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Abstract

We study the integer maximum flow problem on wireless sensor networks with en-
ergy constraint. In this problem, sensor nodes gather data and then relay them to a
base station, before they run out of battery power. Packets are considered as inte-
gral units and not splittable. The problem is to find the maximum data flow in the
sensor network subject to the energy constraint of the sensors. We show that this
integral version of the problem is strongly NP-complete and in fact APX-hard. It fol-
lows that the problem is unlikely to have a polynomial time approximation scheme.
Even when restricted to graphs with concrete geometrically defined connectivity
and transmission costs, the problem is still strongly NP-complete. We provide some
interesting polynomial time algorithms that give good approximations for the gen-
eral case nonetheless. For networks with bounded treewidth greater than two, we
show that the problem is weakly NP-complete and provide pseudo-polynomial time
algorithms. For a special case of graphs with treewidth two, we give a polynomial
time algorithm.
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1 Introduction

A wireless sensor (or smart dust) is a small physical device that contains
a microchip with a miniature battery, and a transmit/receive capability of
limited range. Sensors have been deployed in different environments to gather
data, perform surveillances and monitor situations in diverse areas such as
military, medical, traffic and natural environments. (See e.g. Zhao and Guibas
[21].)

As the battery power of a sensor is limited and non-replaceable, it is crucial to
maximize the lifetime of the wireless sensor network to ensure the continuing
function of the whole network. We study the situation of a data-gathering
sensor network, where sensors are deployed in the field to gather data and
then relay the data packets via other sensors back to a base station. It is
desirable to get as many data packets as possible from the source sensors to
the base station, before some of the sensor batteries are depleted. This then
becomes an instance of the maximum flow problem, subject to the energy
constraint of the lasting battery power of each sensor.

Most of the research papers for the maximum flow problem with energy con-
straint on wireless sensor networks (e.g. [8,9,12,16–18,20]) cast the problem
into a Linear Programming (LP) form and assume fractional flows, i.e., split-
ting of packets into fractional portions is allowed. The corresponding LP-
formulations then have polynomial time algorithms. These papers then present
several heuristics that speed up the algorithms and compare various simulation
results. A few papers [8,12,16,17] modified the Polynomial Time Approxima-
tion Scheme (PTAS) of Garg and Könemann [14] to obtain fast approximation
algorithms.

As data packets are usually quite small, there are situations where splitting
of packets into fractional ones is not desirable nor practical. We consider a
model where data packets are considered as units that cannot be split, i.e.
the packet flows are of integral values only. We call this the Integer Maximum
Flow problem for Wireless Sensor Network with Energy Constraint: the Inte-
ger Max-Flow WSNC problem. The corresponding LP formulation becomes
Integer Programming (IP) and may no longer have a polynomial time solution.

We show that the problem is in fact strongly NP-complete, and thus unlikely to
have a Fully Polynomial Time Approximation Scheme (FPTAS) or a pseudo-
polynomial time algorithm, unless P=NP. This result also holds for a class of
graphs with geometrically defined connectivity and transmission costs, even
when the nodes lie on a line. Furthermore, we show that even for a special
fixed range model, the problem is APX-hard, thus unlikely to have even a
PTAS (unless P=NP). We also provide some approximation algorithms for
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the problem that do give good approximations nonetheless.

Many hard problems have polynomial time solutions when restricted to net-
works with bounded treewidth (see e.g. [4]). However, we show that for net-
works with bounded treewidth greater than two, the Integer Max-Flow WSNC
problem is weakly NP-complete. We provide pseudo-polynomial time algo-
rithms to compute integer maximum flows in this case. For a special case
of graphs that have treewidth two, namely those graphs that have treewidth
two when we add an edge from the single source to the sink, we provide a
polynomial time algorithm.

The paper is organized as follows. In Section 2, we describe the model and the
problem in detail. Section 3 covers the complexity issues. We show here the
various NP-completeness results and describe some approximation algorithms.
Section 4 contains the results for networks with bounded treewidth.

2 Preliminaries

In this section, we discuss the model we use and the precise formulation of
the Integer Max-Flow WSNC problem. We also discuss some variants of the
problem, and give some definitions used in other sections.

2.1 The Model

Our model of a sensor is based on the first order radio model of Heinzelman
et al. [15]. A sensor node has limited battery power that is not replenishable.
It consumes an amount of energy εelec = 50nJ/bit to run the receiving and
transmitting circuitry and εamp = 100pJ/bit/m2 for the transmitter amplifier.
In order to receive a k-bit data packet, a sensor has to expend εelec · k energy,
while to transmit the same packet from sensor i to sensor j will cost εelec · k +
εamp · k · d2

ij energy, where dij is the distance between sensors i and j.

We model a wireless sensor network as a directed graph G = (N, A), where
N = {1, 2, . . . , n}∪{t} are the n sensor nodes along with a special non-sensor
sink node t, and A is the set of directed arcs ij connecting node i to node
j, i, j ∈ N . A sensor node i has energy capacity Ei and each arc ij has cost
eij, the energy cost of receiving (possibly from some node) a packet and then
transmitting it from node i to node j. We assume that no data is held back
in intermediate nodes 6= t, i.e., data that flows in will flow out again, subject
to the battery constraint of these nodes. All Ei’s and eij’s are non-negative
integer values.
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The general model assumes that each sensor can adjust its power range for
each transmission. We also consider in the next section the fixed range model,
where each sensor has only a few fixed power settings. All our graphs are
assumed to be connected. For each arc ij ∈ A, there is a directed path from a
source node to the sink node that uses this arc.

2.2 The Problem

Given a wireless sensor network G, there is a set S of source sensor nodes,
used for gathering data. The sink node t is a base station and is equipped with
electricity and thus has unlimited energy to receive all packets. The remaining
nodes are just relaying nodes, used to transfer data packets from the source
nodes to the sink node. One would like to transmit as many packets as possible
from the source nodes to the sink node. This is feasible as long as the battery
power in the network suffices to do so. The transmission process can be viewed
as a flow of packets from the sources to the sink. The problem is then to find
the maximum flow of data packets in the network subject to the battery power
constraint.

