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Abstract

The planning process for public bus transportation roughly consists of four steps:

network route design, timetable generation, the generation of vehicle schedules and the

generation of crew schedules. A lot of research has been done on optimizing the individual

steps, but the integration of multiple steps has received less attention. However, this may

lead to a more efficient planning. In this paper we present multiple integer linear pro-

gramming models to integrate the timetable generation process and the vehicle scheduling

process. The models are based on a time-space network with preprocessing steps. For the

generation of arrival and departure times, these models are combined with local search.

The models were implemented and tested on real life data sets from the Dutch bus

company Connexxion. The results indicate that a significant reduction of the operational

costs can be achieved by optimization of the type and number of vehicles performing a

service trip and by splitting service trips. Using local search to change the departure and

arrival times in the current timetable can save even more.
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1 Introduction

In recent years many public transportation companies have been privatized and public trans-

port in an area is then tendered for by the public transportation companies. Because of this

competition, more time and effort is spent on reducing operational costs.

A lot of research has been done on several aspects of planning in public bus transportation

companies. The operational planning process can roughly be divided into four steps, route

network design, timetable generation, vehicle scheduling and crew planning. Before we can

generate a timetable the connections or lines have to be determined. This is also known as the

network route design. In the timetabling problem the frequency of the lines and the departure

and arrival times of the trips are determined. When multiple vehicle types are available, the

vehicle type will often also be determined in the timetabling process. A part of the total

timetable could be: “Line 128 will depart 2 times an hour; at -.12 and -.42”. In the vehicle

scheduling process each trip will be assigned to a vehicle. The outcome of this process is a

vehicle schedule containing which vehicle will service which trips. Finally, the crew is assigned

to the vehicles and trips. In this paper we will investigate the integration of two steps in the

planning process: the generation of timetables and vehicle schedules. Examples of questions

concerning this topic are: ‘In a rural area would it be efficient to use in the morning peak 4

small buses per hour instead of two large buses, especially if you are also using small buses

during the day?’. Or ‘Can you save a number of buses by shifting the departure times in the

timetable?’ According to the Dutch situation, we assume that the timetable is clock-face.

In the Netherlands a timetable that is not clock-face is only allowed for lines with a high

frequency e.g within large cities.

In many bus companies including Connexxion timetables are generated manually and

software is only used to support the process by means of e.g. graphical presentation. However,

a considerable amount of research has been performed on automatic timetable generation. For

example, Ceder (Ceder, 2001) proposes to change the timetable with a procedure to evenly

spread the amount of passengers amongst the buses. This will, however, not produce a clock-

face timetable and can therefore not be used by a Dutch bus company such as Connexxion.

The Dutch railway company (NS) has done a lot of research on the automatic generation of

periodic timetables for trains. (Peeters and Kroon, 2001) have shown an interesting way to

automatically generate a cyclic timetable given the lines and frequencies. An hourly pattern

is constructed using an Integer Linear Program which is adjusted for rush hours and periods

with low demands on the capacity by manually adding or removing service trips. They use a

transformed formulation of the Cyclic Railway Timetabling Problem (CRTP) and the – more

general – Periodic Event Scheduling Problem (PESP) which was introduced by (Nachtigall,
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1998).

Moreover a lot of research has been on multi-depot vehicle scheduling. An example of

a survey is (Bussieck et al., 1997). A column generation technique was used by Ribeiro et

al. (Ribeiro and Soumis, 1994) to solve the problem to optimality for sizes up to 300 trips

and 6 depots. (Löbel, 1999) solves an ILP formulation derived from a multi-commodity flow

formulation by column generation and is able to handle large real-life instances. A recent

approach from (Kliewer et al., 2006) extended in (Gintner et al., 2005) shows good results.

The problem is represented as a time-space network with covering constraints. The use of

time-space networks was first suggested by (Hane et al., 1995) for solving routing problems

in airline scheduling. Kliewer et al. have adapted them for application in bus scheduling

by greatly reducing the number of deadhead edges. The reason this works well is because

the values of the variables in the solution of the LP relaxation are mostly integer since the

formulation resembles the LP formulation for a minimum cost flow problem.

