookup table that associates variables to values, which is needed to evaluate expressions:

type Env = [(String , Int)]
attr Expr inh env :: Env
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sem Expr | Var
lhs.value = fromJust (lookup @lhs.env @name)

The value to use for the inherited attributes can be defined in semantic rules higher up the tree:

sem Stat | Assign
src.env = [("x", 37), ("y", 42)]

The preprocessor translates inherited attributes into extra parameters for the semantic functions
in the algebra. This overcomes problem 4.
In the example above, an environment with two variables was just made up. In reality, a Stat
construct probably inherited the environment from even higher constructs, say a procedure dec-
laration. This means that the only thing that needs to be done at the Stat level, is to pass the
inherited environment down to the children. This can be quite tedious to do:

sem Stat
| Assign dest .env = lhs.env

src.env = lhs.env
|While cond .env = lhs.env

body .env = lhs.env

Luckily, the preprocessor has a convention that, unless stated otherwise, attributes with the same
name are automatically copied. So, the attribute env that a Stat inherited from its parent, is
automatically copied to the children which also inherit an env , and the tedious rules above can
be omitted. A similar automated copying is done for synthesized attributes, so if they need to be
passed unchanged up the tree, this needs not to be explicitly coded.
When more than one child offers a candidate to be copied, normally the last one is taken. But
if we wish a combination of the copy candidates to be used, we can specify so in the attribute
declaration. For example:

attr Expr Stat
syn listing use (++) [ ]

which specifies that by default, the synthesized attribute listing is the concatenation of the listings
of all children that have one, or the empty list if no child has one. This defines a useful default
rule, which can be overridden when extra symbols need to be interspersed, as for example in the
definition of listing for assignment statements given earlier.
It is allowed to declare both an inherited and a synthesized attribute with the same name. In
combination with the copying mechanisms, this enables us to silently thread a value through the
entire tree, updating it when necessary. See section 4.3 which maintains, in attribute location, a
unique counter during the tree walk. This captures a pattern for which often Reader and Writer
monads are introduced [8].
The preprocessor automatically generates semantic rules in the standard situations described, and
this overcomes problem 5.

3 The Grin language

Grin (Graph Reduction Intermediate Notation) was proposed by Boquist as an intermediate lan-
guage sitting between the Core language (that in Haskell compilers describes a desugared program)
and an imperative backend [3].
We describe a slightly modified version here, which is more explicit than Boquist’s original descrip-
tion about what constructs are allowed at various places. Instead of the usual BNF description, we
introduce the language by means of Haskell data type declarations (or rather syntax declarations
for the AG preprocessor). The advantage of this approach is that this explicitly mentions the types
and names of child constructs of each nonterminal symbol. Also it is part of our endeavour to
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make the description to serve both as the specification and as the implementation of the abstract
semantics of the language.
The semantics/interpretation that we deal with in this paper is an abstract interpretation needed
for analysis of the program. In the same style we are able to present other semantices. In our
compiler [6] we implement a translation to bytecode that is executable by a simple interpreter, and
a translation to a generic imperative language that can in turn be translated to various backend
languages.
In the presentation of the language we do not provide a concrete syntax for the language, as
normally is implicitly done in a BNF description. One reason for this is that a concrete syntax is
unnecessary, as Grin programs are only an intermediate representation in the compilation process,
and technically are merely data structures. Another reason is that the mental parsing and un-
parsing involved when reading the semantics description in later sections could distract the reader
from the algorithm proper, and cause confusion between program fragments as data structures
and their semantic values.
We start our description with a definition of toplevel constructs. A program consists of a single
module, which has a name, a list of global variable definitions, and a list of function bindings.
Note that in our naming, we conventionally use suffix L for “list”, and prefix mb for “maybe”.

syntax Program = Prog mod :: Module
syntax Module = Mod nm :: Name globalL :: GlobalL bindL :: BindL
type GlobalL = [Global ]
type BindL = [Bind ]

A global definition binds a name to a term, whereas a lambda binding binds a parameterized name
to an expression.

syntax Global = Global nm :: Name val :: Term
syntax Bind = Bind nm :: Name argNmL :: [Name ] expr :: Expr

Grin programs manipulate five kinds of values: integers, standalone tags, nodes with a known tag
and a list of fields, pointers to a node stored on the heap, and the empty value. The first three
have a direct syntactic representation as a Term, pointers and the empty value have not. Another
possible Term is a variable, which can refer to any of the five kinds of value.

syntax Term = LitInt int :: Int
| Tag tag :: Tag
| Node tag :: Tag fldL :: TermL
| Var nm :: Name

type TermL = [Term ]

Although the syntax above allows fields of a Node be any Term, we do not make use of nested
nodes; if they are desired, the field list should contain variables that point to heap cells storing
the inner nodes.
Six different tags are used to label nodes: Con, Fun, PApp and Appand two special ones Unboxed
and Hole. A Con tag labels nodes that build up data structures. They correspond to constructor
functions in the Haskell source program, but unlike constructor functions, nodes with a Con tag
are always fully saturated. A Fun tag labels “thunks” , i.e. function applications of which the
evaluation is postponed for lazy evaluation. Nodes with a Fun tag are always fully saturated. A
PApp tag indicates an unsaturated lazy function call (partial parameterization) and records, apart
from the function name, also the number of parameters it still needs to become fully saturated.

