
Matched Drawings of Planar Graphs

Emilio Di Giacomo Walter Didimo

Marc van Kreveld Giuseppe Liotta

Bettina Speckmann

Department of Information and Computing Sciences, Utrecht University

Technical Report UU-CS-2007-054

www.cs.uu.nl

ISSN: 0924-3275



Matched Drawings of Planar Graphs∗

Emilio Di Giacomo1 Walter Didimo1 Marc van Kreveld2 Giuseppe Liotta1

Bettina Speckmann3

1 Dip. di Ingegneria Elettronica e dell’Informazione, Università degli Studi di Perugia
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Abstract

A natural way to draw two planar graphs whose vertex sets are matched is to assign each matched
pair a unique y-coordinate. In this paper we introduce the concept of such matched drawings, which
are a relaxation of simultaneous geometric embeddings with mapping. We study which classes of
graphs allow matched drawings and show that (i) two 3-connected planar graphs or a 3-connected
planar graph and a tree may not be matched drawable, while (ii) two trees or a planar graph and
a sufficiently restricted planar graph—such as an unlabeled level planar (ULP) graph or a graph of
the family of “carousel graphs”—are always matched drawable.

1 Introduction

The visual comparison of two graphs whose vertex sets are associated in some way requires drawings
of these graphs that highlight their association in a clear manner. Drawings of this type are of use for
various areas of computer science, including bio-informatics, web data mining, network analysis, and
software engineering. Of course each drawing individually should be as clear as possible, using, for
example, few bends and crossings. But, most importantly, the positions of associated vertices in the two
drawings should be “close”. This makes it possible for the user to easily identify structurally identical
and structurally different portions of the two graphs, or to maintain her “mental map” [17]. Structural
changes between two graphs and their visualizations arise, for example, when collapsing or expanding
clusters in clustered drawings, during the navigation of very large graphs with a topological window, in
the analysis of the evolving relationships among the actors of a social network, and in the comparison of
multiple gene trees (see, for example, [1, 6, 7, 11, 14, 16, 18]).

Two positions are definitely “close” if they are identical. Hence a substantial research effort has
recently been devoted to the problem of computing straight-line drawings of two graphs on the same set
of points. More specifically, assume we are given two planar graphs G1 = (V1, E1) and G2 = (V2, E2)
with |V1| = |V2|, together with a one-to-one mapping between their vertices. A simultaneous geometric

embedding with mapping (introduced by Brass et al. in [3]) of G1 and G2 is a pair of straight-line planar
drawings Γ1 and Γ2 of G1 and G2, respectively, such that for any pair of matched vertices u ∈ V1 and
v ∈ V2 the position of u in Γ1 is the same as the position of v in Γ2. Unfortunately, only pairs of
graphs belonging to restricted subclasses of planar graphs admit a simultaneous geometric embedding
with mapping. Brass et al. [3] showed how to simultaneously embed pairs of paths, pairs of cycles, and
pairs of caterpillars, but they also proved that a path and a graph or two outerplanar graphs may not
admit this type of drawing. Geyer, Kaufmann, and Vrt’o [15] recently proved that even a pair of trees
may not have a simultaneous geometric embedding with mapping. These negative results motivated the
study of relaxations of simultaneous geometric embeddings. One possibility is to introduce bends along
the edges [4, 8, 9, 13], another, to allow that the same vertex occupies different locations in the two
drawings [2, 3], introducing ambiguity in the mapping.

In this paper we consider a different interpretation of two positions being “close”. Instead of requiring
that matched vertices occupy the same location, we assign each matched pair a unique y-coordinate.
This enables the user to unambiguously identify pairs of matched vertices but, at the same time, leaves
us more freedom to draw both graphs clearly. Specifically, let again G1 = (V1, E1) and G2 = (V2, E2) be
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two planar graphs with |V1| = |V2|. G1 and G2 are matched if there is a one-to-one mapping between V1

and V2. If a vertex u ∈ V1 is matched with a vertex v ∈ V2 then we say that u is the partner of v and
that v is the partner of u. A matched drawing of G1 and G2 is a pair of straight-line planar drawings
Γ1 and Γ2 of G1 and G2, respectively, such that for any pair of matched vertices u ∈ V1 and v ∈ V2

the y-coordinate of u in Γ1 is the same as the y-coordinate of v in Γ2, and this y-coordinate is unique.
If two matched graphs have a matched drawing, then we say that they are matched drawable. Matched
drawings can be viewed as a relaxation of simultaneous geometric embedding with mapping. An example
of a matched drawing of two trees is shown in Figure 1.
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Figure 1: A matched drawing of two trees.

Results and Organization. We start by presenting pairs of graphs that are not matched drawable.
In particular, in Section 2.1 we describe two isomorphic 3-connected planar graphs that both have 12
vertices and that are not matched drawable. We also present a 3-connected planar graph and a tree that
both have 620 vertices and that are not matched drawable. This construction can be found in Section 2.2.

We continue by describing drawing algorithms for classes of graphs that are always matched drawable.
In particular, in Section 3.1 we show that a planar graph and an unlabeled level planar (ULP) graph
that are matched are always matched drawable. In Section 3.2 we extend these results to a planar graph
and a graph of the family of “carousel graphs”. Finally, in Section 3.3 we prove that two matched trees
are always matched drawable.

2 Graphs that are not Matched Drawable

2.1 Two 3-connected Graphs

We start by stating a simple property of planar straight-line drawings.

Property 1 Let G be an embedded planar graph and let Γ be a straight-line planar drawing of G. Let
u be the vertex of G with the highest y-coordinate in Γ and let v be the vertex of G with the lowest
y-coordinate in Γ. Vertices u and v belong to the external face of G.

