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Abstract

An edge dominating set in a graph G = (V, E) is a subset of the edges D C E such
that every edge in F is adjacent or equal to some edge in D. The problem of finding an edge
dominating set of minimum cardinality is NP-hard. We present a faster exact exponential time
algorithm for this problem. Our algorithm uses O(1.3226™) time and polynomial space. The
algorithm combines an enumeration approach of minimal vertex covers in the input graph
with the branch and reduce paradigm. Its time bound is obtained using the measure and
conquer technique. The algorithm is obtained by starting with a slower algorithm which is
refined stepwise. In each of these refinement steps, the worst cases in the measure and conquer
analysis of the current algorithm are reconsidered and a new branching strategy is proposed
on one of these worst cases. In this way a series of algorithms appears, each one slightly faster
than the previous, ending in the O(1.3226™) time algorithm. For each algorithm in the series,
we also give a lower bound on its running time.

We also show that the related problems: minimum weight edge dominating set, minimum
maximal matching and minimum weight maximal matching can be solved in O(1.3226™)
time and polynomial space using modifications of the algorithm for edge dominating set. In
addition we consider the matrix dominating set problem which we solve in O(1.3226™"™) time
and polynomial space, and the parametrised minimum weight maximal matching problem for
which we obtain an O*(2.4178) time algorithm.

1 Introduction

Research on exponential time algorithms for finding exact solutions to NP-hard problems dates
back to the sixties and seventies. Some natural problems such as independent set [24, 26], colouring
[16] and Hamiltonian circuit [13] have been studied for a long time, while for other problems such as
dominating set [8, 11, 22], treewidth [28] and feedback vertex set [23] exact exponential algorithms
with non-trivial running times date from only recently.

There is a renewed interest in these algorithms, also visible in a recent series of surveys on the
matter [9, 14, 25, 29, 30]. An important new technique is measure and conquer [8, 9, 10]. This
technique allows us to derive better upper bounds on branch and reduce algorithms.

In this paper, we consider the minimum edge dominating set problem. This problem is identical
to the problem of finding a minimum dominating set in a line graph. While both the edge
dominating set problem and the dominating set problem are NP-hard [31], in some ways the
problem restricted to line graphs is easier. For instance, minimum dominating set is hard to
approximate [5], while minimum edge dominating set is constant-factor approximable [1]. Also
from the parametrised point of view, minimum dominating set most likely is not fixed parameter
tractable (it is W[2]-complete [2]), while minimum edge dominating set is fixed parameter tractable
[6]. In the setting of exact exponential time algorithms, it also seems that the edge dominating
set problem is somewhat easier; the currently best known time bound for an exact algorithm
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for minimum dominating set is O(1.5063™) [27] (see also [8]), while in this paper we present an
0(1.3226™) time algorithm for minimum edge dominating set.

The first exact algorithm for edge dominating set is from 2005 due to Randerath and Schier-
meyer [22] who gave an algorithm of time complexity O(1.4423™). Raman et al. [21] gave an
0(1.4423™) algorithm and recently Fomin et al. [7] improved this to (1.4082").

In this paper we further investigate the idea of enumerating minimal vertex covers in order to
compute the minimum edge dominating set. Although this technique has already been used fre-
quently on this problem, we were able to formulate reduction rules applied during the enumeration
of the minimal vertex covers, which allow us to create a faster algorithm. These reduction rules
are derived from the manner in which these vertex covers are used for solving the edge dominating
set problem. Our first algorithm already improves on the literature by using these reduction rules,
but no complicated techniques at all. The time bound for this algorithm is tightened considerably
more by analysing it with measure and conquer. Furthermore the measure and conquer methodol-
ogy allows us to create a series of improved algorithms for which we can derive even smaller upper
bounds on their running times.

We also show that our ideas for minimum edge dominating set extend to minimum maximal
matching and matrix dominating set, and with some more modifications also to minimum weight
edge dominating set and minimum weight maximal matching. A consequence of our results also
solves a problem left open by Fernau in [6] and gives an O*(2.4178%) time algorithm for the
parametrised minimum weight maximal matching problem.

We will first introduce some notation, concepts and the problems under study in Section 2.
Then, in Section 3, we will show how we use minimal vertex covers to obtain an exact algorithm for
the edge dominating set problem with a running time exponential in the number of vertices, not
edges. In Section 4 we improve upon this algorithm by introducing reduction rules and a change
in the branching strategy of the algorithm, which we later analyse using measure and conquer in
Section 5. In Section 6 we further change the branching strategy of the algorithm and obtain an
0(1.3226™) time and polynomial space algorithm. Finally in Section 7 we extend our results to
weighted edge domination problems.

2 Preliminaries

Let G = (V, E) be an n-node undirected simple graph. Let G[V’] be the subgraph of G induced
by a subset V/ C V and let L(G) be the line graph of a graph G: L(G) = (E, {{el,e2} | Jpev v €
e1 ANv € eg}). Let be N(v) the open neighbourhood of a vertex v € V, N[v] be the closed
neighbourhood of v € V' (N[v] = N(v)U{v}), and Ny~ (v), Ny-[v] be the open, respectively closed,
neighbourhoods of v in G[V']. Ny (V") is an extension of this notation to neighbourhoods of
V" Ve Ny (V") = (Upevr Nvr (0)\V”, Ny: [V"] = U, cvr Ny [v]. For a subset of the vertices
V' C V, we define the V’'-degree of a vertex v to be the degree of v in G[V’].

A subset D C V is a dominating set in a graph G if for every vertex v € V there exists a vertex
w € D such that v € N[w]; we say that w dominates v in this case. A minimum dominating set
is a dominating set of minimum cardinality in a given graph. The minimum edge dominating set
problem is: given a graph G, find a minimum dominating set in the line graph L(G). Equivalently,
look for the smallest edge dominating set: a subset D C E such that every edge e € FE is dominated
by an edge f € D, where f dominates e if e and f have an end point in common. For an edge
weight function w : E — R> the minimum weight edge dominating set problem is: given a graph
G, find an edge dominating set D of minimum total weight > ., w(e).

An independent set in a graph G is a subset I C V such that no two distinct vertices v, w € I
are adjacent to each other and a verter cover in G is a subset C' C V such that every edge e €
is incident to some vertex v € C. Notice that the complement of an independent set is a vertex
cover and vice versa. A mazimal independent set is an independent set such that for each v € V\I,
I U{v} is not an independent set. The complement of a maximal independent set is a minimal
vertex cover, i.e. a vertex cover C such that for each v € C, C\{v} is not a vertex cover.

A matching in a graph G is subset M C E such that no two distinct edges e, f € M have an



Algorithm 1 Simple Edge Dominating Set Algorithm
Input: a graph G = (V, E)
Output: a minimum edge dominating set in G

1: compute the set C of all minimal vertex covers in G

2: for all minimal vertex covers C' € C do

3 let C; be the set of all isolated vertices in G[C)]
4: compute a minimum edge cover C’ in G[C\C}]
5
6

let Do be C’ plus an extra edge for each vertex in C; containing this vertex
: return the D¢ encountered of minimum cardinality

end point in common. A mazimum matching is a matching of maximum cardinality, a mazimal
matching is a matching M such that for every e € F, M U {e} is not a matching, and a perfect
matching is a matching M such that for every v € V there exists an edge e € M incident to
v. Finally, an edge cover is a subset C’ C E such that every vertex v € V is incident to an
edge e € C'. Maximum matchings and minimum weight perfect matchings can be computed in
polynomial time [3]. As a consequence an edge cover of minimum cardinality (minimum edge
cover) can be computed in polynomial time also by computing a maximum matching and adding
for each unmatched vertex an edge incident to it.

