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Abstract. We investigate various aspects of involutions of groups, i.e,
anti-automorphisms of order at most two. The emphasis is on finite
abelian groups. We count the number of involutions for the cyclic groups,
and consider the problem for direct products of groups. We also give a
characterization for the set of skewed squares of finitely generated abelian
groups with identity as the involution. The present paper is motivated
by our research into switching classes of combinatorial graphs where the
edges have skew gains.



1 Introduction

The material in this paper is motivated by a quest for techniques which
enable analysis of networks of processors which can be modelled by actions
of groups on finite combinatorial graphs. Such an action is presented by
Seidel switching (see [10, 11] or [3, 5, 12]), and in a more general setting
by switching in the so called skew gain graphs (see [2, 4, 6]).

In the context of Seidel switching (of ordinary graphs), the confronted
involution corresponds to the inversion of the underlying group. In the
general setting of skew gain graphs more flexibility is gained by having
general involutions in the underlying group that acts on the graphs.

In the following we consider involutions in groups without the graphs
which employ them. In Section 3, we concentrate on cyclic groups, and
then in Section 4 we consider involutions of direct products of finite
groups. In Section 5 we consider a problem for infinite abelian groups
concerning involutions to which Hage [4] showed that the membership
problem of switching classes can be reduced.

2 Preliminaries

We use Z, R and R+ to refer to the sets of integers, real numbers and
positive real numbers respectively. The cardinality of a set X is denoted
by |X|. The identity function on X is denoted by ιX , from which the
subscript X is omitted if it is clear from the context.

Let Γ be a group. For a function f , the set of its fixed points is
Fix(α) = {a ∈ Γ | α(a) = a}, and the set of its inverted points is
Inx(α) = {a ∈ Γ | α(a) = a−1}.

A bijection α : Γ → Γ is an anti-automorphism, if α(ab) = α(b)α(a)
for all a, b ∈ Γ . For abelian groups an anti-automorphism is always an
automorphism. An anti-automorphism α of the group Γ is an involution,
if α2 = ι, i.e., if α has order at most two.1 Let Inv(Γ ) denote the set of all
involutions of Γ . We use #a to denote the order of a group element a ∈ Γ .
The kernel of a group homomorphism α : Γ → Γ ′ is the set ker(α) = {a |
α(a) = 1Γ ′}. The image of α is Im(α) = {b ∈ Γ ′ | b = α(a), a ∈ Γ}. For
other standard group notation we refer to Rotman [8].

1 In the literature an element of a group of order two is also called an involution.



Example 1.
Let a ∈ Γ , and let δ ∈ Inv(Γ ) be an involution. Then δ(1Γ ) = 1Γ ,
δ(an) = δ(a)n for integers n ∈ Z, and #δ(a) = #a. The inversion a 7→ a−1

is an involution of each group Γ .
Clearly, δ : Γ → Γ is an involution if and only if the mapping a 7→

δ(a)−1 is an automorphism of order at most two. Therefore, for instance,
if Γ contains an element g with #g = 2, then the mapping a 7→ (a−1)g (=
ga−1g−1) is an involution. This is the case among the finite groups γ of
even order.

The following two results are proven, at least, in [6].

Lemma 1.
Let δ be an involution of a finite group Γ .

i. Either Fix(δ) 6= {1Γ }, or δ is the inversion of Γ and Γ is of odd order.
ii. Either Inx(δ) 6= {1Γ }, or δ is the identity function and Γ is an abelian

group of odd order.

Recall that the centre of a group Γ is the normal subgroup Z(Γ ) =
{x ∈ Γ | xy = yx for all y ∈ Γ}.

Theorem 1.
The centre Z(Γ ) of Γ is closed under every involution of Γ . In particular,
if Γ has a nontrivial centre, then for all involutions δ either δ(z) = z for
all z ∈ Z(Γ ) or there exists an element x ∈ Z(Γ ) such that δ(x) = x−1

with x 6= 1Γ .

3 Involutions of cyclic groups

Each finite cyclic group is isomorphic to Zn for some n, and by the fun-
damental theorem of abelian groups, it can be written as a direct sum

Zn
∼= Zp

m1
1
⊕ Zp

m2
2
⊕ · · · ⊕ Zpmr

r

of cyclic groups Zp
mi
i

, where pi ≥ 2 are distinct prime numbers such that
n = pm1

1 pm2
2 . . . pmr

r .
Let δ ∈ Inv(Zn), and suppose δ(1) = k. Now, δ(i) ≡ ik (mod n) and

so 1 = δ(k) ≡ k2 (mod n), i.e.,

k2 ≡ 1 (mod n). (1)



Example 2.
Let then n = 16. If (1) holds for k then it also holds for n− k, so k = 15
is also possible. It is easy to see that if k > 1 then k ≥

√
n + 1 and hence

k cannot be equal to 2, 3 or 4. From Example 1 we know that #1 = #k
and hence k generates Zn as well, implying (n, k) = 1. This means that
other possible values for k that have to be examined are 5 and 7. Of these
only 7 works (and thus also 9).