The integration of vehicle scheduling and crew scheduling has also been investigated.

(Huisman et al., 2005) propose two algorithms for integrated vehicle and crew scheduling in

the multiple depot case. Both algorithms are based on a combination of column generation

and Lagrangian relaxation. In (Huisman and Wagelmans, 2006)a solution approach for the

dynamic version vehicle and crew scheduling is proposed. Vehicle and crew scheduling is

also investigated by (Rodrigues et al., 2006), whose techniques are based on integer linear

programming coupled with heuristics.

In (Kliewer and Bunte, 2007) vehicle scheduling is combined with the possibility to make

small changes to the timetable, i.e. by shifting the departure times of trips that have been

identified as critical within a limited time window. This is achieved by extending the time-

space network. Their computational results are encouraging.

The contribution of this paper is the development of models for vehicle scheduling which

include the optimization of the type and/or number of vehicles for each trip and a local

search algorithm for combining the computation of timetables times with vehicle scheduling.

We developed integer linear programming models for vehicle scheduling where multiple vehicle

types are allowed for each service trip, i.e., trip defined in the timetable. These models use

a so-called Time-Space Network and extend the models presented in (Kliewer et al., 2006).

One of our models has full flexibility in the assignment of bus types to a service trip as long as

there is enough capacity to transport the expected number of passengers, e.g. if the expected

number of passengers is 60 one standard bus with capacity 50 and one small bus with capacity

10 can be used. Another model chooses one vehicle type per service trip and then assigns

the required number of buses to it. If there are more buses of the selected type required for

the trip, the trip is split into multiple trips and these trip are divided evenly over time. For
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example, if initially there are two trips per hour and one trip is executed by two buses these

buses will run with an interval of 15 minutes. To include the optimization of the timetable we

introduce an hierarchical approach. Recall that we assume that a timetable has to be clock-

face. We apply a local search algorithm where in each iteration the timetable is changed and

for a fixed timetable and fixed vehicle types the cost are computed by solving a minimum

cost flow problem. To the best of our knowledge this the first algorithm for integration of

timetabling and vehicle scheduling allowing all possible departure and arrival times in the

timetable under the condition that the timetable remains clock face. We implemented the

algorithms and performed experiments with real-life data from bus company Connexxion.

The remainder of the paper is organized as follows. In Section 2, we present the integer

linear programming models for vehicle scheduling and the local search algorithms. After

that, in Section 3 we present our computational results. Finally, in Section 4 we conclude by

discussing the applicability of the results and further research.

2 Solution models

The models that we have developed are based on a ‘Time-Space Network’, which was also

applied in e.g. ((Hane et al., 1995), (Kliewer et al., 2006), and (Kliewer and Bunte, 2007)).

In the next subsection, we will explain the network in more detail. After that we will explain

models with a fixed vehicle type per trip in Section 2.2 and models with different possible

vehicle types per trip in Section 2.3. Finally in Section 2.4 we will explain the local search

algorithm.

2.1 The time-space network

In the time-space network, every departure and arrival of a bus at a specific time and a

specific station or the depot is a vertex. In most cases this corresponds to the beginning or

end of a service trip. The edges represent actions that can be performed by a vehicle. The

network has four types of edges:

• Service trip edges representing driving from a starting point of a trip as defined in the

timetable to the end point of that trip with passengers

• Waiting edges representing waiting at a station or in a depot

• Pull-in/-out edges representing driving from a depot to a station and from a station to

a depot
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Depot D1

Station S2

Station S1

Depot D2

Service trip edges Deadhead edges Pull-in/-out edges Waiting edges

Figure 1: Example of a time-space network for the MDVSP

• Deadhead edges representing driving without passengers after operating a service trip

from one station to another station to operate another service trip.

Before and after each service trip pull-in and -out edges are added from and to the depot

respectively. The network can be represented in such a way that the vertices are horizontally

ordered by time and vertically ordered by space. An example is depicted in Figure 1.