An interesting related problem is minimum mazximal matching: given a graph G, find a maximal
matching of minimum cardinality. This is equivalent to the minimum independent edge dominating
set problem, where independence between edges is interpreted in terms of the line graph. For this
problem we also consider the weighted variant minimum weight maximal matching: given a graph
G, find a maximal matching of minimum total weight.

Another interesting related problem is matriz dominating set. In this problem, we are given
an n X m 0-1 matrix and we need to find a set of 1 entries of minimum cardinality such that
every 1 entry is on the same row or column as a selected 1-entry. As noted in [31] this problem is
equivalent to bipartite edge dominating set: a matrix M that is an instance of matrix dominating
set corresponds to the instance of bipartite edge dominating set where there exist a vertex for
each row and each column, and an edge between a row vertex and a column vertex if and only if
its corresponding entry in M is a 1.

3 Using Minimal Vertex Covers

We start by first giving a simple exact algorithm for the edge dominating set problem. This
algorithm is based upon the following observation, see Algorithm 1.

Proposition 1 If D C E is an edge dominating set in G = (V, E), then C = {v € V|Jeep v € €}
is a vertex cover in G.

Proof: For each e € E, there is an edge f € D that dominates e, i.e. e and f have an end point
in common. This endpoint belongs to C' and therefore C' is a vertex cover. [ ]

Theorem 1 Algorithm 1 solves the minimum edge dominating set problem in O(1.4423™) time.

Proof: We prove that the minimum size of an edge dominating set in GG equals the minimum
cardinality of D¢ over all minimal vertex covers C in G. From this the correctness follows.

If C is a minimal vertex cover then D¢ is an edge dominating set, for if any edge is not
dominated then both endpoints are not in C' which contradicts C' being a vertex cover. Therefore
the algorithm returns an edge dominating set. To see that it is minimal consider the minimum
edge dominating set D in G. By Proposition 1 its endpoints form a vertex cover C' in GG. From this
vertex cover C' a minimum edge dominating set can be reconstructed by computing a minimum
edge cover in G[C]. A minimum edge dominating set can also be constructed from a minimal
vertex cover C; C C, for every edge {u,v} incident to a vertex v € C\Cy does not dominate any



edges not dominated by any set obtained from D by replacing this edge by any other edge incident
to u € C. Thus D¢, constructed as in Algorithm 1 from the minimal vertex cover C has the
same cardinality as D and therefore is a minimum edge dominating set.

The running time is derived from the Moon and Moser bound [18] on the number of maximal
independent sets, and hence minimum vertex covers in G: this number is bounded by 3"/3 <
1.4423™. Enumerating all minimum vertex covers can be done with only polynomial delay [15, 17],
therfore Algorithm 1 has a running time of O(1.4423™). [ |

Following the notation of the proof, the smallest edge dominating set which contains C' C V
as endpoints will be denoted by D¢ from now on.

By using a standard technique from [12], this also gives an algorithm for the minimum maximal
matching problem.

Corollary 1 The minimum mazimal matching problem can be solved by a modification of Algo-
rithm 1 in O(1.4423™) time.

Proof: Take the minimum edge dominating set computed by Algorithm 1. Let {u,v}, {v,w} be
a pair of dominating edges incident to the same vertex v. By minimality there cannot be another
dominating edge incident to w (remove {v,w} for a smaller edge dominating set). Also there
must be a vertex x adjacent to w without any incident dominating edge, for otherwise the edge
dominating set without {v,w} would be a smaller edge dominating set. Hence we can replace
{v,w} by {w,z} obtaining an edge dominating set with one pair of not independent dominating
edges less and repeating this process results in a minimum maximal matching. [ |

4 Exploiting Properties of Edge Dominating Sets

The 3"/3 upper bound on the number of minimal vertex covers in a graph G is tight; consider
the family of graphs consisting of [ triangles: these graphs have 3I vertices and 3! minimal vertex
covers. However, from the perspective of computing a minimum edge dominating set, this class of
graphs is trivial: just pick an edge from each triangle.

In this section we use properties of edge dominating sets in order to enumerate fewer minimal
vertex covers, avoiding situations of the type we just described, and in this way we introduce a
faster algorithm than the simple algorithm of Section 3. These modifications are very simple, yet
powerful enough to already improve upon the algorithm by Fomin et al. [7] which uses far more
complicated techniques. First we will introduce a reduction rule and secondly we will introduce
a more efficient branching strategy. Like Algorithm 1, the new algorithm enumerates a series of
minimal vertex covers, and computes for each of these minimal vertex covers C the smallest edge
dominating set D¢ that contains the vertices C' in its set of endpoints. To this end, it continuously
keeps track of a partitioning of the vertices of G in three sets: a set C' of vertices that must become
part of the minimal vertex cover, a set I of vertices that may not become part of the minimal
vertex cover (they are in the complementing maximal independent set), and a set U of vertices,
which we call the set of undecided vertices. We denote such a state by the four-tuple (G,C,I,U).

We introduce the following rule:

Rule 1

if G|U] contains a connected component H which is a clique then
let G be the graph obtained from G by adding a new vertex v connected to all vertices in H
C:=CUHU{v}; U:=U\H
recursively solve the problem (é .C,1,U ) and let D be the resulting edge dominating set
if D contains two distinct edges {u, v}, {v, w} incident to v then

return (D\{{u, v}, {v,w}})U{{u,w}}

return D\{{u,v}}, where {u, v} is the unique edge in D incident to v



Algorithm 2 Faster Edge Dominating Set Algorithm
Input: a graph G = (V, E)
Output: a minimum edge dominating set in G

1:I1:=0;C:=0;U:=V
2: if G[U] contains a connected component H which is a clique then
3: apply Rule 1
4: else if a vertex v of maximum degree in G[U] has U-degree at least three then
5: create two subproblems and solve each one recursively:
6: 1: (G,CU Ny (v), I U{v}, U\Ny[v]) 2: (G,CU{v},I,U\{v})
7. else
8: for all minimal vertex covers C' on G[U] do
9: compute the candidate edge dominating set D,
10: return the smallest edge dominating set encountered

A simpler rule can be used for clique components of size 1 or 2. Isolated vertices in G[U] can be
put in I and K5 components in G can be put in C. Remaining K> components in G[U] can be
contracted, putting the resulting vertex in C.

Proof of Correctness: After the recursive call the extra vertex v is incident to at least one edge
in D, since v € C. Also v is incident to at most two edges in D, for otherwise two such edges
can be replaced by the edge joining the other endpoints which gives a smaller edge dominating set
with C as a subset of the set of endpoints.

All clique edges in the original graph are dominated if at most one clique vertex is not incident
to a dominating edge. Therefore if D contains only one edge incident to v, removing this edge
results in an edge dominating set in the original graph with C as a subset of its set of endpoints.
Because D is of minimum cardinality (in G’) and the returned set is of cardinality one smaller it
must also be of minimum cardinality (in G): if it is not then adding the edge between the unique
vertex of the clique that is not an endpoint in the edge dominating set and D results in a smaller
alternative for D.