Let ξ : N → {−1, 0, 1} be defined by

ξ(n) =


1 if 8|n ,
−1 if 2|n and 4 6 |n ,
0 otherwise.

Lemma 2.
If n = pm for a prime p and m ∈ N then (1) has exactly 21+ξ(n) solutions
k with 1 ≤ k ≤ n− 1.

Proof. The two solutions k = 1 and k = n− 1 work for any cyclic group.
In the case p = 2 and m = 1 these give the same unique solution.

Assume that (1) holds for k /∈ {1, n− 1}. Now, pm|(k− 1)(k + 1), and
thus p = 2; otherwise pm = k + 1 (because k < n) and so k = n − 1.
Suppose 2i|k − 1 and 2j |k + 1 with i + j = m. We have 0 ≤ i < m.

If i = 0 and thus j = m then n = k+1; a contradiction. Suppose then
that i > 0 in which case also j > 0. Let r = min(i, j). Then 2r|(k + 1)−
(k − 1) = 2, i.e., r = 1. If r = i, then j = m − 1, and so 2m−1|k + 1. If
r = j, then i = m− 1, and so 2m−1|k − 1. Hence, in both cases,

k ≡ ±1 mod 2m−1 . (2)

For m = 1 and m = 2, we obtain the same solutions as in the above, and
for m ≥ 3, we have two solutions.

Summarizing, we have one solution if p = 2 and m = 1, four solutions
if p = 2 and m ≥ 3 and two if p 6= 2 or p = 2 and m = 2.

In the above we have only proven half of what we need to prove,
namely indicating possible solutions. The fact that these solutions do
indeed always exist can be verified easily from (1).

Hence, for every n the number of solutions equals 21+ξ(n). ut

Theorem 2.
Let n = pm1

1 pm2
2 . . . pmr

r be a prime decomposition of n with pi < pi+1, and
mi > 0 for 1 ≤ i ≤ r − 1. Then |Inv(Zn)| = 2r+ξ(n).



Proof. Lemma 2 can be applied to each p
mj

j , with 1 ≤ j ≤ r. We can
then use Theorem 122 in the book of Hardy and Wright [7] to conclude
that the total number of solutions equals the product of the numbers of
solutions to the separate equations for p

mj

j for 1 ≤ j ≤ r.
If p1 6= 2 then every prime number gives two solutions yielding a total

of 2r solutions, and indeed in this case ξ(n) = 0. If p1 = 2 then we have
three possibilities: m1 = 1 and hence p1 yields only one solution and
hence we have a total of 2r−1 solutions. The other two cases, m1 = 2 and
m1 > 2, follow similarly, because now ξ(n) = ξ(pm1

1 ). ut

Note that the involutions can be found by solving two sets of equations
using the Chinese Remainder Theorem, see [7].

4 Involutions of group products

In the previous section it turned out that finding involutions of cyclic
groups is rather easy. In this section it is shown that computing the
involutions of a direct product of two groups involves taking the cartesian
product of the sets of involutions of both groups.

We remind, see, e.g., Rotman [8], that the inner and outer direct
products of groups coincide up to isomorphism, i.e., for a group Γ , if
Γ1 and Γ2 are two of its normal subgroups such that Γ = Γ1Γ2 and
Γ1 ∩ Γ2 = {1Γ }, then Γ ∼= Γ1 × Γ2. If Γ = Γ1Γ2 is a direct product, then
a1a2 = a2a1 for all a1 ∈ Γ1 and a2 ∈ Γ2, and, moreover, each element
a ∈ Γ has a unique representation as a product a = a1a2, where ai ∈ Γi.

Let Γ = Γ1Γ2 be a direct product, and let α : Γ → Γ be any function.
We define the projections α(i) : Γ → Γi for i = 1, 2 by: for each a ∈ Γ
let α(a) = α(1)(a)α(2)(a), where α(1)(a) ∈ Γ1 and α(2)(a) ∈ Γ2. By the
uniqueness property of direct products, these functions are well defined.
We also write

δ[i] : Γi → Γi

for the restriction of δ(i) onto the subgroup Γi for i = 1, 2.
The following example shows that an involution of a direct product

cannot necessarily be obtained by projections of its components.