Now assume that G1 and G2 are two matched graphs with the following properties: (i) G1 contains
two vertex-disjoint simple cycles C1 = {u1, . . . , un} and C′

1 = {u′
1, . . . , u

′
m}, (ii) G2 contains two vertex-

disjoint simple cycles C2 = {v1, . . . , vn} and C′
2 = {v′1, . . . , v

′
m}, and (iii) ui is the partner of vi (1 ≤ i ≤ n)

and u′
j is the partner of v′j (1 ≤ j ≤ m). If Ψ1 is a planar embedding of G1 such that C′

1 is inside C1

and if Ψ2 is a planar embedding of G2 such that C2 is inside C′
2, then we call Ψ1 and Ψ2 interlaced

embeddings and C1, C
′
1, C2, and C′

2 interlaced cycles.

Lemma 1 Let G1 and G2 be two matched graphs with interlaced embeddings Ψ1 and Ψ2. There is no
matched drawing Γ1 and Γ2 of G1 and G2 such that Γ1 preserves Ψ1 and Γ2 preserves Ψ2.

Proof. Denote by C1, C
′
1, C2, and C′

2 the interlaced cycles of Ψ1 and Ψ2. Suppose by contradiction that
Γ1 and Γ2 exist. Denote by Γ1 the subdrawing of Γ1 restricted to the subgraph C1 ∪ C′

1 and by Γ2 the
subdrawing of Γ2 restricted to the subgraph C2 ∪ C′

2.
Since in Ψ1 cycle C′

1 is inside cycle C1, by Property 1 the top-most and the bottom-most vertices of
Γ1 belong to C1; denote these two vertices by ut and ub. Since Γ1 is planar and since the drawing of
C′

1 is completely inside the drawing of C1, every vertex u′
j of C′

1 has a y-coordinate that is greater than
the y-coordinate of ub and smaller than the y-coordinate of ut. Since Γ1 and Γ2 are matched drawings,
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every vertex v′j of C′
2 in Γ2 has a y-coordinate that is greater than the y-coordinate of vb (i.e., the

partner of ub) and smaller than the y-coordinate of vt (i.e., the partner of ut). However, since in Ψ2

cycle C2 is inside cycle C′
2, by Property 1 the top-most and the bottom-most vertices of Γ2 belong to

C′
2, a contradiction. �
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Figure 2: Two 3-connected planar graphs that are not matched drawable. The partner of a vertex of G1

is any vertex in G2 that has the same label.

Labels of the external face Incl. of cycles

{a} a ≻ b ≻ c ≻ d

{a, b} b ≻ c ≻ d

{b, c} b ≻ a; c ≻ d

{c, d} c ≻ b ≻ a

{d} d ≻ c ≻ b ≻ a

Labels of the external face Incl. of cycles

{c} c ≻ d ≻ a ≻ b

{c, d} d ≻ a ≻ b

{d, a} d ≻ c; a ≻ b

{a, b} a ≻ d ≻ c

{b} b ≻ a ≻ d ≻ c

(a) (b)

Table 1: Inclusions between the three-cycles of G1 (table (a)) and of G2 (table (b)).

{c} {c, d} {d, a} {a, b} {b}

{a} a, c a, c c, d c, d c, d
{a, b} b, d b, d c, d c, d c, d
{b, c} b, a b, a b, a c, d c, d
{c, d} b, a b, a b, a c, a c, a
{d} b, a b, a b, a d, a d, a

Table 2: Interlaced cycles for each pair of external faces. The rows are the labels in the external face
of G1; the columns are the labels in the external face of G2. In each cell two labels ℓ, ℓ′ are shown such
that ℓ ≻ ℓ′ in G1 and ℓ′ ≻ ℓ in G2.

Theorem 2 There exist two 3-connected planar graphs that are not matched drawable.

Proof. Consider the two 3-connected planar graphs G1 and G2 in Figure 2. The partner of a vertex of
G1 is any vertex in G2 that has the same label. To prove that G1 and G2 are not matched drawable, we
show that all planar embeddings of G1 and G2 are interlaced embeddings.

Since G1 and G2 are 3-connected graphs, all their planar embeddings differ only in the choice of the
external face. In G1 and G2 we can have five possible types of external face, depending on the labels of
the vertices of such a face. Namely, an external face of G1 can have vertices with labels in one of these
sets: {a}, {a, b}, {b, c}, {c, d}, {d}, while an external face of G2 can have vertices with labels in one
of these sets: {c}, {c, d}, {d, a}, {a, b}, {b}. For any label ℓ ∈ {a, b, c, d}, let C1,ℓ and C2,ℓ denote the
three-cycles formed by the vertices with label ℓ in G1 and in G2, respectively. For any pair of external
faces in G1 and G2 there are two distinct labels ℓ, ℓ′ ∈ {a, b, c, d} such that C1,ℓ′ is inside C1,ℓ in G1

and C2,ℓ is inside C2,ℓ′ in G2. Table 1(a) shows the inclusion relations between the three-cycles of G1

for each type of external face, where we use the notation ℓ ≻ ℓ′ to denote that cycle C1,ℓ′ is inside C1,ℓ.
Table 1(b) shows the inclusions between the three-cycles of G2.
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For each pair of external faces of G1 and G2, Table 2 shows two labels ℓ, ℓ′ such that C1,ℓ, C1,ℓ′ , C2,ℓ, C2,ℓ′

are interlaced cycles. More precisely, in Table 2 the rows are the labels of the external face of G1, the
columns are the labels of the external face of G2, and in each cell two labels ℓ, ℓ′ are shown such that
ℓ ≻ ℓ′ in G1 and ℓ′ ≻ ℓ in G2. For example, if the external face of G1 is the three-cycle C1,a and if
the external face of G2 is the three-cycle C2,b, we have that in G1 cycle C1,d is inside C1,c, while in
G2 cycle C2,c is inside C2,d. Hence, any pair of planar embeddings of G1 and G2 is a pair of interlaced
embeddings. �

2.2 A 3-connected Graph and a Tree

The two graphs described in Theorem 2 are both 3-connected. Hence the question arises if two planar
graphs, at least one of which is not 3-connected, are always matched drawable. This is unfortunately
not the case: in the following we present a planar graph and a tree that are not matched drawable.