If D contains two edges incident to v replacing these by the edge joining the other endpoints
also results in such an edge dominating set in the original graph. This edge dominating set is also
of minimal cardinality because adding any edge incident to v gives an alternative for D. [ |

If Rule 1 does not apply, Algorithm 2 picks any undecided vertex v € U of maximum degree
in G[U] (maximum number of undecided neighbours in G). If v has U-degree at least three we
branch on this vertex generating two subproblems. In one subproblem v is put in the independent
set I; because no neighbour of v can also be in the independent set I these neighbours (at least
three) are all put in the vertex cover C. In the other subproblem v is put the vertex cover C.
We note that this may result in the construction of vertex covers which are not minimal, but all
minimal vertex covers are enumerated in this way.

If v has U-degree smaller than three, G[U] is of maximum degree at most two and due to Rule
1, G[U] does not contain a connected component that is a clique. Therefore G[U] now consists
of a collection of paths of length at least three and cycles of length at least four. In this case
Algorithm 2 enumerates all minimum vertex covers on these paths and cycles.

For each resulting partition of V' in an independent set I and a vertex cover C, Algorithm 2
computes a candidate for the minimum edge dominating set D¢ in the same way as Algorithm 1
and returns the candidate of minimum cardinality.

Theorem 2 Algorithm 2 solves the minimum edge dominating set problem in O(1.3803™) time
and polynomial space.

Proof: Correctness of the algorithm follows directly from the proof of Theorem 1 and the cor-
rectness of Rule 1.



Let P(l) be the number of maximal independent sets on a path and C(l) be the number of
maximal independent sets on a cycle of length [. For each vertex in a maximal independent set I
in a path, the next vertex in I must be at distance two or three; hence:

P(1)=1 P(2)=2 P(3)=2 Y>4:P()=P(—2)+P(-3)
1>3:P()<p" where 3is the root of 1 = 372+ 373 and § < 1.33

The latter follows by induction after noting that it holds for I € {3,4, 5}.

For cycles of length | < 6 a simple enumeration gives C(l). For [ > 7 consider an arbitrary
vertex v on a cycle of length [. If v is in a maximal independent set I, then neither of its neighbours
are, leaving P (I — 3) possibilities. If v ¢ I, then one or both of its neighbours are in I. Each of
the cases where one neighbour is in I leaves P(l — 6) possibilities because by maximality of I the
neighbour of the neighbour of v that is not in I must belong to I. In the case that both neighbours
are in I five vertices are fixed leaving P(l — 5) possibilities. Hence:

Cl)=1 C@2)=2 C@B)=3 CA) =2 CB)=5 C(6)=5
Vis7:C(l) = P(1—3) + P(l —5) + 2P(l — 6)

Let u be the number of undecided vertices in our problem instance (initially u = n), and S(u) be
the number of subproblems generated to solve an instance with |U| = u. We have:

S(u—1) 4+ S(u—3) branch on a vertex of U-degree at least three
S(u) << P(O)S(u—1) enumerate minimal vertex covers in a path of length [
C()S(u—1) enumerate minimal vertex covers in a cycle of length [

Because of the branching on a vertex of degree three S(u) < «a*, where « is the solution to
1 = a~' 4+ a3, For the enumeration of minimal vertex covers in paths S(u) < B'S(u — 1) <
Blav=t < o, because B < a. And also for the enumeration of minimal vertex covers in cycles
S(u) < a*, since the solution to v* = C(I)y“~! converges to v = (3 when | — oo and reaches its
maximum on [ > 4 when [ = 5; here v < 1.379 < a < 1.3803. The worst case over these three
possibilities gives S(u) < a* which results in the running time of O(poly(n)a™) or O(1.3803™).
The collection of minimal vertex covers constructed is not being stored, the enumeration search
tree is traversed, therefore the algorithm uses only polynomial space. [ |

Remark 1 We cannot improve by putting more paths or cycles in the polynomial part of
the algorithm (assuming P # NP). This is because one can show that finding a minimum edge
dominating set in a graph G with marked vertices U, that contains all unmarked vertices as
endpoints, and where G[U] is a collection of paths of maximum length 3 is NP-hard. The same
NP-hardness proof applies to the case with longer paths and cycles of length at least four.

5 Measure and Conquer

When we branch on a vertex of large degree in G[U], not only will it be removed from U, it will
also reduce the degrees of its neighbours in G[U] in one branch, and it will reduce the degrees
of the vertices at distance two in G[U] in the other. Since we can deal with vertices of U-degree
at most two (collections of paths and cycles in G[U]) in less time than we need for vertices of
U-degree three or four, this reduction of the degrees means additional progress for the algorithm.
In this section we show how we can keep track of this additional progress by using the measure
and conquer technique [8, 9, 10]. In combination with a slightly changed branching strategy on
paths and cycles in G[U] this leads to an improved time bound.

We first modify the enumeration of minimal vertex covers on paths and cycles: Algorithm 3
no longer enumerates all minimal vertex covers, but instead branches on the third vertex v of a
path of length at least four and applies Rule 1. In one branch v is put in the independent set,



Algorithm 3 Third Edge Dominating Set Algorithm
Input: a graph G = (V, E)
Output: a minimum edge dominating set in G
I =0;C:=0;U =V
if G[U] contains a connected component H which is a clique then
apply Rule 1
else if a vertex v of maximum degree in G[U] has U-degree at least three
or G[U] contains a connected component H which is a cycle (pick v € H) then

L

5: create two subproblems and solve each one recursively:

6: 1: (G,CU Ny (v), I U{v}, U\Ny[v]) 2: (G,CU{w}, I,U\{v})

7: else if G[U] contains a connected component which is a path of length at least four then

8: Let vy, v2, v3, v4 be the vertices at an end of the path and recursively solve the subproblems:

9: 1: (G, C U{vg,va}, T U{v1,v3}, U\{v1, v2,v3,v4}) 2: (G,CU{ws}, I,U\{vs})

10: else if G[U] contains a connected component which is a path of length three then

11: Let v be the middle vertex and recursively solve the subproblems:

12: 1: (G,CU Ny (v), I U{v}, U\Ny[v]) 2: (G,C U{w}, IU Ny(v), U\Nylv])
{Now: U=0,Cu =V}

13: else

14: compute the candidate edge dominating set D¢

15: return the smallest edge dominating set encountered

resulting in the removal of four vertices: v, its neighbours, and the remaining isolated vertex. In
the other branch v is put in the vertex cover, resulting in the removal of three vertices: v and
the first two vertices of the path, since they now form a 2-clique in G[U]. Using this branching
strategy on paths, we break cycles by branching in two subproblems: pick any vertex v and put
v in the vertex cover or put v in the independent set and its neighbours in the vertex cover. This
results in Algorithm 3.

We estimate the number of subproblems generated by branching on paths and cycles:

Lemma 1 For Algorithm 8 and [ > 4:
1. A cycle component Cy in G[U] generates a mazimum of 4'/¢ subproblems.
2. A path component P, in G[U] generates a mazimum of 44=1/6 subproblems.

Notice that we can repeatedly encounter these cycles and paths, and hence these numbers are
multiplied. Therefore we need exact bounds on the number of subproblems generated in this way.