We assume that the data packets are quite small, thus it is neither reasonable
nor practical to split them further into fractional portions. A flow fij is a func-
tion that assigns to each arc ij a non-negative integer value. This corresponds
to the number of packets being sent via the arc ij. A flow is a feasible flow if∑

j fij · eij ≤ Ei for all nodes i ∈ N , where the sum is taken over all j with
ij ∈ A; i.e., the flow through a node cannot exceed the battery capacity of
the node.

We can now formulate the maximum flow problem for wireless sensor networks
as the problem of determining the maximum number of packets that can be
received by the sink node. We call this problem the Integer Maximum Flow
problem for Wireless Sensor Networks with energy Constraints or Integer Max-
Flow WSNC problem for short. The problem has the following Integer Linear
Programming formulation.
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The Integer Max-Flow WSNC problem:
Objective: maximize F =

∑
j∈N fjt, t is the sink node,

subject to the following constraints:

fij integer, ∀ij ∈ A (1)

fij ≥ 0, ∀ij ∈ A (2)∑
j∈N

fij =
∑
j∈N

fji, ∀i ∈ N − S − {t} (3)

∑
j∈N

fij · eij ≤ Ei, ∀i ∈ N (4)

Condition (3) is the conservation of flow constraint. It simply states that with
the exception of the source and sink nodes, every node must send along the
packets that it has received. Condition (4) is the energy constraint for the
feasible flow: the energy needed to (receive and) transmit packets must be
within the capacity of the battery power of each node. This condition also
distinguishes the (integer) max-flow WSNC problem from the standard max-
flow problem: there, the constraint condition is just fij ≤ cij, where cij is the
flow capacity of arc ij.

We note that without loss of generality, we can augment the network with a
super source node s with unlimited energy to send and connect it to all the
source nodes with some fixed cost. We can then view the network as having a
single source and a single sink with a single commodity, subject to the battery
energy constraint. However, note this may affect the treewidth of the network;
the results for networks of bounded treewidth in section 4.1 assume a single
source.

2.3 Other Variants

Other variants of the problem formulation exist for wireless sensor networks
with energy constraint. For example, Floréen et al. [12] use the following energy
constraint in their LP-formulation of the problem:∑

j∈N

τij · fij +
∑
j∈N

ρ · fij ≤ Ei, ∀i ∈ N,

where the parameters τij is the energy expended in sending a packet from node
i to node j and ρ is the corresponding energy for receiving a packet. Their
objective function in the LP-formulation is also slightly different and has some
extra parameters that are non-integral.

Chang and Tassiulas [9] give an LP-formulation similar to ours for the sin-
gle commodity case, except they formulate the problem over the set of all
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paths from s to t and allow fractional packets. They also consider the multi-
commodity case.

2.4 Definition of Treewidth

We define the concept of treewidth for a general (undirected) graph Gu. This
concept is used in Section 4.

Definition 1 A tree-decomposition of a graph Gu = (N, Au) is a pair D =
(X,T ) with T = (P, F ) a tree and X = {Xp | p ∈ P} a family of subsets of
N , one for each node of T , such that

• ⋃
p∈P Xp = N ,

• for every edge {i, j} ∈ Au, there exists a p ∈ P with i ∈ Xp and j ∈ Xp,
• for all p, q, r ∈ P : if q is on the path from p to r in T , then Xp ∩Xr ⊆ Xq.

The treewidth of a tree-decomposition ({Xp | p ∈ P}, T = (P, F )) is maxp∈P |Xp| − 1.
The treewidth of a graph Gu is the minimum treewidth over all possible tree-
decompositions of Gu.

An undirected graph Gu = (N, Au) is said to be a minor of a graph Hu =
(M, Bu), if Gu can be obtained from Hu by a series of vertex deletions, edge
deletions, and edge contractions; where an edge contraction is the operation
that takes two adjacent vertices i and j, and replaces it by a new vertex,
adjacent to all vertices that were adjacent to i or j. It is well known that the
treewidth does not increase when taking minors.

In this paper, the treewidth of a directed graph G is just the treewidth of the
underlying undirected graph Gu, i.e., the graph obtained by dropping direction
of edges.

3 Complexity

We will first look at the complexity of the problem on general graphs with
arbitrary costs at the arcs. We show the problem is NP-complete. Next we show
this proof carries over to a restriction of the problem to a class of graphs with
geometrically defined connectivity and energy consumption. Then we look at
another restriction of the problem, on general graphs again, but with only a
fixed amount of distinct energy costs. The problem is polynomial time solvable
for one energy level, but with more distinct power levels the problem is shown
to be APX-hard. Lastly, we demonstrate a polynomial time approximation
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algorithm for the general case. Note however that this algorithm does not
guarantee a constant approximation ratio.

3.1 General graphs

Since each data packet is a self-contained unit and cannot be split, the cor-
responding LP formulation is an Integer Programming (IP) formulation and
may no longer have a polynomial time solution. In fact, we prove that the
problem is strongly NP-complete.

Theorem 2 The decision variant of the Integer Max-Flow WSNC problem is
strongly NP-complete.

PROOF. We reduce the 3-Partition problem to the decision version of the
Integer Max-Flow WSNC problem.

3-Partition
Instance: Given a multiset S of n = 3m positive integers, where each
xi ∈ S is of size B/4 < xi < B/2, for a positive integer B.
Question: Can S be partitioned into m subsets (each necessarily con-
taining exactly three elements) such that the sum of each subset is equal
to B?

The 3-Partition Problem is strongly NP-complete [13].

For any instance I of the 3-Partition problem we create an instance I ′ of
a wireless sensor network as follows. Each number xi ∈ S corresponds to a
sensor relay node ri. Additionally, we have m source nodes s1, . . . , sm each
having exactly B energy. The source nodes play the role of the subsets. Now
connect each of the source nodes sj with all the relay nodes ri with arc cost
eji = xi. The intention is that it will cost each source node exactly xi energy
to send one packet to relay node ri. We further connect all the relay nodes to
a sink node t. Each relay node ri has energy Ei = B and arc cost eit = B, just
sufficient energy to send only one packet to the sink node.