Given a vertex v of a graph G and a drawing Γ of G, we denote by x(v) and y(v) the x- and y-
coordinate of v in Γ. Let T ∗ = (V ∗, E∗) be the tree depicted in Figure 3. Estrella-Balderrama et al. [10]
proved the following lemma:

Lemma 3 (Estrella-Balderrama et al. [10]) Let T ∗ be the tree depicted in Figure 3. A straight-line
planar drawing Γ of T ∗ such that y(v0) < y(v7) < y(v3) < y(v2) < y(v4) < y(v1) < y(v5) < y(v6) in Γ
does not exist.

Let T ∗ be rooted at vertex v0, and for each vertex vi, denote by d(vi) the graph-theoretic distance of
vi from the root (i = 0, 1, . . . , 7). We construct a tree T by using T ∗ as a model. T has 3d(vi) copies
of each vertex vi (i = 0, 1, . . . , 7). The 3d(vi) copies of vi are denoted as vi,0, vi,1, . . . , vi,3d(vi)−1. Vertex
vh,k is a child of vertex vi,j in T if and only if vh is a child of vi in T ∗ and j = ⌊k/3⌋ (0 ≤ i, h ≤ 7),
(0 ≤ j ≤ 3d(vi) − 1), (0 ≤ k ≤ 3d(vh) − 1). So T has one copy of v0 whose children are the three copies
v1,0, v1,1, and v1,2 of v1. The children of each copy of v1 are three of the nine copies of v2, and so on.
Three vertices of T with the same parent are called a triplet of T . The total number of vertices of T is
310.

The tree T is matched with a nested-triangles graph, which is defined as follows. A single vertex v
is a nested-triangles graph denoted by G0. A triangulated planar embedded graph Gk (k > 0) is a
nested-triangles graph if the external face of Gk has exactly three vertices and the graph Gk−1, obtained
by removing the vertices on the external face, is still a nested-triangles graph. A levelling of the vertices
is naturally defined for the vertices of Gk: level i of Gk contains the vertices that are on the external face
of Gi (i = 0, 1, . . . , k). Note that Gk has 3k + 1 vertices and k + 1 levels. Thus, G103 has 310 vertices
and 104 levels.

T and G103 are matched in the following way. Vertex v0 is mapped to the (only) vertex of level 0.
Each triplet of T is mapped to three vertices of G103 such that the level of these three vertices is the
same in G103. Also, all triplets formed by vertices that are copies of the same vertex of T ∗ are mapped
to consecutive levels of G103. The exact mapping is described in Table 3. Each row of the table refers
to a different vertex of T ∗ and shows the number of copies of that vertex in T , the number of triplets in
T , and the levels of G103 to which these triplets are mapped (a triplet for each level).

v0

v1

v2

v3 v4

v5 v6 v7

Figure 3: A tree that does not have a straight-line planar
drawing with y(v0) < y(v7) < y(v3) < y(v2) < y(v4) <
y(v1) < y(v5) < y(v6) [10].

vertex copies triplets levels

v0 1 0 0
v7 81 27 1 . . . 27
v3 27 9 28 . . . 36
v2 9 3 37 . . . 39
v4 27 9 40 . . . 48
v1 3 1 49
v5 81 27 50 . . . 76
v6 81 27 77 . . .103

Table 3: Matching between the vertices of
T and the vertices of G103.
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We now prove that, with the mapping described by Table 3, T and G103 are not matched drawable if
we insist that the drawing of G103 preserves the embedding of G103. We start with a useful property.

Property 2 Let ΓG103 be any planar straight-line drawing of G103 that preserves the embedding of
G103. For each level i (0 ≤ i ≤ 103) there exists a vertex of level i that has y-coordinate greater than
the y-coordinates of all the vertices having level less than i.

Lemma 4 A matched drawing ΓT and ΓG103 of the tree T and the graph G103 such that ΓG103 preserves
the embedding of G103 does not exist.

Proof. Let ΓG103 be any planar straight-line drawing of G103 that preserves the embedding of G103.
By exploiting Property 2, we can show that ΓG103 induces an ordering λ of the vertices of T along the
y-direction such that there exists a subtree T ′ of T isomorphic to T ∗ for which the ordering λ restricted
to the vertices of T ′ is the ordering given in Lemma 3. This implies that T ′ (and hence T ) does not have
a planar straight-line drawing that respects the ordering induced by ΓG103 .

Denote by Vi the set of vertices of T that are copies of a vertex vi ∈ T ∗ (i = 0, 1, . . . , 7). We define
subtree T ′ as follows. T ′ consists of eight vertices v0, v1, . . . , v8, where vi ∈ Vi. Of course, v0 = v0.
Vertex vi is a vertex vi,j of Vi such that: (i) the parent of vi,j is in T ′, in particular, it is v⌊j/3⌋; and (ii)
vi,j is the vertex of its level for which Property 2 holds. Notice that the isomorphism between T ′ and
T ∗ is guaranteed by the fact that there is one vertex for each set Vi and that a vertex is selected only if
its parent is also selected.