A vehicle schedule corresponds to a flow through the network, where every unit of flow

corresponds to a vehicle. To each edge the corresponding costs are assigned which are calcu-

lated per minute and include fuel and driver costs. An additional circulation edge is added to

each depot from the last vertex (in time) to the first vertex. This enables us to minimize the

number of vehicles by assigning fixed vehicle cost to the circulation edges. The computation

of the optimal vehicle schedule now boils down to calculating a minimum cost circulation

through this network.

In principle, deadhead edges are added whenever the travel time between two stations is

smaller than the time between the end of the first service trip and the beginning of the second

service trip and hence there is no maximum length of a deadhead trip. To reduce the number

of deadhead edges we will use the following preprocessing steps suggested in (Kliewer et al.,

2006). We only add so called First matches. If from a service trip arrival at station A a

deadhead trip can be performed to two subsequent service trip departures at station B, only

the deadhead edge to the first departure is added together with a waiting edge to the second

departure to ensure that the deadhead trip to this departure is also allowed in the network.

From the first matches, even more edges can be removed keeping only the Latest first matches:

when there are multiple deadhead edges from station A to the same departure at station B,

only the last one is preserved, since it is still reachable through waiting edges on station A.
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Station A

Station B

All matches

Station A

Station B

First matches

Station A

Station B

Latest first matches

Figure 2: Reducing deadhead edges

An example can be seen in Figure 2. These steps can reduce the number of deadhead edges

to 1% of the number of edges in the original graph representation (All matches).

Finally, we apply an additional preprocessing step to reduce the size of the network. If

two subsequent vertices at a depot only have pull-in edges, i.e., outgoing edges, these can be

merged into the first vertex by including the waiting at the depot (modeled by the waiting

edge between the two vertices) into the outgoing deadhead edges. If the second vertex would

have pull-out, i.e. ingoing edges, this is impossible because the ingoing edges cannot be

moved to an earlier point in time. In the same way, if two of these vertices only have pull-out

(ingoing) edges these can be merged into the last vertex.

2.2 Fixed vehicle type per service trip

To introduce the models, we consider the case with one type of vehicle. There can be multiple

depots and we assume that vehicles do not need to end in the depot from which they have

started, but for each depot the number of vehicles at the beginning of the day must be the

same as the number of vehicles at the end of the day. This corresponds to the current situation

at Connexxion.
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A vehicle schedule corresponds to a minimum cost circulation through the time-space

network, which is essentially a minimum cost flow without sources and sinks, i.e., for each

vertex the inbound flow must equal the outbound flow. A minimum cost circulation can be

found with special purpose algorithms such as the minimum-mean cycle cancelling algorithm

from (Tardos, 1985), a successive shortest path algorithm by (Orlin, 1988) that uses the

Edmonds-Karp scaling technique. However, since we want to extend the model to other cases

e.g. with multiple vehicle types, we use a linear programming formulation.

Let V be the set of vertices in the time-space network, E the set of edges, and S ⊂ E

the set of service trip arcs. For each vertex v ∈ V the sets Inv and Outv denote the set of

incoming and outgoing edges, respectively. By ce, we denote the cost of the trip corresponding

the edge e. Recall that these cost include fuel and driver cost and that the fixed cost of a

bus are included on the circulation edges. We define decision variables xe representing the

amount of flow through edge e. The linear programming problem formulation is given below.

Minimize
∑
e∈E

ce · xe (1)

subject to
∑

e∈Inv

xe −
∑

e∈Outv

xe = 0 ∀v ∈ V (2)

xe = 1 ∀e ∈ S (3)

xe ≥ 0 ∀e ∈ E (4)

The objective function (1) describes the total cost of the generated vehicle schedule, the

constraint (2) ensures the flow properties in the network and constraint (3) guarantees that all

service trips are performed exactly once. We want xe to be integral, but since the constraint

matrix for this problem is known to be totally unimodular, the variables will always have

integral values.

When a minimum cost circulation has been found, the flow needs to be decomposed into

individual bus schedules. Several methods exist, such as First In First Out (FIFO) and Last

In First Out (LIFO). It is also possible to design a customized decomposition method which

for example minimizes the number of times a bus will change lines or routes.