Proof: (1.) Let P’(l), C’'(1) be the number of subproblems generated by Algorithm 3 when dealing
with a path or cycle of length [ respectively. Derive the values of P’(I) and C’(I) for I < 4 directly
and consider the following recurrence relation:

P =P2)=C'1)=C'2)=C3)=1 P3)=P4)=C'(4)=2
Viss : P/()=P'(I-3)+P'(1—4) C'(1)=P(1-1)+P(1-3)

Let v be the solution to 1 = v=3 +~y~%4. For | > 4, P'(l) < 4™ follows by induction after noting
that it holds for [ € {4,5,6,7}. For | > 10 we have:

I
C'(l) < A1 4443 = Ayt 4 473) = (’Yl 1 +773) < (4V/6)!

using the fact that §/4=1 4+ ~~3 is decreasing and smaller than 4'/6 if [ > 10. Direct computation
shows that for [ < 10: C’(1) < 4Y/6.
(2.) For I > 8, /(=1 is decreasing and smaller than 4/, therefore:

P(l) < A= (71/(1—1))171 < (41/6)l—1



For4 <1<7: P'(I) < 4(=1/6 by direct computation. [

These estimates are tight: when Algorithm 3 branches on a Cg component in G[U] (I = 6), we
indeed generate 4 = 4/¢ subproblems.

For the measure and conquer analysis we need a weight function w : N — [0, 1] assigning weights
w(d) to vertices of degree d in G[U]. Instead of counting the number of undecided vertices to
measure the progress of our algorithm, we will now use their total weight k = >, _;; w(degg)(v))
as a measure of complexity. This is justified by the fact that if we can show that our algorithm
runs in O(a*) time using weight function w, it will also run in O(a™) time, since for any problem
instance k < n.

Theorem 3 Algorithm 3 solves the minimum edge dominating set problem in O(1.3323™) time
and polynomial space.

Proof: Let w : N — [0,1] be the weight function assigning weight w(deggy(v)) to vertices
v € G[U]. The algorithm removes all vertices of U-degree zero, therefore w(0) = 0. Let Aw(i) =
w(i) — w(i — 1). Vertices with a larger U-degree should be given a bigger weight, hence we
demand: V,>1 Aw(n) > 0. Furthermore we impose the non-restricting steepness inequalities,
Vr>1 Aw(n) > Aw(n + 1).

Consider an instance where the algorithm branches on a vertex v of maximum U-degree d > 3
with r; neighbours of degree ¢ in G[U] (d = 2?21 r;). If v is put in the vertex cover, it is removed
from U and the U-degrees of all its neighbours in G[U] are decreased by one. If v is placed in
the independent set then Ny [v] is removed from U, and at least do additional vertices have their
U-degree reduced by one; here dj is a lower bound on the number of vertices at distance two from
v in G[U):

d
do = <Z(z — 1)r; mod 2) except when d = r3 = 3 then: do =2

i=1

This follows from a parity argument: there must be an edge in G[U] with only one endpoint in
Nylv] if 1 = Z?Zl(i — 1), (mod 2). Also Ny[v] cannot be a clique by Rule 1, hence if d = rq4
there must be at least two edges in G[U] with only one endpoint in Ny [v] .

Altogether we conclude that the algorithm recurses on two instances which are reduced A;pgep
and A,. in measured complexity:

d d
Aindep = w(d) + Z Tzw(l) + dQA’LU(d) Aye = w(d) + Z ’I”lAw(’L)

=1

Let S(k) be the number of subproblems generated to solve a problem of measured complexity k.
For all d > 3 and (d = Z'Z:l r;) we have a recurrence relation of the form:

S(k) S S(k - Aindep) + S(k - A’UC)

We define g(w) to be the functional mapping a weight function to the solution of this entire set
of recurrence relations.

By Lemma 1, an l-cycle or I-path generates a maximum of 446, respectively 4¢—1/6 sub-
problems. An l-cycle has a measured complexity of [ - w(2) and a path of length [ has measured
complexity at least (I — 1) -w(2), since Aw(1) > Aw(2) and hence 2w(1) > w(2). Therefore, in an
instance where the vertices in cycle components and path components of length at least four in
G[U] have measured complexity k', the removal of these vertices from U by Algorithm 3 results
in a maximum of 4*/6*(2) subproblems.

We now look for the optimal weight function w : N — [0, 1], satisfying the restrictions, and such
that the following maximum over the different possible branchings is minimal. Here we distinguish
between the case where the maximum U-degree is three or more, the cases where cycles and paths
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Figure 1: Lower Bound Graphs

of length at least four are removed from G[U], and the case where a path of length three is removed
from G[U]J.

k
sy < (i J/60(2) 91/ (w(2)+2u(1)
)< (| inmax {g(w), , !

By setting from some large enough integer p > 3: V;>,w(i) = 1 we obtain a finite problem with
the recurrence relations for 3<d <p+1 and d = Z?Zl r;. In this finite problem all recurrences
with d > p+1 are dominated by those with d = p+ 1. As a result we have obtained a quasiconvex
program [4]. Solving this numerically we obtain the optimal weights and a solution o < 1.3323:

w(1) = 0.750724  w(2) =0.914953  Vis3 w(i) =1

Therefore an instance of measured complexity k generates less than 1.3323 subproblems, leading
to the upper bound on the running time of O(1.3323™). Since we do not store any subproblems,
but just traverse an enumeration tree, we use only polynomial space. ]

Since measure and conquer analyses only provide upper bounds on the running time of an
algorithm, it is useful to consider lower bounds also.

Proposition 2 The worst case running time of Algorithm 3 is £(1.3160™).

Proof: Consider the class of graphs consisting of [ disjoint copies of Graph 1, in Figure 1. On
each individual copy, Algorithm 3 can branch on the leftmost vertex resulting in two subproblems:
one where this entire copy is removed from U and one where a path of length three remains in
G[U]. This leads to a total of three subproblems for each copy of the graph. Therefore Algorithm
3 generates 3! = 3"/* > 1.3160" subproblems on this class of graphs. This proves the Q(1.3160™)
lower bound. ]

6 Improving the Worst Cases

It is often a good idea to reconsider the quasiconvex program obtained from a measure and conquer
analysis. The quasiconvex function optimised in the proof of Theorem 3 equals the maximum over
the solutions to a series of recurrence relations: one for each subcase considered. The solution to
this quasiconvex program is an optimal point z € RP. In z, or any other feasible point in R?, some
of the solutions to the individual recurrence relations are tight to the maximum. If one slightly
varies the weights at this optimum x, the solutions to these tight recurrence relations increase
(by optimality of ). If we now change our algorithm in such a way that it handles such a tight
subcase in a more efficient way, the corresponding recurrence relation changes; it becomes smaller.
In this case we can move out of z to a new optimum, with a necessarily smaller maximum over
the solutions of the recurrence relations. This results in a smaller upper bound on the running
time. This idea was first introduced in [27] for the design of algorithms for minimum dominating
set and was named design by measure and conquer. This technique will be used in this section to
obtain a series of algorithms that improve upon Algorithm 3.

The quasiconvex program associated with Algorithm 3 (see the proof of Theorem 3) gives the
following tight worst cases:



Strategies: | none 1 1-2 1-3 1-4 1-5 1-7 1-8 1-9
O(z™): | 1.3323 | 1.3315 | 1.3296 | 1.3280 | 1.3265 | 1.3248 | 1.3240 | 1.3228 | 1.3226
Q(x™): | 1.3160 | 1.2968 | 1.2968 | 1.2968 | 1.2968 | 1.2753 | 1.2753 | 1.2753 | 1.2753

Table 1: Bounds on the running times of the algorithms in the improvement series.