syntax Tag = Con nm :: Name
| Fun nm :: Name
| PApp needs :: Int nm :: Name
| App
| Unboxed
| Hole
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The other three tags are an extension to those proposed by Boquist. A PApp tag indicates an
unsaturated lazy function call (partial parameterization) and records, apart from the function
name, also the number of parameters it still needs to become fully saturated. The Unboxed tag
is a mockup tag for constructs that conceptually are nodes, but in reality are implemented as
unboxed values. Finally, the Hole tag is used in the implementation of recursive definitions, but
plays no special role in the analysis described in this paper.
The main construct in Grin is an expression, which represents the body of a function binding.
Evaluation of expressions may lead to side effects on the heap. There are twelve cases in the
expression syntax:

syntax Expr = Unit val :: Term
| Seq expr :: Expr pat :: PatLam body :: Expr
| Case val :: Term altL :: AltL
| Store val :: Term
| UpdateUnit nm :: Name val :: Term
| FetchNode nm :: Name
| FetchUpdate src :: Name dst :: Name
| FetchField nm :: Name offset :: Int mbTag :: Maybe Tag
| Call nm :: Name argL :: TermL
| FFI nm :: String argL :: [Name ] tagL :: TagL
| Eval nm :: Name
| Apply nm :: Name argL :: TermL

We give an informal description of the semantics of these constructs, that is their runtime evalua-
tion result and side effects on the heap. A formal description would be a Grin interpreter, which
is not the focus of this paper.
An expression Unit val simply evaluates to a known value val . Evaluation of expression Seq expr pat body
first evaluates expr , binds the result to pat and evaluates body in the extended environment. Bo-
quist uses a monadic style concrete syntax for this construct: expr ;λpat → body , which is why we
declared pat to have type PatLam (for “lambda pattern”). It can however just as well be thought
of as let pat = expr in body or even as an imperative style assignment pat := expr ; body . Concrete
syntax is immaterial; what is important is that expr and body are evaluated sequentially.
A Case expression selects from a list of alternatives the one with a pattern that matches the value
of the variable in the Case header (the “scrutinee”). Each alternative consists of a pattern and a
corresponding expression.

type AltL = [Alt ]
syntax Alt = Alt pat :: PatAlt expr :: Expr

Patterns in a case alternative normally consist of a node with a known tag, and variables as
arguments. Stand-alone tags and literal integers are also possible patterns:

syntax PatAlt = LitInt int :: Int
| Tag tag :: Tag
| Node tag :: Tag fldL :: [Name ]

A pattern in a case alternative is quite different from a lambda pattern in a Seq expression. A
lambda pattern is often just a variable name. Two other possibilities are Empty , to be able to
match for the empty result value of the FetchUpdate expression that only has a side effect, and a
node denotation where the tag can, but needs not be, known:

syntax PatLam = Empty
| Var nm :: Name
| VarNode fldL :: VarL

syntax Var = Var nm :: Name
| KnownTag tag :: Tag

type VarL = [Var ]
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We assume the existence of a special name

wildcard :: Name

which can serve as a “don’t care variable” in a lambda pattern.
Boquist proposes two constructs which have a side effect on the heap: Store, which stores a node
value in a new heap cell and returns a pointer to it, and Update, which stores a node value in an
existing heap cell and returns the empty value. We do have a Store expression in our language,
but instead of a separate Update expression we have UpdateUnit , which combines the overwriting
of an existing heap cell with returning the value. This allows for a more efficient implementation
of the combination. Boquist uses a single construct Fetch for fetching either a complete node, or
a particular field of a node. Because these two variants behave quite differently, we have separate
constructs FetchNode and FetchField , and a FetchUpdate which combines fetching a node and
using it to update an existing heap cell.
Next, we have Call for calling a Grin function, and FFI for calling a foreign function. Boquist
proposes the use of two builtin functions eval and apply , which can be called to force evaluation
of a variable, or to apply an unknown function in a strict context, respectively. As these functions
behave quite different from ordinary functions, we include special constructs Eval and Apply for
these cases.
To complete our exposition of the Grin language, we define abbreviations for some groups of
nonterminal symbols, which facilitates the definition of attributes that are needed for all of them:

set AllDef = Global GlobalL Bind BindL
set AllTerm = Term TermL
set AllExpr = Expr Alt AltL PatAlt PatLam Var VarL

4 Abstract interpretation

In this section we describe an abstract interpretation algorithm, which solves a set of constraints
by fixpoint iteration. Constraints are first collected in a walk over the tree that represents the
Grin program. We start with a description of an abstract domain, and a language for specifying
the constraints.