Then our instance of the 3-Partition problem has a partition into m sub-
sets S1, . . . ,Sm, each with sum equals B if and only if for each subset Si =
{xi1, xi2, xi3} the source node si sends three packets, one each to relay nodes
ri1, ri2, ri3 consuming the energies xi1, xi2, xi3, thus draining all of its battery
power of B =

∑3
j=1 xij. This will give a maximum flow of n = 3m packets for

the whole network. Thus, 3-Partition reduces to the question whether the
WSNC network can transmit at least 3m packets to the sink.
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We have now given a pseudopolynomial reduction (see [13]), and thus we have
shown that the Integer Max-Flow WSNC problem is strongly NP-complete. 2

Corollary 3 The Integer Max-Flow WSNC problem has no fully polynomial
time approximation scheme (FPTAS) and no pseudo-polynomial time algo-
rithm, unless P=NP.

PROOF. This follows from the fact that a strongly NP-complete problem
has no FPTAS and no pseudo-polynomial time algorithm, unless P=NP. (See
[13]). 2

We show later on that even in a restricted case, the problem is APX-hard, i.e.
the problem does not even have a PTAS unless P=NP.

3.2 The Geometric Model

We will now look at the geometric version of the problem in which the nodes
are concretely embedded in space. In this version, each node has a position,
and transmitting to a node at distance d costs d2 energy. This quadratic cost
is a typical model of radio transmitters.

Definition 4 A geometric configuration is a complete graph where each node
i ∈ N has a location p(i) and initial battery capacity Ei. The cost of the edge
between vertices i and j is eij = |p(i)− p(j)|2.

In this section we show that the Integer Max-Flow WSNC-problem remains
NP-complete when restricted to geometric configurations where all nodes lie
on a line. We first consider the case where we allow variable battery capacities
Ei (Theorem 5) and then give a more elaborate construction, still with all
nodes on a line, where all nodes have equal battery capacity (Theorem 10).

Theorem 5 The Integer Max-Flow WSNC-problem is strongly NP-complete
on geometric configurations on the real line.

PROOF. Again, we give a pseudopolynomial reduction from 3-Partition.
First we describe how to construct a geometric configuration C on the real line,
where the Integer Max-Flow WSNC-problem is equivalent to a given instance
of 3-Partition. We then construct an equivalent configuration CP that can be
described in polynomial size. These steps together show that the Integer Max-
Flow WSNC-problem is strongly NP-complete on geometric configurations.

Like before, we have m source nodes s1, . . . , sm. Each starts with B =
∑

xi/m
energy. These source nodes again play the role of the subsets and we place
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Fig. 1. Configuration C.

them all at the origin of our geometric configuration, i.e., p(si) = 0 for all i.
(This also means that the cost of sending from one source node to another is
zero, but such flow can be disregarded since all these nodes are sources.)

Corresponding to each xi ∈ S we have a ‘relay’ node ri that serves the same
purpose as before: to receive one packet from a source node, costing xi energy
for this source node, and relay the packet to the sink. By setting p(ri) =

√
xi

we achieve that a source node must use xi energy to send a message to ri.

Finally, we place a sink node t with p(t) =
√

B. We want each relay node
to have just enough energy to send exactly one packet to the sink, so we set
Eri

= (p(t)− p(ri))
2 = B + x− 2

√
B
√

x.

This concludes the construction of our geometric configuration C. The con-
struction is illustrated in Figure 1.

Lemma 6 Suppose we have a flow of value n in C. Then every relay node
receives exactly one packet from a source and sends it to the sink.

PROOF. If n packets reach the sink, then n packets must have left the
sources. By the restriction on the values xi of the 3-Partition instance, each
edge leaving the sources costs strictly more than B/4 energy. Since the source
nodes start with B energy, no source node can send more than 3 packets.
There are only m = n/3 source nodes, so every source node must send exactly
3 packets. In particular, no packets are sent directly from a source node to the
sink, as this would use up all energy of the source node. Therefore, the sink
node only receives packets from relay nodes. No relay node can afford to send
more than one packet to the sink, so in fact every relay node sends exactly
one packet to the sink. 2

Using Lemma 6, the following can now be shown in the same way as Theorem 2
for the case on arbitrary graphs.

Proposition 7 The configuration C has a solution of the Integer Max-Flow
WSNC-problem with n packets if and only if the corresponding 3-Partition
instance is Yes.
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Note that this does not yet give an NP-hardness proof for the Integer Max-
Flow WSNC-problem on geometric configurations on the line, as configuration
C has nodes at real-valued coordinates: the specification of the location of the
points in C contains square roots. We shall now construct a geometric config-
uration CP which is equivalent to C, but whose positions are all polynomially
representable rational numbers.

We do this by choosing the locations as integer multiples of some ε (value to
be determined later), rounding down. The initial power of the batteries also
needs to be quantized. We give the source nodes exactly B energy, which is
already integer. We give the relay nodes precisely enough energy to send one
packet to the sink; this amount can be calculated from the actual distance in
CP.

Lemma 8 The value for ε can be chosen such that CP is equivalent to C and
can be represented in polynomial size.

PROOF. Consider a grid of precision ε, onto which the positions are rounded
down. Rounding down makes communication from sources to relay nodes
cheaper. For the NP-completeness construction we need that a source can-
not send 4 packets. From the 3-Partition instance we have that the xi are
strictly bigger than B/4. Since the xi are integer, we have in particular that
the xi ≥ B/4 + 1

4
. This gives the following constraint on ε:

4
(√

B + 1

4
− ε

)2

> B.

This is equivalent to

ε <

√
B + 1−

√
B

2
. (1)

That is, if we round coordinates down to a multiple of ε and (1) holds,
no source node can send more than three packets. Note that this bound is
Θ(1/

√
B).

There is a further constraint on ε. We do not want to enable flows that do
not correspond to a 3-Partition. Therefore, a source node should, with its B
energy, not be able to send packets to a set of relay nodes if the corresponding
xi sum to strictly more than B. This gives the following constraint on ε, for
all a, b, c ∈ S:

a + b + c ≥ B + 1 =⇒ (
√

a− ε)2 + (
√

b− ε)2 + (
√

c− ε)2 > B.

This holds when the following condition holds; we solve the equation by setting
a + b + c = B + 1.

ε <
α−

√
α2 − 3

3
, where α =

√
a +

√
b +

√
c.
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This upperbound for ε is monotonically decreasing in α (for α >
√

3) and is
therefore minimized by maximizing α. This occurs at a = b = c = (B + 1)/3,
giving

ε <

√
B + 1−

√
B√

3
. (2)

This bound on ε is also Θ(1/
√

B).

The number of gridpoints for a grid of length
√

B is then

√
B

ε
=

√
B

Θ(1/
√

B)
= Θ(B).