Example 3.
Let Γ = Γ1×Γ1 for a group Γ1, and let δ be the reversed inversion on Γ ,
that is,

δ(a1, a2) = (a−1
2 , a−1

1 )



for all a1, a2 ∈ Γ1. Then δ is an involution of Γ . Indeed, it is clear that
δ2 = ι, and, moreover, for all ai, bi ∈ Γ1,

δ(a1, a2) · δ(b1, b2) = (a−1
2 , a−1

1 )(b−1
2 , b−1

1 ) = (a−1
2 b−1

2 , a−1
1 b−1

1 )
= ((b2a2)−1, (b1a1)−1) = δ(b1a1, b2a2)
= δ((b1, b2) · (a1, a2)).

However, δ is not of the form δ = (δ1, δ2) for any functions (let alone
involutions) δ1 and δ2 of Γ1, if Γ1 is nontrivial.

However, we do have

Theorem 3.
Let Γ = Γ1Γ2 be a direct product.

i. If δi ∈ Inv(Γi) for i = 1, 2, then the function δ : Γ → Γ defined by

δ(a) = δ1(a1)δ2(a2) for a = a1a2 with ai ∈ Γi

is an involution of Γ .
ii. If δ ∈ Inv(Γ ), then there are normal subgroups ∆1 and ∆2 of Γ such

that Γ = ∆1∆2 is a direct product with |∆1| = |Γ1|, |∆2| = |Γ2| for
which δ[i] : ∆i → ∆i is an involution of ∆i for i = 1, 2.

Proof. In order to prove (i), let δi be involutions as stated. Let a = a1a2

and b = b1b2 for a1, b1 ∈ Γ1 and a2, b2 ∈ Γ2. Now, for the function δ as
defined in the claim,

δ(ab) = δ(a1a2b1b2)) = δ(a1b1a2b2) = δ1(a1b1)δ2(a2b2)
= δ1(b1)δ1(a1)δ2(b2)δ2(a2) = δ1(b1)δ2(b2)δ1(a1)δ2(a2)
= δ(b1b2)δ(a1a2) = δ(b)δ(a)

and thus δ is an anti-automorphism of Γ . Further, the condition δ2(a) = a
is easily checked.

For (ii) suppose first that δ ∈ Inv(Γ ), and define

∆1 = {δ(a) | a ∈ Γ1} and ∆2 = {δ(b) | b ∈ Γ2} .

Clearly, a ∈ ∆1 (resp. in ∆2) if and only if δ(a) ∈ Γ1 (resp. δ(a) ∈ Γ2).
Since an involution is a bijection, we have immediately that |∆i| = |Γi|
for i = 1, 2.

We show then that ∆1 and ∆2 are normal subgroups of Γ . Indeed, let
y = aua−1 for some a ∈ Γ and u ∈ ∆1. Now, δ(y) = δ(a)−1δ(u)δ(a) ∈ Γ1,



since δ(u) ∈ Γ1 and Γ1 is a normal subgroup of Γ . This shows that ∆1 is
normal in Γ . The case for ∆2 is symmetric.

Next we observe that ∆1 ∩ ∆2 = {1Γ } is the trivial subgroup of Γ .
Furthermore, if a ∈ Γ , then a = a2a1 for some ai ∈ Γi, because Γ = Γ2Γ1.
Therefore, δ(a) = δ(a1)δ(a2), where δ(a1) ∈ ∆1 and δ(a2) ∈ ∆2. Since
each element b ∈ Γ is an image b = δ(a), we have shown that Γ = ∆1∆2

is a direct product of Γ .
It is clear that δ[i] is an involution of ∆i for both i = 1 and i = 2. ut

In particular, if Γ is an abelian group, then it is a direct product
(sum) of cyclic groups, and thus Theorem 4 states that the involutions
of an abelian group can be obtained from the cyclic groups Zpk that are
its direct components. However, counting the number of involutions of
Γ is not reduced in this way to the number of involutions of its direct
components, because part (ii) of Theorem 4 uses ‘swappings’ of subgroups.

Example 4.
Let Γ = Z2 ⊕Z2. The groups Γ and Z2 have only the identity function ι
as their involution (equal to the group inversion), but in the case of the
former, it is not the only one. Indeed, the following swapping function δ
is an involution of Γ :

δ((a, b)) = (b, a) for a, b ∈ {0, 1} .

5 The set ∆2(Γ, δ)

In [4] the following set of decomposable values arose (called the skewed
squares in [5]): for a group Γ and its inversion δ, let

∆2(Γ, δ) = {a ∈ Γ | a = bδ(b) for some b ∈ Γ}.

In this section we investigate this set in more detail.
First, in the following proof, we have a connection of the above set

with decompositions of abelian p-groups.

Theorem 4.
Let Γ be a finite abelian group of odd order, and let δ ∈ Inv(Γ ). Then Γ
is isomorphic to the direct sum Fix(δ)× Inx(δ).