4.1 An abstract domain

Grin programs largely consist of bindings from Grin expressions to function names. Expressions in
turn are built from terms, of which a possible form is a single variable. Although Grin is untyped,
in code generated from a correct Haskell program variables always refer to values of the same
kind: the empty value, other basic values such as integers, complete nodes, standalone tags, or
heap pointers. We use abstract interpretation not only to infer these kinds, but also to collect
more detailed information about the runtime structure of values.
When executed, a Grin program maintains a heap of dynamically allocated nodes. More specifi-
cally, execution of a Store expression allocates a new heap cell, as do Global variable definitions.
Our abstract interpretation algorithm also determines, for each Store expressionand each Global
definition, what type of node it can create. The abstraction of all heap cells that a particular
Store-expression or Global -binding creates is known as a Location. Thus, each Location corre-
sponds uniquely to a Store or Global . In our implementation we identify locations simply by
unique, consecutive numbers. Also, each Variable is also represented by a number. A prepro-
cessing stage uniquely numbers all variable names in a program (taking care of scoping where
necessary), and makes the sequence number available through a function

type Location = Int
type Variable = Int
nr :: Name → Variable
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We introduce a data type AbsValue to describe the domain in the abstract interpretation. It
distinguishes four cases for the five different kinds of value (both the empty value and integers are
regarded as “basic”), with added bottom and error cases to form a complete lattice suitable for
fixpoint iteration.

data AbsValue = AbsBottom
| AbsBasic
| AbsTags (Set Tag)
| AbsLocs (Set Location)
| AbsNodes (Map Tag [AbsValue ])
| AbsError String

In the AbsTags case, abstract interpretation reveals to which tags a variable can possibly refer.
Similarly, for AbsLocs we determine to which locations a pointer can point. In the AbsNodes case,
we not only determine the possible tags of the nodes, but for each of these also a list of the abstract
values of their parameters. In section 3 we stipulated that nested nodes are only allowed by letting
the fields be variables which refer to pointers to heap cells storing the inner nodes. This invariant
propagates to AbsNodes: the elements of the fields of a node are never AbsNodes themselves, but
can be AbsLocs pointing to locations which store inner nodes.
The fact that AbsValue indeed forms a lattice is expressed by the following definition, which
specifies how two abstract values can be merged into one. We state that AbsBottom is the identity
of a Monoid

instance Monoid AbsValue where
mempty = AbsBottom

That is, any abstract value remains unchanged when merging it with AbsBottom

mappend a AbsBottom = a
mappend AbsBottom b = b

Abstract values of each of the four types can be merged with others of the same type:

mappend AbsBasic AbsBasic = AbsBasic
mappend (AbsTags @) (AbsTags bt) = AbsTags (Set .union @ bt)
mappend (AbsLocs al) (AbsLocs bl) = AbsLocs (Set .union al bl)
mappend (AbsNodes an) (AbsNodes bn) = AbsNodes (Map.unionWith (zipWith mappend) an bn)

Errors remain errors even when merged with other values:

mappend a@(AbsError ) = a
mappend b@(AbsError ) = b

New errors originate from merging abstract values from incompatible types:

mappend a b = AbsError (show a ++ " conflicts " ++ show b)

The goal of the abstract interpretation algorithm is to determine the abstract value of each variable
in the program, and likewise for each abstract heap Location. For efficiency reasons we represent
these mappings by arrays:

type AbstractEnv s = STArray s Variable AbsValue
type AbstractHeap s = STArray s Location AbsValue

4.2 A constraint language

By observing a Grin program, we can deduce equations to constrain variables and locations. Before
doing so, we need a language to specify such constraints. We introduce type Equation for describing
six kinds of constraints for the abstract value of variables. Likewise, we have HeapEquation for
constraining the abstract values of abstract heap locations.
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data Equation = IsKnown Variable AbsValue
| IsSuperset Variable Variable
| IsSelection Variable Variable Int Tag
| IsConstruction Variable Tag [Maybe Variable ]
| IsEvaluation Variable Variable
| IsApplication (Maybe Variable) [Variable ]

Five out of the six equation types constrain a variable to fulfil certain properties. Only in the case
of an IsApplication equation, the variable that is constrained appears Maybe, i.e. is optional.
A variable may be constrained by more than one equation. These equations are cumulative. If for
example one constraint specifies that a variable “is known” to have a particular abstract value,
and another constraint specifies that it is known to have another value, the abstract interpretation
algorithm concludes that this variable can refer to either value.
Below we informally describe the semantics of the six equation types. A formal description is
given in figure 2, which is discussed in section 4.4.

1 An equation IsKnown v a means that variable v can have abstract value a.
2 The meaning of IsSuperset v w is that variable v can have all values that variable w has.
3 The equation IsSelection v n i t expresses that v can be the selection of the ith component

of any node tagged by t which can be the value of variable n.
4 The meaning of IsConstruction v t as is that v can be a node with tag t and arguments as.

Not all arguments need to be known.
5 The meaning of IsEvaluation v w is that v can refer to the evaluation result of any possible

value of w .
6 The meaning of IsApplication v (f : as) is that f is a variable that refers to a function which

is applied to values referred to by variables as, and that the result is a possible value of v .
For this type of constraint, mentioning a variable v is optional. If it is lacking, the equation
still bears information on the possible values of parameters of f .