A position can therefore be represented in Θ(log B) space, just like the num-
bers in the given 3-Partition instance (which are between B/4 and B/2).

Finally, we must specify ε. We can take e.g.

ε =
1

5d
√

Be
.

This satisfies constraints (1) and (2) and can be written as a rational number
in polynomial space and time. Note that we can also compute the coordinates
of all relay nodes and the sink in polynomial time. 2

The proof of Theorem 5 now follows from Lemmata 6, 8 and Proposition 7:
the Integer Max-Flow WSNC-problem is strongly NP-complete on geometric
configurations, even when restricted to a line. 2

The nodes in CP have non-integer positions, but the following shows that this
is not essential.

Corollary 9 The Integer Max-Flow WSNC-problem is strongly NP-complete
on geometric configurations on a line, where each node has an integer coordi-
nate.

PROOF. Transform CP as follows. Multiply each position by ε−1 and each
battery capacity by ε−2. This transformation assures that all coordinates are
integer, since all positions in CP are multiples of ε. Also, the transformed
geometric configuration is equivalent to CP, since for any set of distances di,
a bound E and a value for ε, we have that the old situation is equivalent to
the transformed situation:

∑
d 2

i ≤ E ⇐⇒
∑(

di

ε

)2

≤ E

ε2
. 2
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Fig. 2. Configuration C′.

We finish this section by proving that Theorem 5 still holds when all battery
capacities are equal.

Theorem 10 The Integer Max-Flow WSNC-problem is strongly NP-complete
on geometric configurations on the real line, even when all battery capacities
are equal.

PROOF. Recall configuration C: source nodes, a cluster of relay nodes and
a sink node. The battery capacity of the relay nodes was used to coerce each
relay node to send exactly one packet, and to send it to the sink. Doing this
for all relay nodes at once required varying battery capacities; we shall now
use a more elaborate construction C′.

Where before we had a single cluster of relay nodes, we shall now have n
clusters of relay nodes, spaced

√
B apart. Then the geometric configuration

C′ is as follows.

• Source nodes: s1 . . . sm, with p(si) = 0.
• Relay nodes: for each xi, there are n relay nodes, ri,1 . . . ri,n, with p(ri,j) =√

xi + (j − 1)
√

B.

• A sink node t, with p(t) = n
√

B +
√

x1.
• All nodes have starting battery capacity of B.

The configuration is visualized in Figure 2. We shall again prove that a flow
of value n is possible in this configuration if and only if there is a 3-partition
in the given instance.

For convenience, let the xi be indexed in order of non-decreasing value. Fur-
thermore, consider multiple relay nodes at the exact same location, which
occurs if xi = xj for some i 6= j. Then the relay nodes for xi and xj are inter-
changeable in any solution. This allows us to proceed in the following proof
as if i < j implies xi < xj.

14



First, suppose there is a solution to the given instance of 3-Partition. Similar
to the earlier proofs, each source node in the configuration can send three
packets, such that each relay node in the first cluster (i.e., each ri,1) receives
exactly one packet. Now, each relay node except those in the last cluster
forwards its packet to ri,j+1; the relay nodes in the last cluster (i.e., all ri,n)
forward the packet to the sink. This gives a flow of value n.

Now suppose we have a flow of value n in C′. We will show that the given
instance of 3-Partition has a solution. Note that the gap between the last relay
node in the last cluster and the sink is

p(t)− p(rn,n) =
√

B +
√

x1 −
√

xn

>
√

B +
√

B/4−
√

B/2 ≈ 0.79
√

B.

The energy required for sending more than one packet over this distance —i.e.,
from any node in the last cluster to the sink— is at least twice this distance
squared (≈ 1.26B), which no node can afford. So if there is n flow in the
network, each relay node in the last cluster must send exactly one packet to
the sink. Similarly, every node in cluster j < n must send exactly one packet
to a node in cluster j + 1.

We cannot rule out that some relay nodes send packets to other nodes in the
same cluster, in addition to their packet to the next cluster. We shall prove
that some nodes (and in particular, all nodes in the first cluster) cannot do
this.

First consider r1,1, the leftmost relay node. By the preceding argument, it must
send a packet to the next cluster. In particular, this must be r1,2: all other
nodes in cluster 2 are more than

√
B away and therefore cannot be reached.

Note that sending this particular packet depletes the battery of r1,1 exactly.

Definition 11 A node is called forced if, when there is n flow in the network,
it necessarily spends all its energy to send exactly one packet.

As we have just argued, r1,1 is forced. The same argument shows that r1,2

must send the packet to r1,3 and so forth, on to the sink. This way, all r1,j are
forced. Therefore, if there is a flow of n packets, one of the packets must take
the path p1 = ( si, r1,1, r1,2, . . . , r1,n, t ), for some source node si.

Lemma 12 For all i, j, if i + j ≤ n + 1 then relay node ri,j is forced.

PROOF. We just argued that all r1,j are forced. We now look at r2,1, the
second relay node in the first cluster. It must send a packet to the next cluster.
It cannot send it to r1,2, however: the battery of that node is already completely
depleted by the packet it must send for path p1, so any packets sent there would
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not be able leave. The packet can be sent to r2,2, at cost exactly B, but it
cannot be sent any further. So r2,1 is also forced, and again there is only one
choice for where to send the packet: via all the relay nodes for x2. This way,
all r2,j are forced, except for r2,n: the distance between r2,n and t is less than√

B and its battery is not exhausted at once.

We now show the lemma with induction on i. We argued above the cases i = 1
and i = 2. Suppose the result holds for i− 1, i ≥ 3. Consider a relay node ri,j,
i+ j ≤ n+1. This node ri,j must send a packet to cluster j +1. Call the node
it sends the packet to ri∗,j+1. Clearly, i∗ ≤ i, since otherwise the transmission
would cost too much energy. We obtain a contradiction if i∗ < i. In that case
ri∗,j is forced (induction hypothesis), so it sends a packet to ri∗,j+1. Also, ri∗,j+1

is forced (again, induction hypothesis), so it sends exactly one packet. Thus
ri,j cannot send a packet to ri∗,j+1. This leaves i∗ = i as the only option, and
hence ri,j is forced. 2

In particular, we have that all ri,1 are forced. This means that all relay nodes
in the first cluster receive exactly one packet from a source node, and spend
all their energy sending this single packet to the next cluster. This is only
possible if the original xi have a valid 3-partition: there is n flow in C′ if and
only if the original 3-Partition instance has a solution.