1. d=3,79 =2,r3 =1, i.e. we have a vertex of maximum U-degree three, with two neighbours
in G[U] of U-degree two and one neighbour in G[U] of U-degree three.

2. d =3,r3 = 3: we have a vertex of maximum U-degree three, with three neighbours in G[U]
of U-degree three.

3. a connected component in G[U] is a path of length three.

We can improve upon the first two cases, while improving upon the third seems hard (see Re-
mark 1). Consider the first case. Let v be the vertex of maximum U-degree three, with two
neighbours uy,us € U of U-degree two and one neighbour uz € U of U-degree three. In our
analysis of Section 5, we had an upper bound ds on the number vertices with distance two from
v in G[U]; for this case we had da = 0. We can now consider two subcases.

In the first subcase v, u1, us and us form a connected component in G[U], isomorphic to
Subgraph 1 in Figure 2. Algorithm 3 branches on v. We modify this now, by instead branching on
one of the U-degree two vertices, e.g. u;. In both subproblems that are obtained after branching
on uy, the vertices of the subgraph that remains in U form a clique in G[U], and so are dealt
with by Rule 1. Therefore the entire subgraph disappears from G[U] after one branching step and
application of Rule 1, while previously, we had a path of length three in G[U] remaining in one
subproblem that required another branching step.

In the second subcase ui, uz and/or us are adjacent to vertices in U\{v,u1,uz,us}. If we
branch on v, then these vertices will have their U-degrees reduced by one in one branch, implying
a larger progress than estimated in Section 5: by a parity argument we can use do = 2 as a new
lower bound on the number vertices in with distance two from v in G[U].

Thus we modify the algorithm and split this case in two subcases in the measure and conquer
analysis. The optimum of the resulting quasiconvex program proves an upper bound on the
running time of O(1.3315™) for this modified algorithm.

Arguments, similar to the argument given above for the case d = 3,73 = 2,r3 = 1 can be given
in a large number of other case as well. This leads to a series of improvement steps, and a series of
algorithms: each algorithm slightly improves upon the previous. We give the other improvements
on the algorithms in a more schematic manner. Listed in the order in which they appear as worst
cases in the improvement series, we introduce the following set of alternative branching strategies
to Algorithm 3. The numbering corresponds to the subgraphs of G[U] drawn in Figure 2. We
refer to the vertex on which the previous algorithm could branch as v (leftmost vertex in the
Figure 2); we denote the reductions in measured complexity of the subproblems generated by the
alternative branching strategy by A1, Ao, ...; and every time we update the current lower bound
dy on the number of vertices at distance two from v in G[U]. See Table 6 for the upper bounds
on the running times of the individual algorithms in the series.

1. d =3,79 = 2,73 = 1. See introductory example. The subcase tight to d2 = 0 is handled more
efficiently by branching on a U-degree two vertex. This results in Ay = Ay = 2w(3) +2w(2).
All other subcases have at least two edges with only one endpoint in Ny [v], thus: dy = 2.

2. d=3,ry = 1,73 = 2. If there is a unique edge in G[U] with only one endpoint u in Ny [v],
then u has U-degree three. Branch on uw and apply Rule 1 to any 3-clique remaining in
G[U]. Because the other vertex incident to this unique edge has weight at least w(1), and
when its U-degree is reduced by one this reduces its weight by at least Aw(3), we derive
Ay =3w(3)+w(2)+w(l), As = 3w(3) +w(2) + Aw(3) and use dy = 3 for all other subcases.
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The leftmost vertex in every subgraph corresponds to a vertex we could branch on in Algorithm 3 and grey
vertices represent more efficient alternatives. If multiple vertices are grey, simultaneously branch on these
vertices generating four or eight subproblems. Crossed vertices represent vertices branched on directly
hereafter, but only in the subproblems where this induces extra 1, 2 or 3-cliques. Sometimes small path
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Unfinished edges always connect to vertices outside the drawn subgraph, and there are no other edges in
G[U] between vertices with at least one drawn endpoint. Dashed edges are optional.

Figure 2: More efficient branching strategies on possible subgraphs of G[U]

3. d = 3,ry = 3. Similar to Case 2: Ay = w(3) + 3w(2) + w(1l), Az = w(3) + 3w(2) + Aw(3).
For the remaining subcases, we have that dy = 3.

4. d=3,ro = 2,73 = 1. Case 1 reappears; consider four more subcases representing ds = 2.

(a) Both edges with only one endpoint in Ny/[v] are incident to the same vertex u € Ny (v).
Branch on u and apply Rule 1 if possible; this is similar to Cases 2 and 3. A; =
2w(3) + 2w (2) 4+ 2w(1), Ay = 2w(3) + 2w(2) + 2Aw(3).

Let u, w € Ny (v) be incident to the edges with only one endpoint in Ny [v] such that u has
U-degree two and w has U-degree three.

(b) Both edges in G[U] with only one endpoint in Ny[v] are incident to the same vertex
x ¢ Ny(v). Branch on z, and if it is put in the vertex cover also branch on v. Because
paths of length two are removed from G[U]: A; = Ay = Az = 2w(3) + 3w(2).

(c) If the vertex outside of Ny[v] adjacent to w in G[U] has U-degree one, branch on w.
This represents a different case of the quasiconvex program: d = 3,7 =19 =73 = 1.

(d) If the vertex « € Ny [v] that is adjacent to w in G[U], has U-degree two or three, branch
simultaneously on z and u. Ay = 2w(3) + 3w(2) + 2w(1), As = Az = 2w(3) + 3w(2) +
w(l) + Aw(3), Ay = 2w(3) + 3w(2) + 2Aw(3).
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For all other subcases we now have dy = 4.

. d=3,r3 = 3. Because of Rule 1: dy = 2. In Section 7 we discuss variants of our algorithm for
which we do not have a reduction rule dealing with this subcase. Therefore we consider this
subcase as if the reduction rule was not in our algorithm: remove it using two subproblems
by branching on any vertex. A; = Ag = 4w(3)

The rest of this case is identical to Subcases 4(b-d), with Ay = Ay = Ay = 4w(3) + w(2) in
Subcase (b), and Ay = 4w(3) +w(2)+2w(1), Ay = Az = 4w(3)+w(2) +w(l)+Aw(3), Ay =
4w(3) + w(2) + 2Aw(3) in Subcase (d). For all remaining subcases now set do = 4 also.

.d=3,r5 =1,r3 = 2. As we handled Case 2 earlier, we have do = 3. Suppose that the
U-degree two neighbour of v is adjacent to another neighbour of v in G[U]. See Case 7 when
this extra condition does not apply. Let T be the 3-clique (triangle) in G[U] containing v.

(a) A vertex u # v in G[U] is a neighbour of two vertices in Ny(v). Branch on the
neighbour of v incident to two edges with one endpoint in Ny[v]. In the subproblem
where u is not removed also branch on u. A; = 3w(3) + 2w(2) + w(1),As = Az =
3w(3) 4+ 2w(2) + Aw(3).

(b) In G[U] a vertex u € T has a U-degree one neighbour: branch on w.

(¢) In the remaining subcase branch on both vertices in Ny (T). Ay = 3w(3) + 2w(2) +
3w(l), As = 3w(3)+2w(3)+ 2w (1) +Aw(3), Ag = 3w(3)+2w(3)+w(1)+2Aw(3), Ay =
3w(3) + 2w(3) + 3Aw(3).