For heap equations, we have only one constraint type:

data HeapEquation = WillStore Location Tag [Maybe Variable ]

The meaning of WillStore p t as is that location p stores a node with tag t and arguments as. A
heap cell always stores a complete node, not an isolated value of other type (basic value, tag or
pointer to another heap cell).
The sets of constraints for variables and locations, respectively, are collected in lists, for which we
define the following types:

type Equations = [Equation ]
type HeapEquations = [HeapEquation ]

4.3 Collecting constraints in a tree walk

In this subsection we describe a tree walk over a Grin program that collects constraints on the pro-
gram variables. The tree walk is implemented using the attribute grammar (AG) based language
described in section 2.
The goal of the tree walk is to synthesize equations stating the constraints for program variables,
and heapEqs stating the constraints for locations (abstract results of store expressions and global
definitions).

attr Program Module AllDef AllExpr
syn equations use (++) [ ] :: Equations
syn heapEqs use (++) [ ] :: HeapEquations

The declarations above specify that both type of equations are not only synthesized for the whole
program, but also for the intermediate levels of the program tree that have to do with definitions
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and expressions. No equations are synthesized on the levels that have to do with values and
variables.
The use clause in the declaration of the attributes expresses that the default way to synthesize
equations is just to concatenate the equations synthesized on underlying levels. We will redefine
the equations and heapEqs attributes for the tree positions where equations are introduced.
First, we introduce some auxiliary attributes. We need to uniquely number all abstract locations,
as we represent locations by integers. For this purpose we have both a synthesized and an inherited
attribute location for all relevant positions in the tree. With a semantic rule, value 0 is inserted
for this attribute at the top of the tree.

attr Program Module AllDef AllExpr
inh syn location :: Int

sem Program | Prog
mod .location = 0

The AG preprocessor ensures that the inherited attributes are passed unchanged down the tree,
and the synthesized values are passed up, unless there is a semantic rule which specifies that a
modified value should be passed. Indeed, in figure 1 we have rules that increment the location
counter when locations need to be numbered, viz. at Store expressions and Global definitions.
Before we explain the rest of the rules in figure 1, we define an auxiliary data structure needed
as the type of some attributes to come. Nodes sometimes are indirectly referred to by a variable,
sometimes they are directly enumerated in full. The following data type distinguishes these two
cases, where the polymorphic type variable a is the type of additional information that we may
want to express for the parameters of the node. Function fromInVar retrieves the variable from a
NodeInfo that is known to be a InVar case.

data NodeInfo a = InVar Variable
| InNode Tag [a ]

fromInVar :: NodeInfo a → Variable
fromInVar (InVar v) = v

This data type is the type of attributes termInfo and patInfo that summarize whether terms and
patterns are denoted indirectly through a variable, or directly as a node with tag and fields:

attr Term syn termInfo :: NodeInfo (Maybe Variable)
attr PatAlt

PatLam syn patInfo :: NodeInfo Variable

Some auxiliary attributes are necessary to make the summary:

attr Term syn var :: Maybe Variable
attr TermL syn vars :: [Maybe Variable ]
attr Var syn tag :: Tag

syn var :: Variable
attr VarL syn hdTag :: Tag

syn vars :: [Variable ]

The semantic rules for these attributes are straightforward:

sem Term
| Tag lhs.termInfo = InNode @tag [ ]
| Var lhs.termInfo = InVar (nr @nm)
| Node lhs.termInfo = InNode @tag @fldL.vars
sem PatAlt
| Tag lhs.patInfo = InNode @tag [ ]
| Node lhs.patInfo = InNode @tag (map nr @fldL)
sem PatLam
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| Empty lhs.patInfo = InVar wildcard
| Var lhs.patInfo = InVar (nr @nm)
| VarNode lhs.patInfo = InNode (@fldL.hdTag) (tail @fldL.vars)
sem Term
| Var lhs.var = Just (nr @nm)
| ∗ −Var lhs.var = Nothing
sem TermL
| Cons lhs.vars = @hd .var : @tl .vars
| Nil lhs.vars = [ ]
sem VarL
| Cons lhs.hdTag = @hd .tag
sem VarL
| Cons lhs.vars = @hd .var : @tl .vars
| Nil lhs.vars = [ ]
sem Var
| KnownTag lhs.tag = @tag
| Var lhs.var = nr @nm

The patInfo attribute defined above determines the target of each expression. For most expressions,
the target is the next pattern in the sequence. For the last expression in a sequence that is the
body of a function, the target is the function name bound in a Bind binding, and passed all the
way through the Seq spine. This is expressed in the following semantic rule:

attr AllExpr
inh targetInfo :: NodeInfo Variable

sem Bind | Bind
expr .targetInfo = InVar (nr @nm)

sem Expr | Seq
expr .targetInfo = @pat .patInfo
body .targetInfo = @lhs.targetInfo

The termInfo attribute defined earlier occurs in the semantics rules for various expression forms
in figure 1. The termInfo attribute value synthesized by the scrutinee term of a Case expression is
also needed in the alternatives of that Case expression. It is therefore passed down as an inherited
attribute to the alternatives:

attr Alt AltL
inh termInfo :: NodeInfo (Maybe Variable)