Again, we need to consider polynomial representation. We will round down
the positions in C′ to multiples of some ε and call the resulting geometric
configuration C′

P.

Lemma 13 The value for ε can be chosen such that C′
P is equivalent to C′

and can be represented in polynomial size.

PROOF. In addition to constraints (1) and (2) there is now an additional
constraint. The construction requires that the forced nodes expend all their
energy reaching a node at distance

√
B. After rounding, this distance might

be only
√

B − ε. This is no problem as long as the node’s remaining energy
is not enough to reach any other node. The smallest distance between two

nodes, again considering the rounding, is
√

B/2−
√

(B − 1)/2− ε. This gives
the constraint

(
√

B − ε)2 + (
√

B/2−
√

(B − 1)/2− ε)2 > B (3)

This bound on ε is Θ( 1
B
√

B
) and can be satisfied by choosing e.g.

ε =
1

5Bd
√

Be
.

This yields a total of Θ(nB2) grid points, leading to Θ(log nB) space per
node. 2
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This concludes the proof of Theorem 10: the Integer Max-Flow WSNC-problem
is strongly NP-complete on geometric configurations on a line, even when all
nodes have equal battery capacity. 2

3.3 Fixed Range Model

Now we return to the case for arbitrary graphs. Suppose that every sensor
node has only a fixed number of power settings. For example, there may be
only one setting, so that every node within the range is considered a neighbor;
or perhaps there are only two settings: short and long range power settings.

It turns out that for the case when there is only one power setting, there is
an easy solution. Since now the energy cost eij is the same for all neighbors j,
the maximum flow capacity fij = bEi/eijc is also fixed for all outgoing arcs of
node i. We can then transform the sensor network into a regular flow network
by using the splitting technique in flow networks as follows. (See e.g. the book
by Ahuja, et al. [1].) Split each node i into two nodes i and i′ and connect
them with an arc with capacity cij = bEi/eijc. The capacity of the original
arcs ij will also all be set to cij, for all ij ∈ A. We then have a new graph
that is a flow network with twice as many nodes and n additional arcs. Then
it is easy to see that this variant of the Max-Flow WSNC problem is just the
standard Max-Flow Min-Cut problem and has a polynomial time algorithm of
O(n3), even in the integer case. This fact has also been noted by Chang and
Tassiulas [8]. For the sake of completeness, we record this fact below.

Theorem 14 If there is only one power setting at each sensor node, then
there is a polynomial time algorithm to solve the Integer Max-Flow WSNC
problem.

The situation changes when the number of fixed power settings is increased
to two.

Theorem 15 If there are two power settings at each sensor node, then there
is no PTAS for the Integer Max-Flow WSNC problem, unless P=NP.

PROOF. We reduce a restricted version of the Generalized Assignment Prob-
lem (GAP) by Chekuri and Khanna [10] to the Integer Max-Flow WSNC
problem with two power settings.

2-size 3-capacity generalized assignment problem (2GAP-3)
Instance: A set B of m bins and a set S of n items. Each bin j has
capacity c(j) = 3 and for each item i ∈ S and bin j ∈ B, we are given a
size s(i, j) = 1 or s(i, j) = 1 + δ (for some δ > 0) and a profit p(i, j) = 1.
Objective: Find a subset U ⊆ S of maximum profit such that U has a
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feasible packing in B.

Chekuri and Khanna [10] show that the 2GAP-3 problem is APX-hard, hence
it does not have a PTAS (unless P=NP).

Given an instance I of 2GAP-3 we create an instance I ′ of the Integer Max-
Flow WSNC as follows. For each bin j ∈ B we have a source node j′ with
energy capacity Ej′ = 3. Corresponding to each item i ∈ S we have a relay
node i′. Each source node j′ is connected to each of the relay nodes i′ by an arc
j′i′ with energy cost ej′i′ = 1 if s(i, j) = 1 and ej′i′ = 1+δ if s(i, j) = 1+δ. We
also have one sink node t. Each of the sensor relay node i′ is further connected
to the sink node t and provided with just sufficient battery power to have the
arc energy cost to send only one packet to the sink node, i.e., we set Ei′ = 1
and ei′t = 1.

As each node i′ that represents an item can forward only one packet, each
arc of the form j′i′, j ∈ B, i ∈ S can also carry at most one packet. Thus,
there is a one-to-one correspondence between integer flows in I fulfilling energy
constraints, and feasible packings of sets of items U ⊆ S: an item i that is
placed in bin j corresponds to a unit of flow that is transmitted from j′ to
i′ and then from i′ to t. The value of the flow equals the total profit of the
packed items.

Thus, we can observe that our reduction is an AP-reduction. As AP-reductions
preserve APX-hardness (see e.g., [3]), we can conclude the theorem. 2

3.4 Approximation Algorithms

As the Integer Max-Flow WSNC problem has no PTAS (unless P=NP), our
hope is to find some approximation algorithms. We first give a very simple
approximation algorithm. Then we give a slightly more involved algorithm
with a better approximation performance.

Theorem 16 There is a ρ-approximation algorithm for the Integer Max-Flow
WSNC problem, where ρ = maxi∈N

maxij∈A eij

minij∈A eij
.

PROOF. Convert the sensor network into a flow network as follows. We give
the edges unbounded capacity and we give each node i the capacity ci =
b Ei

max eij
c. Then a standard Max-Flow Min-Cut algorithm with node capacities

will yield a polynomial time algorithm that is at worst a ρ-factor from the
optimum. 2

Unfortunately the above approximation is not of constant ratio. Note that for
the fixed range model where each sensor has a constant number of fixed power
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settings, the above algorithm does give a constant ratio approximation.

A better approximation algorithm is the following. The key idea is to first
solve the fractional LP-formulation in polynomial time, and then try to find
a large integer flow that is close to the optimum value.

Theorem 17 There is a polynomial time approximation algorithm for the
Integer Max-Flow WSNC problem, which computes an integer maximum flow
with value Fapprox ≥ Foptimum− m, where m is the number of arcs of the graph.

PROOF. We give the proof for the case when there is only one source. It is
a simple exercise to generalize the proof to the case with multiple sources.