. d=3,r9o =1,r3 =2, again dy = 3 as we handled Case 2 earlier. Because of Case 6 suppose
that the U-degree two neighbour of v is not adjacent to another neighbour of v in G[U]. Let
T be the 3-clique in G[U] with v € T.

(a) If any vertex in Ny (T') has U-degree one, branch on its neighbour in 7.

(b) If any vertex in Ny (T') has U-degree three, we proceed to Case 8, where we let v be the
vertex in T that is a neighbour to this U-degree three vertex. This case is illustrated
in Figure 2, Case 8 (not Case 7).

For all other subcases Ny (T) consists of vertices of U-degree two.

(c) A vertex in u € U is adjacent to two vertices in 7. Branch on the vertex in T not
adjacent to u. Ay = 3w(3) 4+ 2w(2) + Aw(3), As = 3w(3) + w(2) + Aw(2).

(d) Two vertices in U adjacent to T are adjacent to each other. Branch on a vertex
u € T\{v}. When v is put in the vertex cover branch on w € T\{u,v}, A1 = Ay =
3w(3) + 2w(2) + Aw(2), Az = 2w(3) 4+ 2w(2) + Aw(3) + Aw(2).

(e) The U-degree two neighbour of v is adjacent to a neighbour of a vertex in T in G[U].
Notice that this case is isomorphic to Subcase (d) and can be dealt with similarly.

(f) Left is the subcase where no vertices in U neighbouring T are adjacent: branch on v.

Together with Case 6 this allows us to add an additional 2(Aw(2) — Aw(3)) to Ajngep for
d = 3,79 = 1,73 = 2. This because the only remaining subcase is Subcase 7(f) where
putting v in the independent set gives at least two vertices of U-degree two whose U-degree
is reduced, in contrast to the original analysis, where we did not have the U-degrees of these
vertices specified.

. d=3,r3 = 3. As we handled Case 5 earlier, we now have dy = 4. There are many subcases
of this case. We discuss only two in which we assume that the vertices neighbouring the
triangle T" in G[U] containing v are not adjacent to each other; the other subcases are similar
to what we have shown already and illustrated in Figure [7], Case 8.

(a) Again if any U-degree one vertex is a neighbour of a vertex u € T, branch on w.
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(b) Otherwise branch one all three vertices neighbouring T’ in G[U] simultaneously. A; =
4w(3) + 2w(2) + 4Aw(3), Ay = Az = 4w(3) + 2w(2) + w(l) + 3Aw(3),Ay = A5 =
4w(3) + 2w(2) + 2w(1) + 2Aw(3), A¢ = A7 = 4w(3) + 2w(2) + 3w(1l) + Aw(3),Ag =
4w(3) + 2w(2) + 4w(1).

This results in dy = 5 for the remaining subcases. We notice that Case 8(b) now becomes a
new worst case in the quasiconvex program.

9. d =4,ry = 4. If all vertices in Ny[v] are pairwise adjacent we have a clique that can be
filtered out by Rule 1. It can also be removed using three subproblems by branching on any
two vertices: A = Ag = Az = bw(4).

If there are two edges in G[U] with only one endpoint in Ny [v] then we branch on both
vertices in Ny [v] incident to these edges. Ay = 5w(4) + 2w(1l), Ay = Az = bw(4) + w(l) +
Aw(4), Ay = 5w(4) + 2Aw(4). This results in da = 4 for all other subcases.

Algorithm 4 Let Algorithm 4 be the modification of Algorithm 8 using all the alternative branch-
ing strategies discussed above and illustrated in Figure 2.

Theorem 4 Algorithm 4 solves the minimum edge dominating set problem in O(1.3226™) time
and polynomial space.

Proof: Reconsider the quasiconvex program used to prove the running time of Theorem 3 and
include new subcases as listed above with the modified values of d; and the extra quantities added
t0 Ajndep- In order to keep the problem finite, set w(i) = 1 for ¢ > p for some p > 4 (see Remark 2).

The solution to this modified quasiconvex program gives a running time of O(1.3226™) for
Algorithm 4 using weights:

w(l) =0.779416  w(2) =0.920821  w(3) = 0.997106 V>4 w(i) =1

The modified algorithm uses only polynomial space for the same reason as in Theorem 3. [ |

Remark 2 If we would have set w(i) = 1 for all ¢ > 3 as in the proof of Theorem 3 the
recurrence relation for d = r4 = 4 becomes independent of the weight function w: w(i) for i < 3
does not occur in its formulas. The solution to this recurrence relation is close to o = 1.3247 and
is independent of w. Therefore we need w(3) to be variable in order to get any solution below
1.3247.

As a consequence we also obtained the following results (see Section 2 and Corollary 1):

Corollary 2 The minimum mazimal matching problem can be solved by a modification of Algo-
rithm 4 in O(1.3226™) time and polynomial space.

Corollary 3 The matriz dominating set problem can be solved by modification of Algorithm 4 in
0(1.3226™™) time and polynomial space.

For the matrix dominating set problem a slightly simpler algorithm would suffice since there cannot
be any odd cycles in a bipartite graph; removing isolated vertices and 2-cliques from G[U] by a
reduction rule would suffice.

The proof of the lower bound on the running time of Algorithm 3 is no longer valid after
introducing the first alternative branching strategy. We prove different lower bounds for the
algorithms in the improvement series (also see Table 6):

Proposition 3 The worst case running time of the i-th algorithm in the improvement series is

Q(1.2968") if i < 4 and Q(1.2753") if i > 5.
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Proof: If ¢ < 4, consider the class of graphs consisting of | disjoint copies of Graph 2 in Figure 1.
The algorithm can branch on the rightmost grey vertex v. When v is put in the independent set,
we are left with Subgraph 1 of Figure 2 in G[U] which generates two subproblems. When v is put
in the vertex cover, the algorithm can branch on the leftmost grey vertex. This results in either
a path of length three (two subproblems) or a cycle of length six (four subproblems) remaining
in G[U]. Altogether this leads to a total of eight subproblems for each copy consisting of eight
vertices. Since 8! = 8"/% > 1.2968", these algorithms run in time €(1.2968").

If alternative branching strategy 5 is used in the algorithm, the above lower bound is no longer
valid since the algorithm can no longer branch on the grey vertices. Now consider Graph 3 of
Figure 1, in which the algorithm can branch on one of the grey vertices. In the subproblem where
this vertex is put in the independent set a star shaped graph remains in G[U] which generates two
subproblems by branching on its center vertex. In the other subproblem the algorithm can branch
on the other grey vertex resulting a cycle of length six in G[U] or the removal of this copy of the
graph from U. This gives a total sum of seven subproblems on a graph on eight vertices. Since
7t = 77/% > 1.2753", these algorithms run in time €(1.2753"). |

Remark 3 Considering more subcases and deriving more alternative branching strategies could
further reduce the running time of the algorithm. But if we continue in the above fashion, we
cannot improve beyond O(1.3214™). This because dy < Z?Zl(i —1)r; and solving our quasiconvex
program using these maximum values for ds leads to this upper bound. This makes further subcase
analyses almost not worth the effort. The lower bound of £2(1.2753™) would remain valid for these
further improved algorithms: ds is maximal for the vertices we branch on in the second part of
the proof of Proposition 3: non of their neighbours are neighbours of each other.