No explicit semantic rules are needed here, as the AG system automatically routes the value
synthesized by the first child of a Case expression (the scrutinee) as the value of the inherited
attribute with the same name of its second child (the list of alternatives).
We are now ready to discuss the twelve syntactic positions where equations originate, as defined in
figure 1. In the case of a Unit or UpdateUnit we distinguish the four combinations of target pattern
and source term (each variable or node). When both are variables, the target is constrained to
hold a superset of the source; when the target is a variable and the source is a node, the target
can hold that node. If the target is a node and the source is a variable, all the fields of the node
that are not wildcards should be projections of the source variable. When both are nodes, their
corresponding fields should be unified. For the last two cases we have auxiliary functions:

buildSelectEquations :: Variable → Tag → [Variable ]→ Equations
buildSelectEquations svar ttag tnms

= [ IsSelection tvar svar i ttag
| (tvar , i)← zip tnms [0 . . ]
, tvar 6≡ wildcard
]
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sem Expr | Unit UpdateUnit
loc.equations1 = case (@lhs.targetInfo, @val .termInfo) of

(InVar tvar , InVar svar )→ [IsSuperset tvar svar ]
(InVar tvar , InNode stag snms)→ [IsConstruction tvar stag snms ]
(InNode ttag tnms , InVar svar )→ buildSelectEquations svar ttag tnms
(InNode ttag tnms , InNode stag snms)→ buildUnifyEquations snms tnms

sem Expr | UpdateUnit
loc.equations2 = [IsSuperset (nr @nm) (nr @val .getName)]

sem Expr | Unit
lhs.equations = @loc.equations1

sem Expr | UpdateUnit
lhs.equations = @loc.equations2 ++ @loc.equations1

sem Alt | Alt
lhs.equations = case (@pat .patInfo, @lhs.termInfo) of

(InNode ttag tnms, InVar svar)→ buildSelectEquations svar ttag tnms
sem Expr | FetchNode

lhs.equations = case @lhs.targetInfo of
InVar tvar → [IsSuperset tvar (nr @nm)]

sem Expr | FetchUpdate
lhs.equations = [IsSuperset (nr @dst) (nr @src) ]

sem Expr | FetchField
lhs.equations = case @lhs.targetInfo of

InVar tvar → [IsSelection tvar (nr @nm) @offset (fromJust @mbTag)]
sem Expr | Store

lhs.location = @lhs.location + 1
lhs.heapEqs = case @val .termInfo of

InNode stag snms → [WillStore @lhs.location stag snms ]
lhs.equations = case @lhs.targetInfo of

InVar tvar → [IsKnown tvar (AbsLocs (Set .singleton @lhs.location))]
sem Global | Global

lhs.location = @lhs.location + 1
lhs.heapEqs = case @val .termInfo of

InNode stag snms → [WillStore @lhs.location stag snms ]
lhs.equations = [IsKnown (nr @nm) (AbsLocs (Set .singleton @lhs.location))]

sem Expr | Call
lhs.equations = case @lhs.targetInfo of

InVar tvar → [IsSuperset tvar (nr @nm)]
InNode ttag tnms → buildSelectEquations (nr @nm) ttag tnms

sem Expr | FFI
loc.nodemap = Map.fromList ([(con, [AbsBasic | con == Tag Unboxed ]) | con ← @tagL ])
lhs.equations = case @lhs.targetInfo of

InVar tvar → [IsKnown tvar (AbsNodes @loc.nodemap)]
InNode ttag tnms → zipWith IsKnown tnms (fromJust (Map.lookup ttag @loc.nodemap))

sem Expr | Eval
lhs.equations = case @lhs.targetInfo of

InVar tvar → [IsEvaluation tvar (nr @nm)]
sem Expr | Apply

lhs.equations = case @lhs.targetInfo of
InVar tvar → [IsApplication (Just tvar) (nr @nm : @argL.varsInfo)]

Figure 1: Definition of constraint equations for various expression types (discussed in section 4.3)
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Finally, when both target and source are full nodes, corresponding arguments should unify. This
is handled by another auxiliary function:

buildUnifyEquations :: [Maybe Variable ]→ [Variable ]→ Equations
buildUnifyEquations snms tnms

= [ case mbSvar of Nothing → IsKnown tvar AbsBasic
Just svar → IsSuperset tvar svar

| (tvar ,mbSvar)← zip tnms snms
, tvar 6≡ wildcard
]