First, we solve the relaxation of the problem optimally, i.e., we allow flows to be
of real value. As this is an LP, the ellipsoid method gives us in polynomial time
an optimal solution F ∗, that can be realized within the energy constraints.

We now find a large integer flow inside F ∗ in the following way. We use an
integer flow function F , which invariantly will map each arc ij to a non-
negative integer fij with fij ≤ f ∗ij, and which has conservation of flows; i.e.,
F will invariantly be a flow that fulfills the energy constraints. Initially, set F
to be 0 on all arcs.

Now, repeat the following step while possible. Find a path P from s to t, such
that for each arc ij on the path, f ∗ij − fij ≥ 1. Let fP = minij∈P bf ∗ij − fijc be
the minimum over all arcs ij on the path P . Note that fP ≥ 1. Now add fP

to each fij for all arcs ij on the path P . Observe that the updated function
F fulfills the energy constraint conditions.

The process ends when each path from s to t contains an arc with f ∗ij−fij < 1.
We note that F ∗−F is a flow, and standard flow techniques show that its value
is at most m, the number of arcs. (For let S be the set of nodes, reachable
from s by a path with all arcs fulfilling f ∗ij − fij ≥ 1. Since t 6∈ S, (S, V −S) is
a cut and its capacity with respect to the flow F ∗ − F is at most the number
of arcs across the cut.) Since the value of F ∗ is at least Foptimum, and hence
the value of F is at least Foptimum −m.

In each step of the procedure given above, we obtain at least one new arc ij
with f ∗ij − fij < 1; this arc will no longer be chosen in a path in a later step.
Thus, we perform at most m steps. Each step can be done easily in linear
time. Hence, the algorithm is polynomial, using the time of solving one linear
program plus O(m(n + m)) time for computing the approximate flow. 2

This algorithm is still not of constant ratio but we conjecture that it is a step
towards a 2-approximation algorithm.
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4 Graphs with Bounded Treewidth

Many hard graph problems have polynomial (sometimes even linear) time
algorithms when restricted to graphs of bounded treewidth. This however is
not the case for the Integer Max-Flow WSNC problem: the problem remains
hard. The treewidth parameter nicely delineates the classes of graphs for which
the Integer Max-Flow WSNC is of apparently increasing complexity problem
in the following manner.

• Graphs of treewidth one: These are just forests and have a very simple
linear time algorithm: remove all nodes that do not have a path to the sink
t; compute in the resulting tree in post-order for each node the number of
packets it receives from its children and then the number of packets it can
send to its parent.

• Graphs of treewidth two: We show below that if there is a single source, and
the graph with an edge added between this single source and the sink node
has treewidth two, then then there is a polynomial time algorithm for the
Integer Max-Flow WSNC problem. The general case remains open.

• Graphs of bounded treewidth greater than two: We show that in this case,
the problem is weakly NP-complete. We give a pseudo-polynomial time al-
gorithm for this class.

• Graphs of unbounded treewidth: In this case, the problem is strongly NP-
complete and even APX-hard, as shown in the previous section.

4.1 Graphs of Treewidth Two

In this section, we will show that the Integer Max-flow WSNC problem (with
one source and one sink) is polynomial-time solvable if the treewidth of the
graph obtained by adding an edge from the source to the sink is bounded by
two. While this is a somewhat specific case, we think this case is interesting
because it partially bridges the gap between the trivial case of trees and the
NP-hard case of treewidth three, and because the algorithmic technique is of
some interest: unlike most algorithms that exploit treewidth, it does not use
dynamic programming but a reduction strategy.

For a simple description of the algorithm, we generalize our problem in two
ways. First, we allow parallel arcs. As a consequence, we need to change our
notation somewhat, and denote an arc with its name, instead of by the pair
of endpoints. Parallel arcs may require a different energy per packet that is
transmitted across them. Secondly, we assume that each arc p has a capacity
cp. The capacity of an arc is a positive integer and denotes the maximum
number of packets that can be transmitted across the arc.
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If we have an instance without capacity, we can set for each arc p = ij,
cp = bEi/eijc. Arcs with zero capacity can be removed.

Given a directed graph G = (N, A), with a source s and a sink t, we build the
undirected graph Gu = (N, Au) as follows:

• There is an edge in Au between i and j, if and only if there is at least one
arc from i to j and/or at least one arc from j to i in A.

• We add an edge from s to t.

Gu will be used as an auxiliary graph in subsequent constructions.

Theorem 18 The Integer Max-flow WSNC problem, with parallel arcs and
arc capacities and with a single source s and sink t, can be solved in O(m log ∆)
time on directed graphs G = (N, A), such that the graph (N, A ∪ {st}) has
treewidth at most two, where ∆ is the maximum outdegree of a node in G, and
m = |A|.

Our algorithm is based upon the principle of reduction. While most algorithms
that solve problems on graphs of small treewidth are based upon dynamic
programming, some algorithms are also based upon reduction. (See e.g. [2,7].)

We first need a result on graphs with small treewidth.

Lemma 19 (Ramachandramurthi [19]) If Gu is a simple, undirected graph
of treewidth at most k that is not a clique, then Gu has two non-adjacent ver-
tices of degree at most k.

Corollary 20 If Gu is a simple, undirected graph of treewidth at most two,
with at least three vertices, then there is a vertex of degree at most two that is
neither the source s nor the sink t.

PROOF. If Gu is a clique, then it has exactly three vertices, and the result
trivially holds. Otherwise, let i and j be the two non-adjacent vertices of degree
at most two, as indicated by Lemma 19. At least one of these two vertices is
unequal to s and to t. 2

Now, we can repeat the following step. We first build Gu. Then, we find a
vertex i in Gu that is neither the source s nor the sink t, and that has degree
at most two in Gu (cf. Corollary 20). We now apply a reduction step, that
transforms G to an equivalent network without i, i.e., the number of vertices
is decreased by one. We first describe the reduction step, and then will discuss
a more efficient implementation.

Let i be a vertex in Gu that is unequal to s and t, and that has degree at most
two.
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If i has degree 0 then clearly we can remove i from G, and obtain an equivalent
network.

Suppose now that i has degree one in Gu. This means that there is a vertex
j, such that all arcs in G with i as tail have j as head, and all arcs with i as
head have j as tail. Note that there always is an optimal flow that does not
transmit any packet from and to i. Thus, we can remove i and all arcs that
have i as one of its endpoints.