7 Weighted Edge Domination

Now let us consider the weighted variants of minimum edge dominating set and minimum maximal
matching. Proposition 1 still applies when considering these weighted problems, while other
properties exploited by our algorithm need more careful consideration. In this section we introduce
modifications of the algorithm of the previous section that solve these weighted problems with the
same upper bound on running time. For both variants we need a slightly different approach.

7.1 Minimum Weight Edge Dominating Set

Let us first look at the polynomial part of the algorithm at the leaves of the search tree. In
the unweighted case it is sufficient to compute a minimum edge cover in G[C], but this does not
extend to the weighted case; using edges between a vertex in the independent set I and a vertex
in the vertex cover C' possibly leads to a smaller total weight. To deal with this we notice that the
minimum weight edge cover problem is solvable in polynomial (cubic) time [19] by using matching
techniques.

First consider the minimum weight generalised edge cover problem: in a graph G cover a
specified subset of the vertices C C V by a set of edges of minimum total weight. This problem
is solvable in cubic time too [20] in the following way [6]. Create the graph G’ with vertex set
C U {v}, where v is a new vertex. The edges of G’ are the edges of G[C] to which we add an edge
{u,v} for all u € C' with degree zero in G[C] or for which u has an edge in G whose weight is
smaller than the weight of each edge incident to u in G[C]. The weight of a new edge {u, v} will
be the minimum weight of all edges incident to v in G.

Proposition 4 (Fernau [6]) The minimum weight generalised edge cover in G has weight equal
to the minimum of the weights of the edge covers in G[C| and G'.

Proof: The minimum weight generalised edge cover in G has weight equal to the minimum weight
edge cover in G[C] or G’ depending on whether edges with endpoints in V\C' are used. This will
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equal the one with smallest weight, since if no edges incident to a vertex in V\C are used in
the minimum weight generalised edge cover in G then the minimum weight edge cover in G’ will
have greater weight than the one in G[C] (more needs to be covered). Equivalently, if some of
these edges are used, then we obtain a solution with smaller weight by using them and hence the
minimum weight edge cover in G[C] will have larger weight than the one in G’. [ |

We now consider Rule 1. Rule 1 no longer applies to the weighted case, and cannot be easily
adapted to this case, as it is not possible to assign weights to the new edges it introduces such
that we obtain an equivalent instance. However, in the case of cliques of size at most three, the
following modified rules can be used:

Rule 2 Put isolated vertices in G[U] in the independent set I.

Rule 3

if G|U] contains a connected component H which is a clique of size two or three then
let e be an edge of minimum weight in H
let G be G with a new vertex v connected by edges of weight w(e) to all vertices in H
C:=CUHU{v},U:=U\H
recursively solve the problem (G, C,I,U) and let D be the resulting edge dominating set
if D contains two distinct edges f, g incident to v then

return (D\{f,g}) U {e}
return D\{f}, where f is the unique the edge in D incident to v

Notice that for 2-cliques we can equivalently contract its edge and connect the newly obtained
vertex by an edge with weight equal to the contracted edge’s weight to a new vertex. This new
vertex does not need to be covered by the generalised edge cover.

Proof of Correctness: Rule 2 is correct, because all edges incident to an isolated vertex in G[U]
have their other endpoint in C' and hence will be dominated by an edge incident to this endpoint.

Observe that the edges of the clique H in Rule 3 are dominated in G if at most one vertex
in H is not incident to a dominating edge. Thus if one edge in D is incident to v, the returned
set is an edge dominating set in G. If two edges {u,v}, {v,w} in D are incident to v, then e is
incident to u or w, because H consists of no more than three vertices. Therefore, as the returned
set contains e, we have that it is an edge dominating set in G also.

The returned set is of total weight (3, pw(d)) —w(e) and therefore it has minimum weight.
This is because if there is an edge dominating set D’ in G of smaller weight then we can add an
edge e’ with weight w(e) to D’ obtaining a minimum weight edge dominating set in G of smaller
total weight than D. Here, ¢’ is the edge joining the one vertex in H not incident to an edge in
D’ with v, or any edge incident to v if no such vertex exists. ]

Algorithm 5 Let Algorithm 5 be obtained from Algorithm 4 by replacing Rule 1 by Rules 2 and 3.

Theorem 5 Algorithm 5 solves the minimum weight edge dominating set problem in O(1.3226™)
time and polynomial space.

Proof: Correctness follows in exactly the same way as in Theorem 2, based on Theorem 1 and
the correctness of the Rules 2 and 3.

The running time is dominated by the exponential number of subproblems generated, because
for each partitioning of V' in a minimal vertex cover and a maximal independent set, the algo-
rithm computes the minimum weight edge dominating set containing the vertex cover in its set
of endpoints in polynomial time. The only difference in the number of subproblems generated
compared to Theorem 4 is the removal of cliques of size four and larger by a reduction rule. We
have considered these subcases, which are removed by Rule 1 but not by Rules 2 and 3, in the list
of alternative branching strategies of Section 6. Therefore the upper bound on the running time
in the proof of Theorem 4 remains valid for our modified algorithm. [ ]

15



Algorithm 6 Algorithm for Minimum Weight Generalised Independent Edge Cover
Input: a graph G = (V, E) and a subset of its vertices C C V
Output: a minimum weight generalised independent edge cover of C' in G if one exists
1: if G has an odd number of vertices then
2 add a new vertex v to G (v € C)
3: for all v,w € V\C,v # w do
4: add a new edge between v and w to G with zero weight
5
6
7

: if there exists a minimum weight perfect matching P in G then
return P with all edges between vertices not in C' removed
: return false

7.2 Minimum Weight Maximal Matching

We have given modified versions of Algorithm 4 for both the minimum maximal matching problem,
and the minimum weight edge dominating set problem. These modifications cannot be combined
to construct an algorithm for the minimum weight maximal matching problem (minimum weight
independent edge dominating set problem) since the transformation of Corollary 1 does not pre-
serve edge weights.

However, for a minimal vertex cover C' in a graph G we can construct the minimum weight
maximal matching containing C' in its set of endpoints. To this end we consider the minimum
weight generalised independent edge cover problem: in a graph G cover a specified subset of the
vertices C' C V by a set of edges of minimum total weight such that no two edges are incident to
the same vertex.

Proposition 5 Algorithm 6 solves the minimum weight generalised independent edge cover prob-
lem in polynomial time.