In the case of an UpdateUnit expression there is one more constraint, setting the destination
variable of the update equal to that of the source variable. In the semantic rules, AG keyword loc
is used to define a local attribute common to Unit and UpdateUnit . The situation arising from an
alternative Alt in a Case expression is very much like the third subcase of a Unit expression: the
fields of the target node (which come from the pattern in each alternative) are projections of the
value of the scrutinee, that for this reason was (automatically!) passed down.
We now turn to the three variants of Fetch expressions. When a complete node is fetched, the
target variable should be equal to the value fetched. For a FetchNode the target is the inherited
target (i.e., the next Seq pattern or result of a function Bind ing), for a FetchUpdate the target is
specified in the expression. In case of a FetchField of a single field, that field should be a projection
from the source.
The next semantic rule, still in figure 1, states that for a Store expression we need a new uniquely
numbered location. A heap equation is generated that states that this location indeed stores the
value, and a normal equation is generated that states that the target variable is a pointer to this
location.
The situation for a Global variable definition is quite the same, which is why we define these situa-
tions adjacently in figure 1 (the AG preprocessor allows to handle the cases Expr non-contiguously,
which we happily use here to group similar rules).
In the case of a Call to a Grin function or an FFI call to a foreign function we distinguish the
cases that the target is a variable or a complete node. The final two cases in figure 1 state that
Eval and Apply expressions give rise to corresponding constraints.
What is not handled in the cases discussed above, is that actual parameters should agree to formal
parameters. The Call expression handled in figure 1 only matched the result, not the arguments.
Function calls can either occur directly in a Call expression, or implicitly in an fpaNode, that is a
node with Fun, PApp or App (but not Conor one of the other special) tags.
In a tree walk we collect the relevant calls and tagged nodes. Conceptually this is a separate tree
walk, but it is merged by the AG preprocessor with the tree walk defined earlier. We declare
synthesized attributes to collect allCalls and fpaNodes for nearly all syntactic positions, because
this must be passed all up the tree.

attr AllTerm AllExpr AllDef Module
syn allCalls use (++) [ ] :: [(Variable, [Maybe Variable ])]
syn fpaNodes use (++) [ ] :: [NodeInfo (Maybe Variable)]

Thanks to the use clause, we only need to specify the locations where calls and nodes are actually
introduced:

sem Expr | Call
lhs.allCalls = [(nr @nm, @argL.vars)]

sem Term | Node
lhs.fpaNodes = if @tag .isfpa

then [InNode @tag @fldL.vars ]
else [ ]
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An auxiliary attribute decides which nodes are relevant to collect:

attr Tag syn isfpa :: Bool
sem Tag
| Fun PApp App lhs.isfpa = True
| Con Hole Unboxed lhs.isfpa = False

Now the final set of equations is the combination of constraints that were gathered in the tree
walk (that is, the synthesized equations from the entire module mod), and those that arise from
direct calls, Fun, PApp and App thunk nodes:

sem Program | Prog
lhs.equations

= @mod .equations
++ [ IsSuperset x y
| (funnr , args)← @mod .allCalls
, (x , Just y)← zip [funnr + 1 . . ] args
]

++ [ IsSuperset x y
| (InNode (Tag Fun nm) args)← @mod .fpaNodes
, (x , Just y)← zip [nr nm + 1 . . ] args
]

++ [ IsSuperset x y
| (InNode (Tag PApp needs nm) args)← @mod .fpaNodes
, (x , Just y)← zip [nr nm + 1 . . ] args
]

++ [ IsApplication Nothing (map fromJust args)
| (InNode Tag App args)← @mod .fpaNodes
]

Note that we exploit the fact that the function and its arguments are numbered consecutively:
the arguments are numbered from one more than the function number onwards. Without this
convention, the correspondence between the number of a function and those of its parameters
could have been established as a mapping that could have been defined as yet another synthesized
attribute of bindings.
The trickiest equations are generated in the fifth concatenated list: it states that the arguments
of an App node represent an application, although it is not statically known where the result is
stored.

4.4 Solving the constraint equations

Now we’ve collected all equations, we can proceed to solve them. The solution is computed in
function solveEquations. It takes two integers: the number of Variables and Locations, and the
two lists of equations that were collected in the tree walk. These were determined in an earlier
stage where variables are numbered (trivial, not shown in this paper), and as synthesized attribute
location in the tree walk.

solveEquations :: Int → Int → Equations → HeapEquations → (AbstractEnv ,AbstractHeap, Int)

The solveEquations function starts with creating two arrays, initially holding only AbsBottom
values, to store the abstract values of all variables and locations, respectively. Then a fixpoint
iteration is done, processing in each step all constraints from both sets of equations. The fixpoint
function is parameterized not only by the two sets of equations, but also by two procedures that
process an equation. These procedures call function envChanges or heapChange respectively, to
obtain the changes on the variables or locations that need to be made. In the processing procedures,

15



envChanges :: Equation → AbstractEnv s → AbstractHeap s → ST s [(Variable,AbsValue)]
envChanges equat env heap

= case equat of
IsKnown d av → return [(d , av)]
IsSuperset d v → do {av ← readArray env v

; return [(d , av)]
}

IsSelection d v i t → do {av ← readArray env v
; let res = absSelect av i t
; return [(d , res)]
}

IsConstruction d t as → do {vars ← mapM (maybe (return AbsBasic) (readArray env)) as
; let res = AbsNodes (Map.singleton t vars)
; return [(d , res)]
}

IsEvaluation d v → do {av ← readArray env v
; res ← absDeref av
; return [(d , res)]
}