A large bus company like Connexxion owns multiple vehicle types. Examples are buses

with a low floor which are designed for easy access for disabled people and articulated buses

which have a higher capacity. Even bi-articulated buses are deployed in the city of Utrecht

by the GVU, a full daughter of Connexxion. On the other hand, in rural areas sometimes

small taxi buses are used. As also explained in (Kliewer et al., 2006), the situation with

multiple types of vehicles but a predetermined vehicle type for each trip, this can be included
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in the above model by creating a separate network (layer) for each type of vehicle including a

separate depot. Since the service trips and depots of the different vehicle types do not overlap

and there are no edges between these network layers, the minimum cost circulation can be

solved separately for each vehicle type. A similar model is described in (Kliewer et al., 2006),

but there also a separate layer was necessary for each depot to ensure that a bus returns to

its starting depot.

2.3 Multiple vehicle types on a service trip

It may be expected that allowing multiple vehicle types on a trip improves the vehicle schedul-

ing. For example, in a rural area one might use large buses during the rush hour and small

buses during the rest of the day. In such a case it might be interesting to use two small buses

on a rush hour trip, instead of one large bus.

Again, for each vehicle type a connected component (or layer) is added to the graph.

Note that a service trip can now be in multiple layers, and hence these layers can not be

solved independently. Consequently, the problem becomes NP-hard and is no longer solvable

with special purpose minimum cost circulation algorithms. However, the linear programming

formulation of a minimum cost circulation can be applied with some additional constraints.

In this section, we present three ways of including multiple possible vehicle types per trip in

the models.

A first approach which is also presented in (Kliewer et al., 2006), is that each trip is

performed by a single vehicle, but vehicles of different types are allowed. Let T be the set of

service trips and for each t ∈ T , let St be the set of service trips arcs associated with trip t,

i.e., corresponding to the vehicle types which are allowed for t. The (Integer) Linear Program

now becomes:

Minimize
∑
e∈E

ce · xe (5)

subject to
∑

e∈Inv

xe −
∑

e∈Outv

xe = 0 ∀v ∈ V (6)

∑
e∈St

xe = 1 ∀t ∈ T (7)

xe ≥ 0 ∀e ∈ E (8)

xe integral ∀e ∈ E (9)

Constraint (3) is replaced by the so-called multiple choice constraint (7) modeling the choice

for one bus type. Moreover, since the constraint matrix is not totally unimodular, the inte-

grality constraint cannot be omitted anymore.
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The previous model is limited in the sense that it does not allow more than one vehicle

per trip, and hence excludes for example using multiple small vehicles instead of one large

vehicle to service a trip. To include this in the model we are going to replace the multiple

choice constraint (7) by a constraint which enforces that on each trip there is enough capacity

for the expected number of passengers. Each service trip edge e ∈ S corresponds to a bus

type in which we denote by b(e). We define pb(e) as the passenger capacity of the type of bus

corresponding to edge e. Furthermore let Pt be the expected number of passenger on service

trip t. We now replace constraint (7) by:

∑
e∈St

pb(e) · xe ≥ Pt ∀t ∈ T (10)

The previous model is very intuitive and allows full flexibility in the selection buses for a

trip, but – as will be shown in the computational results – it turns out to be computationally

quite hard to solve. For this reason, we also developed a model to only allow one vehicle type

per service trip. So a service trip can for example be serviced by two normal sized buses or

three small sized buses but not by one normal sized bus and one small sized bus. This might

be a reasonable assumption in many practical situations. To this end a new binary variable

yb,t is introduced to decide if service trip t will be serviced by vehicles of type b. We define

nb,t as the number of buses of type b that is needed to transport the expected number of

passengers in trip t. When multiple buses are needed to accommodate the passengers, the

service trip is split into single bus trips that are spread evenly in time. If for example there

is a trip every hour and we will need two vehicles of a certain vehicle type, a vehicle would

leave every half hour. This is achieved by including additional service trips in the time-space

network accordingly. In the model, this means that constraint (10) has to be replaced by the

constraints: ( ∑
e∈Sb,t

1
nb,t

· xe

)
− yb,t = 0 ∀b ∈ B, t ∈ T (11)

∑
b∈B

yb,t = 1 ∀t ∈ T (12)

yb,t ∈ {0, 1} ∀b ∈ B, t ∈ T (13)

Here Sb,t denotes the set of service trip edges of bus type b associated with service trip t.