We write Vi < Vj if all levels containing vertices of Vi are inside levels containing vertices of Vj in the
embedding of G103. Based on the mapping given in Table 3 we have that V0 < V7 < V3 < V2 < V4 <
V1 < V5 < V6. This along with the fact that for each selected vertex Property 2 holds, implies that
y(v0) < y(v7) < y(v3) < y(v2) < y(v4) < y(v1) < y(v5) < y(v6). But by Lemma 3, T ′ does not admit a
planar straight-line drawing such that the ordering of the vertices along the y-direction is the one given
above. �

According to Lemma 4, T and G103 are not matched drawable in the case that one wants a drawing of
G103 that preserves the embedding of G103. In the following theorem we show that T and G103 can be
used to construct a new tree and a new 3-connected planar graph that are not matched drawable even
if we allow the embedding to be changed.

Theorem 5 There exist a tree and a 3-connected planar graph that are not matched drawable.

Proof. Let T be a tree that consists of two copies of T whose roots are adjacent. Let G be a graph
obtained by taking two distinct copies of G103 and connecting the vertices of their external faces in such
a way that the obtained graph is a triangulated planar graph. Denote as T ′ and T ′′ the two copies of T
that form T and as G′

103 and G′′
103 the two copies of G103 that form G. Also, define a mapping between

T and G such that the vertices of T ′ are mapped to the vertices of G′
103 according to the mapping

defined by Table 3, and the vertices of T ′′ are mapped to the vertices of G′′
103 according to the mapping

defined by Table 3. Since G is triangulated, it has a unique planar embedding except for the choice of
the external face. Whatever face of G is chosen as the external one, the resulting embedding of G is such
that either the embedding of G′

103 or the embedding of G′′
103 is preserved. Thus either T ′ and G′

103, or
T ′′ and G′′

103 are in the condition of Lemma 4 and therefore are not matched drawable. �

3 Matched Drawable Graphs

In this section we describe drawing algorithms for classes of graphs that are always matched drawable.
In particular, in Section 3.1 we show that a planar graph and an unlabeled level planar (ULP) graph
that are matched are always matched drawable. In Section 3.2 we extend these results to a planar graph
and a graph of the family of “carousel graphs”. Finally, in Section 3.3 we prove that two matched trees
are always matched drawable.

These results show that matched drawings do indeed allow larger classes of graphs to be drawn than
simultaneous geometric embeddings with mapping (a path and a planar graph may not admit a simul-
taneous geometric embedding with mapping [3] and the same negative result also holds for pairs of
trees [15]).
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3.1 Planar Graphs and ULP Graphs

ULP graphs were defined by Estrella-Balderrama, Fowler, and Kobourov [10]. Let G be a planar graph
with n vertices. A y-assignment of the vertices of G is a one-to-one mapping λ : V → N. A drawing of G
compatible with λ is a planar straight-line drawing of G such that y(v) = λ(v) for each vertex v ∈ V . A
planar graph G is unlabeled level planar (ULP) if for any given y-assignment λ of its vertices, G admits
a drawing compatible with λ.

Theorem 6 A planar graph and an ULP graph are always matched drawable.

Proof. Let G1 be a planar graph and let G2 be an ULP graph. Compute a planar straight-line drawing
of G1 such that each vertex has a different y-coordinate, for example with a slight variant of the algorithm
of de Fraysseix, Pach, and Pollack [5]. The drawing of G1 together with the mapping between G1 and
G2 defines a y-assignment λ for G2. Since G2 is ULP it admits a drawing compatible with λ. It follows
that G1 and G2 are matched drawable. �

ULP trees are characterized in [10]. A complete characterization of ULP graphs is given in [12]. A planar
graph is ULP if and only if it is either a generalized caterpillar, or a radius-2 star, or a generalized degree-3

spider. These graphs are defined as follows (see also [12]). A graph is a caterpillar if deleting all vertices
of degree one produces a path, which is called the spine of the caterpillar. A generalized caterpillar is a
graph that contains cycles of length at most 4 in which every spanning tree is a caterpillar such that no
three cut vertices are pairwise adjacent and no pair of adjacent cut vertices belong to the same 4-cycle. A
radius-2 star is a K1,k, k > 2, in which every edge is subdivided at most once. The only vertex of degree
k is called the center of the star. A degree-3 spider is an arbitrary subdivision of K1,3. A generalized

degree-3 spider is a graph with maximum degree 3 in which every spanning tree is either a path or a
degree-3 spider.

Corollary 7 Let G1 and G2 be two matched graphs such that G1 is a planar graph and G2 is either a
generalized caterpillar, or a radius-2 star, or a generalized degree-3 spider. Then G1 and G2 are matched
drawable.

3.2 Planar Graphs and Carousel Graphs

In this section we extend the result of Theorem 6 by describing a family of graphs that also includes
non-ULP graphs and whose members have a matched drawing with any planar graph. Let G be a planar
graph, let v be a vertex of G, and let Γ be a planar straight-line drawing of G. Γ is v-stretchable if: (i)
there is a vertical ray from v going to +∞ that does not intersect any edge of Γ, and (ii) for any given
∆ > 0, there exists a value ∆′ ≥ ∆ such that the drawing obtained by translating each vertex u with
x(u) ≥ x(v) to point (x(u) + ∆′, y(u)) is still planar. Graph G is ULP v-stretchable if for every given
y-assignment λ of its vertices, G admits a v-stretchable drawing compatible with λ.

A carousel graph is a connected planar graph G consisting of a vertex v0, called the pivot of G, and
of a set of disjoint subgraphs S1, . . . , Sk (k > 1) such that each Si has a single vertex vi adjacent to v0

(i = 1, . . . , k) and Si is ULP vi-stretchable. Each subgraph Si is called a seat of G. Vertex vi is called
the hook of Si.