Proof. It is well known that in each abelian group of odd order every
element a ∈ Γ has a unique “square root” x in Γ , i.e., x2 = a, when
adopting the multiplicative notation; see Rotman [9, Page 81]. Now, for



each a ∈ Γ , a = xy holds for some x ∈ Fix(δ) and y ∈ Inx(δ) if and only if
a−1x = y−1 = δ(y) = δ(a)δ(x−1) = δ(a)x−1 if and only if x2 = aδ(a) and
y2 = (aδ(a))−1. This proves the claim since Fix(δ) ∩ Inx(δ) = {1Γ }. ut

Example 5.
If δ is the group inversion, then clearly ∆2(Γ, δ) = {1Γ }. Also, it is easy
to determine that ∆2(Z, ι) is the set of even numbers, ∆2(R, ι) = R for
the additive group of reals, and ∆2(R+, ι) = R+ for the multiplicative
group of positive real numbers.

Given a fixed group Γ with an involution δ, we define the function
sΓ,δ by

sΓ,δ(a) = aδ(a) for a ∈ Γ

so that we have Im(sΓ,δ) = ∆2(Γ, δ). When Γ and δ are obvious from the
context we write s instead of sΓ,δ.

Lemma 3. For any group Γ , ∆2(Γ, δ) is closed under the group inver-
sion, and ∆2(Γ, δ) ⊆ Fix(δ).

Proof. Let s(a) ∈ ∆2(Γ, δ). Then s(a)−1 = δ(a)−1a−1 = s(δ(a)−1) ∈
∆2(Γ, δ). For the second part, δ(s(a)) = δ(aδ(a)) = aδ(a) = s(a). ut

Because involutions of a direct product do not always project onto
the factors it is unlikely that we can determine the skewed squares of
a group Γ with involution δ from the skewed squares of the groups in a
decomposition of Γ , see Example 3. However, we do have that involutions
δ1 and δ2 of groups Γ1 and Γ2, respectively, can be used to construct
an involution (δ1, δ2) for Γ1 × Γ2 by applying them componentwise. For
involutions thus constructed the set of skewed squares can be constructed
from the sets of skewed squares of the factors as proved by the following
result.

Theorem 5. Let Γ = Γ1 × Γ2 be a direct product of groups and let δi ∈
Inv(Γi) for i = 1, 2. Then ∆2(Γ, (δ1, δ2)) = ∆2(Γ1, δ1)×∆2(Γ2, δ2).

Proof. It holds that

(a, b)(δ1, δ2)(a, b) = (a, b)(δ1(a), δ2(b)) = (aδ1(a), bδ2(b)),

where aδ1(a) ∈ ∆2(Γ1, δ1) and bδ2(b) ∈ ∆2(Γ2, δ2). ut



6 Example: The case of the identity involution

In the rest of the article we assume that δ is the identity function, ι. Note
that ι is an involution of every abelian group and no other, so Γ must be
abelian. Written additively, the definition of ∆2 reduces to

{a ∈ Γ | a = 2b for some b ∈ Γ}.

So in a sense ∆2 contains the “even elements” of the group Γ .

Example 6.
We can easily verify that ∆2(Z2, ι) = {0}, ∆2(Z3, ι) = {0, 1, 2}, ∆2(Z4, ι) =
{0, 2}, and ∆2(Z6, ι) = {0, 2, 4}.

From this example it emerges that for even n, ∆2(Zn, ι) contains ex-
actly the even numbers and for odd n, it equals the entire Γ . The latter
is not surprising since if x ∈ Γ has order n and (m,n) = 1 then x is
divisible by m.

It is plain that ∆2(Z2k , ι) = {0, 2, 4, 6, . . . , 2k−1}, for k ≥ 1, and
∆2(Zpk , ι) = Zpk where p > 2 is prime and k ≥ 1, and ∆2(Z, ι) contains
the even numbers and so by Theorem 5 and the fundamental theorem of
finitely generated abelian groups we get the following result.

Theorem 6.
Let Γ be a finitely generated abelian group with a decomposition Γ1⊕ . . .⊕
Γn (unique up to the order of the summands) into infinite cyclic groups
and cyclic p-groups. Then ∆2(Γ, ι) = ∆2(Γ1, ι)⊕ . . .⊕∆2(Γ`, ι).

The previous theorem says nothing about abelian groups that are not
finitely generated such as R+ under multiplication. To deal with R+, we
recall the notion of divisibility: a group is divisible if for every element
a and n > 0, we have a = bn for some b. Note that the set ∆2 is only
concerned with divisibility by two. Therefore, the following result is easy.

Theorem 7.
If Γ is divisible then ∆2(Γ, ι) = Γ .

A result such as this suggests that it may be worthwhile to investigate
other decompositions of groups, into divisible and reduced components,
or into torsion and torsion free components.
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