2.4 Local search

To actually change the timetable times we use local search in combination with a network

flow model. In each iteration of the local search we apply a small change to the timetable
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and optimize the vehicle schedule by the network flow model. Local search algorithms usually

require a lot of iterations to obtain a good solution and hence the speed of an iteration is

very important. For this reason we use the model (1)-(4) with different vehicle types. This

means that we assume the type of vehicle of each trip is fixed. The minimum cost circulation

that is required to solve this model can be calculated in polynomial time by a special purpose

algorithm or by using the LP formulation and an LP solver.

The local search strategy we have used is simulated annealing. In each iteration a small

change is made to the timetable and we will determine if we will accept or reject the new

timetable. Improvements will always be accepted and degradations will be accepted with a

chance that decreases while the algorithm runs. In each iterations, the timetable is changed

by randomly selecting a line and then shift this line 1, 2, 3, 4, 5 or 10 minutes forward or

backward in time. In this way, the current clock face timetable is preserved. Observe that

with this neighborhood structure the vehicle type of each service trip remains fixed. The next

step is to allow changes of vehicle types. Therefore, we have to determine for each service

trip the set of possible vehicle configurations, i.e. the number of buses and their types. Then

after a fixed number of iterations, we can randomly select a service trip and change its vehicle

configuration. This is not yet included in our implementation.

Several experiments have been performed to determine the best number of iterations and

and the speed of decreasing the probability of accepting a worse timetable. The progress

of the algorithm is represented by a temperature variable. The temperature starts at 5000

and is multiplied by 0.99 in each iteration. The algorithm stops when the temperature drops

below 1. The chance of accepting a worse solution is exp
( (l−c)·0.1

t

)
where l is the cost of the

last accepted solution, c is the cost of the current solution and t is the current temperature.

3 Computational results

To evaluate the performance of the models and algorithms, we have implemented them and

tested them with real-life data provided by Connexxion. All integer linear programming

models are implemented in the Java programming language. After the preprocessing steps

described in Section 2.2, the minimum cost circulations are computed by means of the pre-

sented ILP formulations which are solved by ILOG CPLEX (ILOG, ) version 9.1. The local

search algorithm is implemented in the C++ programming language. For this algorithm, the

graphs are built using the Library of Efficient Data types and Algorithms (Mehlhorn and

Näher, 1995) which solves the minimum cost circulations very fast. The ILP problems were

solved on one of the available processors on a machine with 8 Intel Xeon 1.86 GHz processors.

The local search was run on a PC with an with an Intel Core2 Duo 3,0 Ghz processor and
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1024MB RAM.

The data sets provided by Connexxion are from the area ”Noord Holland Noord”. The

area contains both local and regional bus lines. The spring 2007 timetable is provided for

weekdays (WE), for Saturday (SA) and for Sunday (SU). Detailed statistics about these

timetables can be found in Table 1.

day lines service trips passengers

Weekday (WE) 49 1862 30095

Saturday (SA) 29 1198 16138

Sunday (SU) 23 822 8865

Table 1: Current timetable statistics

The passenger counts for all service trips are available. Traveling times between all pairs

of stations (including deadhead trips) were partly obtained by measurements with special

devices in the bus and partly derived from these measurement results. The area contains three

depots: in Alkmaar (AMR), Den Helder (DHE) and Hoorn (HRN). In this area Connexxion

uses several types of buses. The bus type L12 is the most commonly used vehicle type. This

is a twelve meter long bus with a low floor. An 18 meter articulated version of this type

is also used (L18). There is a special Service bus (SER) that is disabled-friendly. The H10

bus type is a short 10 meter version of a standard bus, which is only used on a specific line.

Finally, small taxi vans (TX08) are used.