We now look at the most interesting case, namely that i has degree exactly
two in Gu. Suppose the neighbors of i in Gu are j and k. The arcs with i as
one of its endpoints are of the form:

• from j to i,
• from i to k,
• from k to i,
• from i to j.

Call the arcs of the form ji and ik forward arcs, and arcs of the form ki and
ij backward arcs. Consider a flow with maximum value that has as additional
condition that the total energy used by all nodes is minimal. In such a flow,
either no packets will be transmitted over the forward arcs, or no packets will
be transmitted over the backward arcs. (If both packets are transmitted over
forward and backward arcs, then we can cancel some and obtain a feasible
flow with the same value but smaller total energy.) For this reason, we can
handle forward and backward arcs independently.

First, consider all the forward arcs. We first compute a bound on the number
of packets that i can transmit to k, as follows. Suppose there are b number of
arcs ik. Sort these in order of non-decreasing energy per packet. Let the arcs
have energy per packet e1 ≤ e2 ≤ · · · ≤ eb, and the corresponding capacities
of the arcs c1, c2, . . . , cb. For all q, 1 ≤ q ≤ b, there is always an optimal flow
that only transmits a packet on the qth arc, when all pth arcs, with p < q
have totally used up their capacity. Thus, we can compute a bound Cik on the
number of packets that i can transmit to k as follows.

If
∑b

p=1 ep · cp ≤ Ei, then take Cik =
∑b

p=1 cp. Otherwise, suppose that

q∑
p=1

ep · cp ≤ Ei <
q+1∑
p=1

ep · cp

i.e., we have sufficient energy to use all the capacity of the first q arcs ik, but
not for the first q + 1 arcs. We thus use all capacity of these first q arcs, and
possibly some part of the capacity of the (q+1)th arc. Note that, after we used
up all the capacity of the first q arcs, we only have energy left to transmit at
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most Ei −
q∑

p=1

ep · cp

 /eq+1


packets. Thus, we set

Cik =
q∑

p=1

ep · cp +

⌊
Ei −

∑q
p=1 ep · cp

eq+1

⌋
.

Observe that when Cik packets arrive at i, they all can be forwarded to k, but
we can never transmit more than Cik packets from i to k.

In the reduction, we build a new graph G′, where we have removed i and its
incident arcs, and added possibly a number of arcs between j and k (possibly
in both directions). G′ has vertex set N − {i}, and each arc in G that does
not involve i is also an arc in G′. The arcs of the form jk in G′ are obtained
as follows.

Suppose there are d arcs of the form ji in G. Sort these in order of non-
decreasing energy, and suppose these arcs have energies e1 ≤ e2 ≤ · · · ≤ ed,
with corresponding capacities c1, c2, · · · , cd. Again, we may assume that we
transmit only packets over the arc with energy eq if we have used up all
capacities over all arcs with energy ep, p < q.

If
∑d

p=1 cp ≤ Cik, then we replace each arc of the form ji in G by an arc of
the form jk with the same energy cost and capacity: all packets transmitted
through these arcs can be forwarded to k, so we have the same number of
packets that can go from j to k, using the same amount of energy at j.
Otherwise, suppose that for some node i with 0 ≤ i < s,

q∑
p=1

cp ≤ Cik <
q+1∑
p=1

cp .

By the assumption made above, it follows that we will not be transmitting
packets over the arcs with energy larger than eq+1, and do not use the full
capacity of the (q + 1)th arc. Thus, in G′ we take an arc jk with capacity cp

and energy cost ep for each p ≤ q, and an arc with capacity

c′q+1 = Cik −
q∑

p=1

cp

and energy cost eq+1. (If c′q+1 = 0, we do not take the arc.) Note that the total
capacity of the arcs jk is now Cik. It is not hard to see that we can transmit
the same number of packets in G from j to k via i as over the new arcs jk in
G′.

For the backward arcs, we perform exactly the same step, except that the roles
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of j and k are switched. In this fashion, we obtain an equivalent network, but
now with one less vertex.

This finishes the description of the reduction step. It is straightforward to see
that this step can be done in polynomial time. Different data structures may
help to speed up the performance of the reduction step.

Here, we use the mergeable heap data structure. This data structure performs
the following operations on a collection of elements. Each element has a key and
possibly more information stored. Our collection is partitioned into disjoint
sets. In our data structure, we can create a new set with one new element, with
a key value and possibly other information; for a given set, obtain a pointer
to the object that represents an element with maximum key value (and thus
obtain this maximum, and possibly update the other information); for a given
set, we can delete this element with maximum key value; and for two given
sets, we can take the disjoint union of the two sets, i.e., replace these sets by
their disjoint union. Stylized implementations of mergeable heaps include the
so called binomial heaps and the Fibonacci heaps, see e.g., [11, Chapters 19
and 20].

Lemma 21 There is a data structure that allows unions of sets, obtaining
the element with maximum key, deleting the element with maximum key, and
creating new one element sets, such that each operation takes at most O(log d)
time, where d is the maximum size of any set that is built.

Note that we cannot expect a much faster data structure, otherwise we can
sort d elements using O(d) operations on the data structure; create a set for
each element, then take the union of all sets and then iteratively obtain and
delete the element with maximum key until no elements are left. The order in
which the elements are deleted is sorted, from largest till smallest. Thus, O(d)
operations on the data structure have to cost Ω(d log d) time, or Ω(log d) in
the worst case.

We now describe how the mergeable-heap data structure can be used to obtain
an overall time of O(m log ∆), with ∆ the maximum outdegree of a node in
G.

Note that the outdegree will never increase during a reduction step, and hence
at each point in the algorithm, each node has an outdegree that is at most ∆.

We use a mergeable-heap data structure, with an element for each arc. For
each node i and j, we have a set with all arcs from i to j, if there is at least
one such arc. We also maintain the graph Gu. As keys we use the cost of arcs;
each arc has also its capacity stored. We further store the total capacity of all
arcs from i to j; we denote this value by C ′

ij.
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Now, a reduction step can be carried out as follows. We only consider the
forward arcs as the backward arcs are similar. We use i, j, k, b, and d as in
the description of the reduction step for nodes of degree two in Gu, i.e., we
look at the arcs ji and ik, and obtain arcs jk.