Theorem 8 Any planar graph and any carousel graph that are matched are matched drawable.

Proof. Let G1 be a planar graph and let G2 by a carousel graph. Let v0 be the pivot of G2 and let
u be the partner of v0 in G1. Compute a planar straight-line drawing of G1 such that all vertices have
different y-coordinates and u has the largest y-coordinate. The drawing of G1 together with the mapping
between G1 and G2 defines a y-assignment λ for G2. Clearly λ(w) < λ(v0) = yM for all vertices w 6= v0

of G2.
In the following we describe an incremental method to compute a drawing of G2 compatible with λ.

Let S1, . . . , Sk (k > 1) be the seats of G2 and let vi be the hook of Si (1 ≤ i ≤ k). Let λi be the
y-assignment of the vertices of Si induced by λ. As a preliminary step we compute a drawing Γi for
each Si that is compatible with λi and that is vi-stretchable. Such a drawing exists because Si is ULP
vi-stretchable. We further assume that the distance between any two different x-coordinates is at least
1 unit.
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Figure 4: Adding Γi to Γi−1
2 .

We initialize the drawing by placing v0 at position (0, yM ), which results in drawing Γ0
2. Drawing Γi

2

is constructed from drawing Γi−1
2 by adding drawing Γi at a suitable x-location and possibly translating

some of its vertices further in x-direction (see Figure 4). Hence the resulting drawing Γi
2 respects λ.

After k of these incremental steps we obtain a planar drawing Γk
2 of G2. The remainder of the proof

focuses on the incremental step that adds Γi to Γi−1
2 .

Let Ri−1 be the bounding box of Γi−1
2 and let (xM , yM ) be the coordinates of its top-right corner.

Furthermore, let Ri be the bounding box of Γi. Place the drawing Γi such that the left side of Ri is
contained in the vertical line x = xM + 1. Let R′

i be the (possibly empty) sub-rectangle of Ri delimited
by the x-coordinates xM +1 and x′

M = x(vi)−1. Furthermore, let y′
M denote the maximum y-coordinate

of any vertex of Γi−1
2 or Γi different from v0 and let p = (x′

M + 1, y′
M ). The line ℓ through v0 and p

crosses neither Γi−1
2 nor the portion of Γi contained in R′

i (see Figure 4(a)). Let q denote the intersection
of ℓ with the horizontal line at y(vi) and let ∆ = x(q) − x(vi). Since Γi is vi-stretchable, there exists
a value ∆′ ≥ ∆ such that we can translate the portion of Γi contained in Ri \ R′

i to the right by ∆′

without creating any crossing (see Figure 4(b)). It can easily be verified that we can now connect vi to
v0 without creating any crossings. �

Lemma 9 Let G be a simple cycle and let v be any vertex of G. G is ULP v-stretchable.

Proof. Let λ be any y-assignment of the vertices of G and let u be the vertex of G that has the smallest
y-coordinate. Let u = v0, v1, . . . , vn−1 be the vertices of G in the order they are encountered when
walking clockwise along G. Place each vertex vi at point (i, λ(vi)). Clearly none of the edges (vi, vi+1)
(i = 0, 1, . . . , n − 2) cross each other. To avoid crossings between edge (v0, vn−1) and the other edges we
translate vn−1 to the right until the segment connecting v0 to vn−1 does not cross any other segment. It
is immediate to see that such a drawing is v-stretchable for every vertex v of G. �

Corollary 10 Let G1 and G2 be two matched graphs such that G1 is a planar graph and G2 is a cycle.
Then G1 and G2 are matched drawable.

The drawing techniques in [10] imply the following two lemmata.

Lemma 11 Let G be a caterpillar and let v be a vertex of its spine. G is ULP v-stretchable.

Lemma 12 Let G be a radius-2 star and let v be the center of G. G is ULP v-stretchable.
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Corollary 13 Let G1 and G2 be two matched graphs such that G1 is a planar graph and G2 is a
connected graph consisting of a vertex v0 and a set of disjoint subgraphs S1, S2, . . . Sk, each Si having a
single vertex vi connected to v0. If each Si is either a caterpillar with vi on its spine, or a radius-2 star
with vi as its center, or a cycle, then G1 and G2 are matched drawable.

The family of carousel graphs described by Corollary 13 contains graphs that are not ULP. For example,
the graph depicted in Figure 3 is a carousel graph with pivot v2, the three seats are caterpillars.

3.3 Two Trees

Let T1 and T2 be two matched trees with n vertices each. We describe an algorithm to compute a
matched drawing of T1 and T2 and prove its correctness. The algorithm has two phases. In the first
phase each vertex of a tree Tj (j = 1, 2) is assigned a distinct integer number from 1 to n, so that
two matched vertices receive the same number; we denote by ord(v) the number assigned to a vertex v.
Numbers are assigned to vertices in increasing order in n steps. In the second phase vertices are added
to the drawing according to the order defined by the numbers assigned in the first phase.

To describe the two phases we need some definitions. A chunk of rank i is any tree of the forest
obtained from T1 or T2 by removing all vertices v that are already processed and have ord(v) ≤ i. Notice
that in Phase 1, a chunk of rank i is a tree of vertices that have not yet received a number at the end of
Step i; in Phase 2, a chunk of rank i is a tree of vertices not yet drawn at the end of Step i. A chunk
C of rank i can be adjacent only to vertices v such that ord(v) is defined and ord(v) ≤ i; we call these
vertices the anchor vertices of C. At Step i (1 ≤ i ≤ n) the pertinent tree of Step i is T1 if i is odd and
T2 if i is even; the other tree is the non-pertinent tree of Step i.