Name Vehicles per service trip Model

SV-FT Single vehicle, fixed type (1)-(4) with multiple vehicle types

SV-MT Single vehicle, multiple types (5)-(9)

MV-MT Multiple vehicles, multiple types (5), (6), (8), (9), (10)

MV-ST Multiple vehicles of the same type (5), (6), (8), (9), (11)-(13)

MV-ST-H10 Multiple vehicles of the same type MV-ST with H10 allowed on all lines

Table 2: Scenarios

We first report results on the ILP models from the previous section. The different scenarios

are given in Table 2. We indicate the options for assigning vehicle to a service trip and the

corresponding ILP formulation. We will use SV-FT as a reference scenario. In SV-MT for

each service trip the type of bus currently used by Connexxion or a larger type is allowed. In

MV-ST, if the are multiple vehicles on a service trip, the resulting trips are evenly spread in

time between the other service trips.
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In Table 3 we present the results for the different ILP models. For each timetable, we

report on the cost reduction relative to the reference scenario SV-FT for that day. Note that

the absolute cost on a weekday are much larger than the cost on a Saturday, which on its

turn are much larger that the cost on a Sunday. We also present the number of used buses

of different types, and the computation time (in seconds). The default settings of CPLEX

appeared to have some difficulties, especially with the MV-MT scenarios. To improve the

performance of CPLEX, we used more ‘aggressive’ CPLEX settings, such as more extensive

cut generation and strong branching (which applies some look-ahead when choosing the next

node). In case the optimal solution was not found after 10 hours, the computation was

stopped. This happened for the Saturday instance, which appeared to be the most difficult

one. For these cases we give the integrality gap, i.e., the difference between the value of the

LP-relaxation and the value of the best integral solution. For the MV-ST cases we also give

the number split trips.

The results indicate that allowing a larger bus type on a trip (SV-MT) gives a slight

cost reduction and significantly reduces the number of buses used. The models for MV-MT,

where multiple vehicles are allowed on one trip and with only the constraint that the passenger

demand is met, are relatively hard from a computational point of view. Our results indicate

that allowing multiple vehicles on a service trip on a service trip leads to a significant cost

reduction. For the Saturday, still after 10 hours the integrality gap is reasonably small.

In MV-ST a trip is split into trips that are evenly spread in time between the current

service trips, in case of multiple vehicles on a service trip. Hence, this model is not strictly

comparable to the previous models. The computational results show that a lot of money

can be saved. However, it seems that the cost reduction of MV-ST is very close to the cost

reduction of MV-MT (for Saturday, if the gap is added). This would imply that in case of

multiple vehicles on a service trip, the condition that these are all of the same type is not a

strong restriction.

In our original experiment buses of type H10 could only service trips from one particular

line. After dropping this restriction – allowing H10 vehicles to service trips in the whole area

– the results show something interesting. A lot of buses of type H10 were used. These buses

have a slightly smaller capacity than the standard L12 buses and the costs of the H10 buses

is slightly less. These results indicate that it would be cheaper ( 2 to 3 % additional savings)

to have more buses with a smaller capacity.

On Saturday and Sunday, the number of vehicles increases when we ‘split’ service trips

over multiple vehicles, while the cost decrease. This is caused by the use of taxi vans. An

interesting observation is that the number of buses needed to operate the timetable on a

Weekday is smaller when trips are split than when trips are not split. One would expect
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that servicing trips with more than one bus would result in a vehicle schedule with more

buses. This may be explained by the following. Some trips were already serviced by multiple

vehicles and those trips are serviced by one larger vehicle in the new vehicle schedule and

thus reducing the number of buses needed. Another effect that might occur (although this is

not the case with Connexxion) is that smaller buses are used during the periods that have a

low demand on the capacity (midday and evening) and that those buses were in the depot

during the rush hour periods. In the new vehicle schedule, these smaller buses could also be

used during the rush hour periods and thus reducing the total amount of buses needed.

In Table 4 we present the results of the simulated annealing algorithm. The vehicle type

for each service trip is the one that is currently being used by Connexxion to operate the

service trip and is not changed. The results are compared to the basic scenario SV-FT;

they show the improvement that can be obtained by moving the timetable times. For each

timetable we give the cost reduction with respect to the basic scenario and the computation

time in seconds. The results indicate that a significant cost reduction can be obtained by

changing the timetable times.