Proof: The returned edge set is a generalised independent edge cover of C in G since it is a
matching and it contains all vertices in C' in its set of endpoints. The edges in P between vertices
in V\C have zero weight and thus the returned set and P have equal total weight. Because all
generalised independent edge covers of C in G can be obtained in this way from perfect matchings,
the returned set is of minimal weight and false is only returned if no generalised independent edge
cover of C exists in G. ]

Now we again only have to consider our reduction rule:

Rule 4

if G[U] contains a connected component H which is a clique then
let G be G with a new vertex v connected by edges of zero weight to all vertices in H
C:=CUH;I:=1U{v};U:=U\H
recursively solve the problem (é O, I,U ) and let D be the resulting edge dominating set
if D contains an edge e incident to v then
return D\{e}
return D

Proof of Correctness: In a clique a maximum of one vertex is allowed not to be incident to a
dominating edge. Since all vertices in H are put in C, and in C at most one edge can be incident
to v, the returned edge set is an independent edge dominating set. This returned independent
edge dominating set has the same total weight as D. Therefore it is of minimal total weight: if
an independent edge dominating set of smaller weight would exist, a minimum weight maximal
matching in G with smaller weight than D can be constructed. ]

Algorithm 7 Let Algorithm 7 be obtained from Algorithm 4 by replacing Rule 1 by Rule 4.
Theorem 6 Algorithm 7 solves the minimum weight mazimal matching problem in O(1.3226™)

time and polynomial space.
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Algorithm 8 Algorithm for Parametrised Minimum Weight Maximal Matching

Input: a graph G = (V, E) and a parameter k
Output: a minimum weight maximal matching of weight at most k£ in G if one exists
:1=0;C=0;U:=V
2: if |C'| > 2k then
return false
else if |C| < 0.8036k and G[U] is of maximum degree two then
compute the minimum weight maximal matching M in G by dynamic programming over
a path decomposition of G by using Lemmas 2 and 3
stop the algorithm: do not backtrack!
return M if it is of total weight at most k& or false otherwise
else if a vertex v of maximum degree in G[U] has U-degree at least two then
create two subproblems and solve each one recursively:
10: 1: (G,CUNy(v),IU{v}, U\Ny[v]) 2: (G, CU{v}, I,U\{v})
11: else
12: exhaustively apply Rule 4 {this results in: U = 0}
13: Let M be a minimum weight generalised independent edge cover of (G, C) (Algorithm 6)
14: return M if it is of total weight at most k or false otherwise

Proof: Identical to Theorem 5 using Proposition 5 and the proof of correctness of Rule 4. ®

7.3 Parametrised Minimum Weight Maximal Matching

The results from Section 7.2 also solve a question raised by Fernau [6] for the parametrised ver-
sion of this problem. He asks whether vertex cover structures can be exploited to obtain efficient
parametrised algorithms for this problem. We combine Algorithm 6 with the parametrised al-
gorithm from [7]. This gives us the fastest known algorithm for this problem: Algorithm 8.
The algorithm uses the global application of width parameters approach of [7], which combines a
branching approach with pathwidth based techniques.

The parameterised minimum weight mazimal matching is defined: given a graph G and a
parameter k, find a minimum weight maximal matching in G of weight at most k. In order
to compare weights to the parameter, it is required that for every input edge e: w(e) > 1.
Alternatively one could ask for the minimum weight maximal matching if it consists of at most &
edges.

First we need some basic results on pathwidth, path decompositions and dynamic program-
ming.

Lemma 2 (Fomin et al. [7]) If in any node of the branching tree of Algorithm 8 G[U], has
maximum degree two, then the pathwidth of G is bounded by |C|+ 2 and a path decomposition of
this width can be found in polynomial time.

Proof: Let C, I, U be the partitioning of the vertices of G in a node of the branching tree. G[U]
has maximum degree two; therefore it has a path decomposition of width at most two. Because I
is an independent set, and non of the neighbours of the vertices in I are in U, the pathwidth of
G[U U I] equals the pathwidth of G[U]. Such a path decomposition of G[U U I]: (X1, Xa,..., X,)
of width at most two can be computed in polynomial time. Now add C to every X; to obtain a
path decomposition of G of width at most |C| + 2. [

Lemma 3 Given a graph G and a path decomposition (X1, Xa,...,X,) of G of width at most p,
the minimum weight maximal matching of G can be found in time O*(3P)*.

Proof: Consider the standard dynamic programming algorithm on graphs of bounded pathwidth.
By dynamic programming we compute for increasing k& the minimum weight maximal matching

1Here we use the O* notation which suppresses not only constant but all polynomial parts of the running time.
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of G[UF_, X;] for all assignments of the vertices in X} to three possible states: a vertex can be
incident to an edge in the matching with other endpoint in G[U¥_, X;]; a vertex can be incident
to an edge in the matching for which we have to assign the other endpoint later; and a vertex can
be not incident to any edge in the matching.

When implemented efficiently, the running time of the algorithm is dominated by the number
of values computed: this is upper bounded by 3P*!r. Since r is polynomial in n this gives the
running time of O*(3?). [

Now we can prove the following running time for Algorithm 8.

Theorem 7 Algorithm 8 solves the parametrised minimum weight maximal matching problem in
O*(2.4178%) time.

Proof: Correctness is trivial if a path decomposition is constructed by the algorithm: it then
ignores any branching done and outputs a minimum weight maximal matching of G if it is of
small enough weight. If no path decomposition is constructed the algorithm considers all minimal
vertex covers of size at most 2k. If a maximal matching is returned it is of minimum weight for the
same reason as in Theorem 6. If no maximal matching is computed then |C| > 2k for all minimal
vertex covers C' in G, and because Veepw(e) > 1 any maximal matching is of weight at least k.

Let S(k) be the number of subproblems generated to solve a problem with parameter k, and
let o« = 0.4018. If we branch on a vertex of degree at least three, the behaviour of the algorithm
corresponds to the recurrence relation S(k) < S(k—3)+S(k—14). This is because the algorithm
stops if |C] > 2k and |C| increases by one in one branch and by at least three in the other. Solving
the recurrence relation leads to a running time of this part of the algorithm of O*(2.1480F).

Now suppose that during the execution of the algorithm a path decomposition of width p is
computed. This happens when the maximum degree in G[U] first becomes at most two. Then
a minimum weight maximal matching in G is computed in O*(3/°1) < O0*(3%F) < 0*(2.4178F)
time. This leads to a total running time of O*(2.1480% + 2.4178%) = O*(2.4178F).

If no path decomposition is computed, we have that |C| > 2ok when the maximum degree
in G[U] first becomes at most two. Now the algorithm performs a series of branchings on degree
two vertices according to the recurrence relation S(k) < S(k — %) + S(k — 1) (|C| increases by
one or two). This recurrence relation solves to O*(2.6180%). When the maximum degree in G[U]
becomes one, the minimum weight maximal matching for this branch is computed in polynomial
time. Because we have a bound on the number of times the algorithm branches on vertices of
degree at least three, this leads to a total running time of O*(2.1480°%2.6180%~ %) = O*(2.4178F).

Notice that o was chosen in such a way that 2.1480%%2.6180F~F = 320k, [ |

8 Conclusion and Further Research

We have presented O(1.3226™) time and polynomial space algorithms for minimum edge dominat-
ing set, minimum weight edge dominating set, minimum maximal matching (minimum indepen-
dent dominating set), and minimum weight maximal matching. These algorithms are obtained
by using a vertex cover structure on the input graph, special branching strategies and reduction
rules applied to simple instances and the iterative improvement of a measure and conquer analysis.
We have also created an O(1.3226"*™) algorithm for matrix dominating set and a O*(2.6181%)
algorithm for parametrised minimum weight maximal matching.

It would be interesting to see if there are more related problems, for example minimum (weight)
total edge dominating set, to which our methods can be applied.

We note that our algorithms have their running times expressed in the number of vertices n
in the input graph G, in stead of the number of edge m in G. As an interesting research topic, we
mention the analysis and design of exact algorithms for edge domination (and other problems),
where we focus on the running time as function of the number of edges m. See the discussion
about complexity parameters in [29].
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We realise that the upper bounds on the running times proved using measure and conquer are
not tight. Therefore we also derived lower bounds. It is an interesting question what the exact
worst case behaviour of our algorithms is. We know of no method that can derive such exact worst
case behaviour systematically, but if this is possible it would be very interesting to see whether
this results in a similarly iterative improvement methodology.
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