3.3.1 Description of Phase 1

Phase 1 consists of n steps. Number i is assigned to a vertex v of the pertinent tree of Step i; the same
number is assigned to the partner of v. We maintain the following invariant throughout Phase 1:

Invariant 1 For each integer i ∈ [1, n]:

• In the pertinent tree of Step i, every chunk of rank i has at most two anchor vertices;

• In the non-pertinent tree of Step i, there is at most one chunk of rank i with three anchor vertices,
and every other chunk of rank i has at most two anchor vertices.

At Step 1 the algorithm arbitrarily selects a vertex v of T1 and sets ord(v) = 1. Assume now that
Invariant 1 holds and the end of Step i− 1 (i ≥ 2). Let Tj be the pertinent tree of Step i. Two cases are
possible:

Case 1: In Tj, every chunk of rank (i − 1) has at most two anchor vertices. Let C be an arbi-
trary chunk of rank (i− 1) in Tj. The algorithm selects any vertex v of C, for example one that is
adjacent to an anchor vertex of C, and sets ord(v) = i (see Figure 5).

(b)(a)

C

x

y

x

y

v

Figure 5: Illustration of Case 1: (a) Chunk C has two anchor vertices x and y. Vertex v is either of the
two white vertices. (b) Transformation of C after v is selected.

Case 2: In Tj, there exists a chunk C of rank (i − 1) with three anchor vertices. Let x, y, and
z be the anchor vertices of C, and let π1, π2, and π3 the three paths of Tj from x to y, from x to
z, and from y to z, respectively. The algorithm selects the unique vertex v shared by π1, π2, and
π3, and sets ord(v) = i (see Figure 6).
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(b)(a)

x
y

z

v

C

x
y

z

π1

π2 π3

Figure 6: Illustration of Case 2: (a) Chunk C has three anchor vertices x, y, and z. Vertex v is the
unique vertex shared by π1, π2, and π3. (b) Transformation of C after v is selected.

Lemma 14 Invariant 1 holds throughout Phase 1 of the algorithm.

Proof. We prove the lemma by induction. The Invariant holds at Step 1 because all chunks of rank 1 (of
both T1 and T2) are adjacent to the only vertex v with ord(v) = 1. Assume by induction that Invariant 1
holds for i − 1 (i ≥ 2). Let Tj be the pertinent tree of Step i and let T3−j be the non-pertinent tree of
Step i. Let v be the vertex of Tj selected at Step i.

Assume first that v was selected according to Case 1. Let C be the chunk of rank i − 1 that contains
v. In this case, since C is a tree and since it has at most two anchor vertices, C is split into at most
one chunk with two anchor vertices (one of which is v and the other one is an anchor vertex of C) and
a certain number of chunks with v as the only anchor vertex (see Figure 5). Assume now that v was
selected according to Case 2. Let C be the chunk of rank i − 1 that contains v. Since C is a tree and
since it has three anchor vertices, C is split into at most three chunks with two anchor vertices (one of
which is v and the other one is an anchor vertex of C) and a certain number of chunks with v as the
only anchor vertex (see Figure 6). Therefore Invariant 1 holds for Tj at Step i.

Let C′ be the chunk of rank i − 1 in T3−j that contains the partner v′ of v. By induction C′ has at
most two anchor vertices. Since C′ is a tree, it is split into at most one chunk with three anchor vertices
(one of which is v′ and the other two are the anchor vertices of C′) and a certain number of chunks with
v′ as the only anchor vertex (see Figure 7). Or, C′ is split into at most two chunks with two anchor
vertices and a certain number of chunks with v′ as the only anchor vertex. This implies that Invariant 1
also holds for T3−j at Step i. �

(b)(a)

C ′

v′

Figure 7: Creation of a chunk with three anchor vertices.

3.3.2 Description of Phase 2

Phase 2 also consists of n steps. At Step i the algorithm draws the two matched vertices numbered i
in Phase 1. The y-coordinates are assigned as follows. Let v and v′ be the two matched vertices with
ord(v) = ord(v′) = i; the algorithm sets y(v) = y(v′) = n − i−1

2 if i is odd, and y(v) = y(v′) = i
2 , if i is

even. In other words, vertices are assigned consecutively to y-coordinates n, 1, n− 1, 2, . . . . Thus, at the
end of Step i there is no vertex drawn yet in the plane strip between the horizontal lines y = n − i−1

2

and y = i−1
2 if i is odd, and between the horizontal lines y = n − i−2

2 and y = i
2 if i is even. This strip

is called the strip of rank i and it is assumed to be an open set (see Figure 8). The half-plane below
the strip of rank i is called the bottom side of the drawing, while the half-plane above the strip of rank
i is called the top side of the drawing. In order to assign the x-coordinates to the vertices, at Step i
each chunk C of rank i is associated with a convex polygon P ; C will be drawn inside P . We say that
a polygon P spans the strip of rank i if each horizontal line y = j with j ∈ N in the strip of rank i has
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y = n −

i−1

2

y = n −

i−1

2
+ 1

y =
i−1

2

y =
i−1

2
+ 1

Si−1 Si

Figure 8: Si−1 is the strip of rank i − 1 and Si is the strip of rank i when i is assumed to be odd. The
top side and bottom side of the drawing at Step i − 1 are the grey parts above and below the strip.

non-empty intersection with the interior of P . An edge is drawn when both of its end-vertices are drawn.
More precisely, let e = (u, v) be an edge and let ord(u) = j and ord(v) = i with j < i. When vertex v is
drawn at Step i, edge e is also drawn because u was drawn before, and we say that e is an edge drawn

at Step i. We maintain the following invariant throughout Phase 2:

Invariant 2 For each integer i ∈ [1, n] and for each chunk C of rank i in any of the two trees, there
exists a convex polygon P associated with C such that:

• The anchor vertices of C are corners of P ;

• P spans the strip of rank i;

• The intersection between P and any edge e drawn at some Step j with j ≤ i is either empty or it
consists of an end-vertex of e;

• The intersection between P and the polygon associated with any other chunk of rank i is either
empty or it consists of a common corner;

In what follows we describe how the algorithm assigns x-coordinates to the vertices of T1. The x-
coordinates of the vertices of T2 are assigned analogously. At Step 1 vertex v with ord(v) = 1 is given
an arbitrary x-coordinate. Assume now that Invariant 2 holds at the end of Step i − 1 (i ≥ 2). Let v be
the vertex with ord(v) = i, let C be the chunk of rank i − 1 that contains v, and let P be the polygon
associated with C. We analyze the cases when i is odd and the cases when i is even, and their subcases.

Case 1: i is odd. Recall that by Invariant 1, when i is odd C can have three anchor vertices. If C
has three anchor vertices, however, they cannot all be on the top side of the drawing. Namely,
according to Phase 1, when a chunk with three anchor vertices is created, the next vertex that
receives a number is chosen in such a way that the chunk has no longer three anchor vertices.
This implies that if a chunk of rank i − 1 has three anchor vertices, one of them is the vertex u
with ord(u) = i − 1. Since i − 1 is even, vertex u has been drawn at Step i − 1 in the bottom
side of the drawing. Therefore at least one anchor vertex is in the bottom side of the drawing.
Let C1, C2, . . . , Ck be the chunks of rank i obtained by splitting C. Recall that, by Invariant 1
these chunks have at most two anchor points. The position of v and the polygons P1, P2, . . . , Pk

associated with C1, C2, . . . , Ck are computed according to the cases below.

In Cases 1.1, 1.2, and 1.3, at most three chunks among C1, C2, . . . , Ck have two anchor vertices:
one of them is v and the other one is an anchor vertex of C. All the other chunks have v as their
only anchor vertex. In Case 1.4 there are at most two chunks among C1, C2, . . . , Ck with two
anchor vertices: one of them is v and the other one is an anchor vertex of C. All the other chunks
have v as their only anchor vertex.

Case 1.1: C has three anchor vertices in the bottom side of the drawing. In this case
vertex v is assigned an arbitrary x-coordinate such that the point representing v is in the
interior of P . The polygons P1, P2, . . . , Pk are computed as shown in Figure 9. More precisely,
denote as u1, u2, and u3 the anchor vertices of C. Let C1, C2, and C3 be the chunks having
two anchor vertices. Assume that the anchor vertices of Ci are v and ui (1 ≤ i ≤ 3). Since i
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y = n −

i−1

2

y = n −

i−1

2
+ 1

y =
i−1

2

y =
i−1

2
+ 1

P

v

u1

u2
u3

P1

P2 P3

P5

P4p0

p2
p1

p
+

1

p
−

1

q4

q5

p6

p5

p4p3

Figure 9: Illustration for Case 1.1.

is odd, the strip of rank i is defined by the two horizontal lines y = n− i−1
2 and y = i−1

2 . Let

ℓ be the horizontal line y = i−1
2 + 1, which is contained in the strip of rank i. Let si be the

segment connecting v to ui (1 ≤ i ≤ 3), and let pi be the intersection point between si and
ℓ. Let p0 and pk+1 be the intersection points between the border of P and the horizontal line
ℓ. Assume, without loss of generality, that p0, p1, p2, p3, and pk+1 appear in this left-to-right
order along ℓ. Let p4, p5, . . . , pk be k − 3 points on ℓ that fall, in this left-to-right order,
between p3 and pk+1. For each point pi (1 ≤ i ≤ k), choose two new points p−i and p+

i such
that the left-to-right order along ℓ is p0, p

−
1 , p1, p

+
1 , p−2 , p2, . . . , p

+
k−1, p

−
k , pk, p+

k , pk+1. Polygon

Pi associated with Ci (1 ≤ i ≤ 3) is the polygon whose corners are v, p−i , p+
i , and ui. Let

qi be the intersection point between the straight line through v and pi and the border of P
(4 ≤ i ≤ k). Polygon Pi associated with Ci (4 ≤ i ≤ k) is the polygon whose corners are v,
p−i , p+

i , and qi.

Case 1.2: C has three anchor vertices, and two of them are in the top side of the
drawing. Let ∆ be the triangle whose corners are the anchor vertices of C. Notice that ∆ is
contained in P and spans the strip of rank i.

Vertex v is assigned an arbitrary x-coordinate such that the point representing v is in the
interior of ∆. The polygons P1, P2, . . . , Pk are computed with an approach similar to that of
Case 1.1. We omit the details and refer to Figure 10(a).

Case 1.3: C has three anchor vertices, and two of them are in the bottom side of the
drawing.

The x-coordinate of v is computed as in Case 1.2. The polygons P1, P2, . . . , Pk are computed
as shown in Figure 10(b).

Case 1.4: C has less than three anchor vertices.

This case can be reduced to one of Cases 1.2, and 1.3 by selecting one or two corners of P
as dummy anchor vertices. See Figure 10(c) for an example with two anchor vertices.