4 Discussion and further research

In this paper we have proposed several models that provide an integration of timetabling

and vehicle scheduling, including more flexibility of assigning vehicle types to service trips.

Models from Kliewer et al. based on a so-called time space network have been extended. We

developed a model to perform service trips with multiple vehicles possibly of different types

and a model where a service trip can be performed by multiple vehicles that have to be of

the same type. In the latter case the service trip is split into a set of trips evenly divided

over time. A local search algorithm is proposed to integrate the vehicle scheduling and the

optimization of the departure and arrival times given in the timetable under the condition

that the timetable remains clock-face.

Computational experiments on real life data sets provided by Connexxion indicate that a

significant (up to about 8 %) reduction of the operational costs can be achieved when there is

more flexibility in the type and number of vehicles performing the service trips and some trips

are split and evenly spread in time. The experiments with our local search algorithm suggest

that changing the timetable times may lead to 1 or 2 % additional cost reduction. Our current

implementation considers a fixed vehicle type for a service trip and does not allow splitting

of trips results in up to about 2 % reduction of the operational costs. Including multiple

and different types of vehicles per service trip and splitting of service trips into the local

search algorithms results, enables us to analyze this effect more precisely. Finally, possible
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connections between different bus lines, which limit the freedom of changing the timetable,

are not included in our algorithm. These issues are a topic for further research.

Given the large amounts of money that are involved in the operation of a large bus

company like Connexxion, our models suggest that integration of vehicle scheduling and

timetabling could save millions of Euros. Some remarks have to be made regarding the ap-

plicability of the model. The models are based on passenger counts of two weeks, so there

is some inaccuracy in the numbers. In the future with the introduction of the ‘OV-Chipcard

(electronic payment by all passengers) more elaborate passengers counts will be available.

Another possibility is to include some kind of buffer in the passenger number, i.e., to reserve

some spare capacity on trips. In our models we did not include any turn-around time, i.e.

when a bus arrives at a station it can immediately depart for a new trip. In principle these

times could be included by adding them to the driving time of the trip. Since the turn-around

time equals zero in all models, including the basic scenario, the models are comparable. An

estimation of the cost of the crew is included in the cost numbers. However, since crew

scheduling is not included the effect on the cost of the crew can be analyzed in more detail

by extending the model. This requires a significant amount of further research. Note that

previous results Huisman et al (Huisman et al., 2005) have shown that integration of crew

and vehicle scheduling can be very beneficial. Finally, it might be interesting to investigate

if the integration of vehicle scheduling and time-tabling can be fully performed by Integer

Linear Programming.
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day scenario cost red. #buses time gap #trips

(L12;SER;L18;H10;TX08) spl.

WE SV-FT 121 0.383

(98;7;11;1;4)

SV-MT 1.18 % 112 27.601

(87;9;11;1;4)

MV-MT 5.17 % 107 17918.688

(73;9;9;1;15)

MV-ST 5.24 % 107 294.982 24

(72;10;8;1;16)

MV-ST-H10 7.97 % 106 3242.803 15

(29;7;7;51;12)

SA SV-FT 69 0.217

(53;7;5;1;3)

SV-MT 0.45 % 67 15.107

(49;10;5;1;2)

MV-MT 3.61 % 71 > 10 hrs 0.11 %

(47;10;0;1;13)

MV-ST 3.83 % 71 > 10 hrs 0.04 % 37

(46;10;0;1;14)

MV-ST-H10 7.07 % 71 > 10 hrs 0.05 % 25

(8;8;0;43;12)

SU SV-FT 44 0.157

(39;0;1;0;4)

SV-MT 0.06 % 43 6.111

(39;0;1;0;3)

MV-MT 4.75 % 48 9934.973

(32;0;0;0;16)

MV-ST 4.86 % 47 388.849 34

(31;0;0;0;16)

MV-ST-H10 8.66 % 47 460.484 26

(5;0;0;27;15)

Table 3: Computational results ILP with ‘aggressive’ CPLEX settings
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day cost red. time

WE 2.23 % 1266.69

SA 0.70 % 565.89

SU 1.83 % 316.60

Table 4: Computational results local search
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