IsApplication mbd (f : as)→ do {av ← readArray env f
; absFun ← case mbd of Nothing → absDeref av

Just → return av
; absArgs ← mapM (readArray env) as
; (sfx , res)← absCall absFun absArgs
; return $ (maybe id (λd → ((d , res):)) mbd) sfx
}

where
absSelect av i t = case av of

AbsNodes ns → maybe AbsBottom (!!i) (Map.lookup t ns)
→ av

absDeref av = case av of
AbsLocs ls → do {vs ← mapM (readArray heap) (Set .toList ls)

; return (mconcat (map (filterNodes isFinalTag) vs))
}

→ return av
absCall f args = do {ts ← mapM addArgs (getNodes (filterNodes isPAppTag f ))

; let (sfxs, avs) = unzip ts
; return (concat sfxs,mconcat avs)
}

where addArgs (tag @(Tag PApp needs nm), oldArgs)
= do {let n = length args

newtag = Tag PApp (needs − n) nm
funnr = nr nm
sfx = zip [funnr + 1 + length oldArgs . . ] args

; res ← if n < needs
then return $ AbsNodes (Map.singleton newtag (oldArgs ++ args))
else readArray env funnr

; return (sfx , res)
}

getNodes av = case av of
AbsNodes n → Map.toAscList n
AbsBottom → [ ]

Figure 2: Selection of change candidates for the abstract environment during fixpoint iteration
(discussed in section 4.4)
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the change candidate(s) obtained (exactly one in the case of an heapEquation, possibly more in
the case of an Equation) are fed into function procChange to apply the change.

solveEquations lenEnv lenHeap eqs1 eqs2
= runST $

do {env ← newArray (0, lenEnv − 1) AbsBottom
; heap ← newArray (0, lenHeap − 1) AbsBottom
; let procEnv equat

= do {cs ← envChanges equat env heap
; bs ← mapM (procChange env) cs
; return (or bs)
}

procHeap equat
= do {cs ← heapChange equat env

; b ← procChange heap cs
; return b
}

; count ← fixpoint eqs1 eqs2 procEnv procHeap
; return (env , heap, count)
}

Function procChange can be generically used for either an environment variable or a heap location.
This function only changes the array (environment or heap) when an element (variable or location)
is actually changed, and returns a boolean that indicates whether there was a change. The fixpoint
function uses the boolean returned by procChange to decide whether to stop or continue processing
all equations again: as long as one of the equations results in a change, the iteration is continued.

procChange arr (i , v1 ) =
do {v0 ← readArray arr i

; let v2 = v0 ‘mappend ‘ v1
changed = v0 6≡ v2

;when changed (writeArray arr i v2 )
; return changed
}

The fixpoint function uses these booleans to decide whether to stop or continue processing all
equations again: as long as one of the equations results in a change, the iteration is continued.

fixpoint eqs1 eqs2 proc1 proc2
= fix 0

where fix count
= do
{ let step1 b i = proc1 i >>= return.(b ∨)
; let step2 b i = proc2 i >>= return.(b ∨)
; changes1 ← foldM step1 False eqs1
; changes2 ← foldM step2 False eqs2
; if changes1 ∨ changes2

then fix (count + 1)
else return count
}

What remains to be done is to describe how change candidates are selected for each equation.
This is implemented in function heapChange below and function envChanges in figure 2.
Function heapChange dissects an HeapEquation, that states that at some location a node with
given tag and argument variables is stored. It returns that the abstract contents of the location
can either be the abstract node constructed from the tag and the abstract value of its arguments,
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or, if the tag is a Tag Fun thunk, the result of the function (because after evaluation, the thunk
is updated with the function result).

heapChange :: HeapEquation → AbstractEnv s → ST s (Location,AbsValue)
heapChange (WillStore locat tag args) env
= do {let mbres = tagFun tag

; absArgs ← mapM getEnv args
; absRes ← getEnv mbres
; let absNode = AbsNodes (Map.singleton tag absArgs)
; return (locat , absNode ‘mappend ‘ absRes)
}
where
tagFun (Tag Fun nm) = Just (nr nm)
tagFun = Nothing
getEnv Nothing = return AbsBottom
getEnv (Just v) = readArray env v

The changes to abstract variables that arise from processing an Equation are determined by
function envChangesin figure 2, which we will now discuss. The function returns a list of changes,
unlike function heapChange above, which returns only a single change. For five out of six possible
equation types this list is a singleton, however. Only for the last case, multiple changes may arise
from one equation. For the first equation type IsKnown, where a variable is known to be able
to have some abstract value, the variable is simply paired with that abstract value to indicate
a necessary change. For the second equation type IsSuperset d v , the current approximation of
v is looked up in the abstract environment, and designated as a needed change for d as well.
For an IsSelection equation, the variable v is abstractly evaluated to obtain an abstract node.
From that abstract node the desired field is selected. The case of an IsConstruction equation
is similar to the WillStore heap equation discussed above, in that an abstract node is created
from the known tag and the abstractly evaluated argument variables. The fifth equation type is
IsEvaluation d v , which states that d may hold the evaluation result of thunk nodes pointed to
by v . Here, we first abstractly evaluate v to obtain the abstract pointers. These pointers are
then abstractly dereferenced, that is looked up in the abstract heap. This results in all abstract
nodes the locations can point to. By the design of the processing of heap equations, this is not
only the thunk node, but also the possible evaluation results of it. As the IsEvaluation equation
is supposed to obtain the evaluation results only, the list of all abstract nodes the locations can
point to is filtered such that only those with a final tag (like Tag Con) remain, and those with
thunk tag (like Tag Fun) are discarded. The filtering is done by an auxiliary function:

filterNodes :: (Tag → Bool)→ AbsValue → AbsValue
filterNodes p (AbsNodes nodes) = AbsNodes (Map.filterWithKey (const .p) nodes)
filterNodes p av = av
isFinalTag , isPAppTag :: Tag → Bool
isFinalTag (Tag Fun ) = False
isFinalTag Tag App = False
isFinalTag = True
isPAppTag (Tag PApp ) = True
isPAppTag = False

The last equation type in figure 2, IsApplication, is the trickiest. It was introduced in section 4.3
in two situations: (1) for every App expression in the Grin program (here the Maybe Variable
destination is Just a variable name), and (2) for every constructed node in the Grin program with
App tag, (here the destination is Nothing). Remember from section 4.2 that IsApplication mbv (f :
as) means that f is a variable which refers to a function which is applied to values referred to by
variables as (and the result may be stored in variable v if mbv is Just v).
Therefore, the first thing that needs to be done is to evaluate f and as abstractly. If the equation
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was introduced from situation (2), the function variable also needs to be dereferenced abstractly.
This gives us an abstract function absFun and abstract arguments absArgs. Auxiliary function
absCall now can abstractly apply the former to the latter.
Doing an abstract call amounts to filtering the partial-application thunk nodes from the possible
nodes that can represent the function, and adding the extra arguments by way of function addArgs.
If, after adding the new parameters, the function is still not fully saturated, a new abstract node
is constructed, having a PApp tag with lower needs than the original one. If the function happens
to be fully saturated, the possible results are read from the environment. The resulting nodes
(either the newly constructed, or those read) is tupled with the destination variable to indicate a
necessary change, at least in situation (1) where such a variable exists.
But there are other changes that need to be taken into account as well, coined “side effects” or sfx
in the code. During the abstract call, new associations between arguments and formal parameters
become manifest, that are not statically available in the equations. This is why the absCall and
addArgs functions, in addition to the function result, also return changes that take care of new
possible abstract values for argument variables. It is because of these side effects that envChanges
sometimes returns more than one change.

5 Discussion and related work

Our implementation determines, through static analysis, for each variable an approximation of
its runtime value. In particular, this reveals the possible functions a closure can represent. This
information can be used to replace the indirect jump in a closure evaluation by a small case
analysis. It is vital that the back end which translates the case distinction to machine code does
not use a jump table to implement it, as that would waste all our efforts to avoid indirect jumps.
Instead, the case analysis should be translated to repeated tests and conditional jumps.
Although branch prediction makes conditional jumps with known target less expensive than in-
direct jumps, it is still important to keep the number of jumps as low as possible. By using a
binary search, 2n cases can be distinguished with n comparisons and jumps. Another approach
would be to test for the most probable case first. If the occurence probabilities are known, we can
organize the binary search in a Huffman tree, minimizing the expected number of comparisons.
Determining which cases occur most frequently is hard to detect statically, as this depends on
the dynamic behaviour of a program. A interesting optimization opportunity is to gather such
information during a test run, and to use the profiling information in subsequent compilations.
Extensively used higher-order library functions, like map, can lead to a large number of cases to be
distinguished. In these situations it can be worthwhile to compile multiple copies of the function,
each with a limited number of different callers.
Although our algorithm makes it possible to avoid indirect jumps on closure evaluation, there is
another cause of indirect jumps: returning from a function. An idea worth investigating is to try
and prevent these as well using control flow analysis: if the number of possible callers is limited,
instead of returning by indirectly jumping to the adress popped from the stack, we can do a direct
jump based on a case analysis of possible callers.
We collect constraints on variables by means of a tree walk, which is implemented in an attribute
grammar based formalism. We think this case study shows that it is useful to be able to define
attributes separately. An alternative approach to collect information on a syntax tree is using
ASF [5]. In comparison, the AG approach is lightweight, in that it relies on the underlying lan-
guage for the definition of semantic rules. Yet another approach would be to provide combinators
that manipulate attributes within the language, instead of as a preprocessor [11]. We think that
describing a tree walk algorithm explicitly in terms of inherited and synthesized attributes helps a
lot in clarifying the structure of the algorithm. As tree walks are abundant in compiler construc-
tion (the algorithm described is just one of many in our compiler), we think it is worthwhile to
consistently use attribute grammar based tools.
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The solution of the constraints involve a standard fixpoint iteration. Special is that during solving
new constraints are derived and solved on the fly for variables that are not statically known when
the contraints were collected.
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