Case 2: i is even. By Invariant 1, when i is even C cannot have three anchor vertices. However, it
may happen that at most one of the chunks of rank i obtained by splitting C has three anchor
vertices. Let C1, C2, . . . , Ck be the chunks of rank i obtained by splitting C. The position of v and
the polygons P1, P2, . . . , Pk associated with C1, C2, . . . , Ck are computed according to the following
cases:

Case 2.1: No chunk of rank i has three anchor vertices. This case can be handled sym-
metrically to Case 1.4.

Case 2.2: A chunk of rank i has three anchor vertices. In this case C necessarily has two
anchor vertices. Depending on the position of the two anchor vertices of C, we distinguish
between three different cases. In all cases we consider a triangle ∆ analogous to the one
described in Case 1.2, i.e. (i) ∆ is contained in P ; (ii) all anchor vertices of P are corners of
∆; (iii) ∆ spans the strip of rank i.

Case 2.2.1: The two anchor vertices of C are in the bottom side of the drawing.
Vertex v is assigned an arbitrary x-coordinate such that the point representing v is on
the border of ∆. The polygons P1, P2, . . . , Pk are computed as shown in Figure 10(d).
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Figure 10: (a) Case 1.2; (b) Case 1.3; (c) Case 1.4; (d) Case 2.2.1; (e) Case 2.2.2; (f) Case 2.2.3.

Case 2.2.2: The two anchor vertices of C are in the top side of the drawing. Vertex
v is assigned an arbitrary x-coordinate such that the point representing v is in the interior
of ∆. The polygons P1, P2, . . . , Pk are computed as shown in Figure 10(e).

Case 2.2.3: The two anchor vertices of C are in different sides of the drawing.
Vertex v is assigned an arbitrary x-coordinate such that the point representing v is in the
interior of ∆. The polygons P1, P2, . . . , Pk are computed as shown in Figure 10(f).

In all cases above, let u be an anchor vertex of C. If u and v are not adjacent, then there exists a
chunk Cj of rank i (0 ≤ j ≤ k), and Figures 9 and 10 show how to compute a polygon Pj associated
with it. If u and v are adjacent, then chunk Cj does not exist, polygon Pj is not defined and edge (u, v)
is drawn as a straight-line segment. It is immediate to see that the intersection between the segment
representing (u, v) and the polygons associated with the chunks of rank i (or edges connecting v to other
anchor vertices) consists of the single vertex v. Hence, Invariant 2 is maintained.

Theorem 15 Any two trees are matched drawable.
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Proof. Let T1 and T2 be two matched trees. We prove that the algorithm described above correctly
computes a matched drawing of T1 and T2. By Lemma 14, Phase 1 computes an order of the vertices
that satisfies Invariant 1. Phase 2 uses this order to draw the vertices.

First of all, notice that in each of the cases considered in the description of Phase 2, a point to represent
v exists. Namely, in all cases v has a y-coordinate that is assigned depending only on the value of i: it
is either y = n − i−1

2 , or y = i
2 . So in each case v must be drawn on a point of a horizontal line ℓ that

is either y = n − i−1
2 , or y = i

2 . In Case 1.1 the algorithm chooses a point of ℓ that is inside P . Since
P spans the strip of rank i, the intersection between the interior of P and ℓ is not empty. In all other
cases the algorithm chooses a point that is either in the interior of triangle ∆, or on its border. Since
the number of anchor points of C is at most three, and since if there are three anchor vertices then they
are on different sides (because otherwise we are in Case 1.1), a triangle ∆ exists with three corners a,
b, and c such that: (i) a, b, and c are corners of P ; (ii) all anchor vertices of C are in the set {a, b, c};
(iii) a, b, and c are not all on the same side of the drawing. By construction, ∆ is contained in P and
all anchor vertices of C are corners of ∆. Also, ∆ spans the strip of rank i because it has at least one
corner in the bottom side of the drawing and at least one corner in the top side of the drawing. Since ∆
spans the strip of rank i, at least one point of ℓ inside P exists that can be used to represent v.

Invariant 2 holds throughout Phase 2 by construction. It remains to prove that the drawings computed
by the algorithm form a matched drawing of T1 and T2. It is immediate to see that two matched vertices
have the same y-coordinate. We show that the drawings of T1 and T2 are planar. We prove this for T1;
an analogous proof holds for T2.

Consider two edges e1 and e2 in the drawing of T1. Assume that e1 is an edge drawn at Step j, and
that e2 is an edge drawn at Step i, with j ≤ i. If j = i then e1 and e2 share an endvertex (the one drawn
at Step i) and they cannot cross. If j < i, edge e1 is drawn before edge e2. Let v be the endvertex of
e2 that is drawn at Step i, let C be the chunk of rank i − 1 that contains v, and let P be the polygon
associated with C. Edge e2 is drawn inside P , since e2 connects v to an anchor vertex of C, which is
a corner of P . By Invariant 2, the intersection between P and e1 is either empty or it consists of an
endvertex of e1. Thus e1 and e2 either have no intersection or they share a common endvertex. �

4 Conclusions and Open Problems

In this paper we introduced the concept of matched drawings, which are a natural way to draw two
planar graphs whose vertex sets are matched. Since this is the first study of these drawings, many
interesting and challenging open problems remain. First of all, in the light of Theorems 5 and 8, we
would like to characterize the subclass of planar graphs that admit a matched drawing with any planar
graph. Secondly, the drawing techniques of Theorems 8 and 15 may give rise to drawings where the
area is exponential in the size of the graphs. It would be interesting to study the area requirement of
matched drawings that use straight-line edges. On a related note, some of our drawing techniques rely
on a planar straight-line drawing of a planar graph where each vertex has a different y-coordinate. How
big a grid is necessary to guarantee such a drawing with integer coordinates? And finally, given any two
matched graphs, what is the complexity of testing whether they are matched drawable?
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