The procedure has three main steps.

First, we consider the arcs from i to k, and compute the value Cik, as described
above. It is not hard to see that we can do this in O(d log d) time, if there are
d such arcs. As each of the arcs from i to k can be deleted after this step, and
i has outdegree at most ∆, the total time of this step over all reductions is
bounded by O(m log ∆).

The second step is only carried out if C ′
ij > Cik. For a faster implementation,

we do not sort the arcs from j to i, but instead we delete and/or update the
capacities of the arcs from j to i in order of non-increasing cost.

We repeat the following step, till C ′
ji ≤ Cik. Obtain from the mergeable-heap

data structure an arc from j to i with maximum cost eji. Using the same
notation as above, suppose this is the pth arc, with cost ep and capacity cp. If
C ′

ij − cp ≥ Cik, then we delete this arc with maximum cost, and decrease C ′
ij

by cp. This operation can be done in O(log ∆) time on the mergeable-heap
data structure. If C ′

ij − cp < Cik, then we must update the capacity of the arc:
its new capacity must be Cik−Cji + cp, as Cji− cp is the sum of the capacities
of the first p− 1 arcs from j to i (in order of non-decreasing cost). We also set
Cji to Cik.

One can verify that this step indeed gives the same collection of arcs and
capacities as the procedure described above where we first sorted the arcs in
order of non-decreasing cost. Note that all but possibly one of the forward
arcs that we considered are permanently deleted. Thus, if we delete d arcs
in a reduction step, the step can be carried out in O((d + 1)∆) time, which
amounts to a total of O(m log ∆).

In the third step, all arcs from j to i now become arcs from j to k. We do
not need to update this information for each arc, as it is sufficient if each set
knows the endpoints of the arcs it represents. The third step has two cases. If
before the reduction, there was a data structure with arcs from j to k, then
we take the union of the data structure for arcs ji and arcs jk: these arcs now
all are arcs from j to k. If there were no arcs from j to k before the reduction,
then the data structure for the arcs ji now acts as data structure for arcs jk.

The time for this third step thus is dominated by the time for one union in
the mergeable-heap data structure, i.e., it costs O(log ∆) per reduction. As we
perform O(n) reduction, the total time over all third steps is O(n log ∆).
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Thus, the total time is bounded by O(m log ∆). This completes the proof of
Theorem 18.

The problem for treewidth two graphs with multiple sources is still open.
If we apply the construction from Section 4.2 that transforms a graph with
treewidth three with multiple sources to a graph with one source, then in
many cases, the treewidth grows to three. So the Integer Max-Flow WSNC
problem for general graphs of treewidth two remains open.

4.2 Graphs of Bounded Treewidth Greater than Two

Our second result on treewidth is that the Integer Max-Flow WSNC problem
is NP-hard for graphs of treewidth three. This shows that a result like the
previous one for treewidth two graphs cannot be found when the treewidth is
three or more.

Theorem 22 The Integer Max-Flow WSNC problem is NP-hard for graphs
of treewidth three.

The proof resembles the proof of strong NP-hardness for general graphs, but
we use here the (weak) NP-complete problem 2-partition instead of the
strong NP-complete problem 3-partition.

2-Partition
instance: Given a multiset S of n positive integers a1, . . . , an and a positive
integer B =

∑n
i=1 ai/2.

question: Can S be partitioned into two subsets each of equal sum B.

PROOF. Given an instance I of 2-Partition, we create an instance I ′ of
the Integer Max-Flow WSNC problem as follows.

Each number ai represents a sensor node wi each with energy Ei = B. Addi-
tionally, we have a source node s and sink node t along with two special nodes
v1 and v2, each of them with energy B. Now connect each vj (j = 1, 2) to each
wi with arc cost eji = ai. The source node s is connected to v1 and v2 with
arc cost 1 each, and each node wi is connected to the sink node t with cost B.

Now, there is an energy constrained flow with n packets from s to t, if and
only if a1, . . . , an can be partitioned into two subsets, each of sum B.

If a1, . . . , an can be partitioned into two subsets S1, S2, each of sum B, then
we can build a flow as follows: s transmits |S1| packets to v1 and |S2| packets
to v2. For each ai ∈ S1, v1 transmits a packet to wi, and similarly for each
ai ∈ S2, v2 transmits a packet to wi, each packet consuming ai energy from
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each node. Finally, each wi now transmits one packet to t. This fulfills the
requirements of transmitting n packets from s to t.

Suppose now there is an energy constrained maximum flow of n packets from
s to t. Note that each wi can transmit at most one packet to t, and as there
are n packets to t, each wi must transmit exactly one packet to t. So, for each
i, either v1 or v2 transmits a packet to wi. If v1 transmits a packet to wi, then
put ai in S1, otherwise put ai in S2. It is clear that S1 and S2 partition S. For
each element ai ∈ S1, v1 must transmit a packet with cost ai, hence the sum
of the elements in S1 is at most B. Similarly, the sum of the elements in S2 is
at most B, and as the sum of all ai’s equals 2B, the sum of all elements in S1

equals B, and likewise for S2. 2

The constructed graph has a feedback vertex set of size two: if we remove v1

and v2 of the graph, we obtain a forest. Thus, it has treewidth at most three
(see e.g. [5]). Its treewidth is also at least three, as it contains the complete
graph K4 as a minor (remove w3, . . . , wn, contract s to v1, and w2 to t). Hence
it has treewidth exactly three. The result also rules out a polynomial time
algorithm for the Integer Max-Flow WSNC problem on graphs of bounded
treewidth, unless P=NP.

However, we show now that there is a pseudo-polynomial time algorithm when-
ever the treewidth is bounded.

Theorem 23 The Integer Max-Flow WSNC problem can be solved in pseudo-
polynomial time on graphs of bounded treewidth.

PROOF. We begin with a number of auxiliary definitions. A boundary di-
rected graph is a triple (N, A, X), with (N, A) a directed graph, and X ⊆ N a
set of distinguished vertices, called the boundary.

Suppose (N ′, A′, X) is a boundary directed graph with (N ′, A′) a subgraph of
the given graph G = (N, A), with given costs and energies, and source s and
sink t.

A partial energy constrained flow, or in short pecf, in this boundary directed
graph is a function that assigns to each arc ij in A′ a flow-value, such that

• for all i ∈ N ′ − {s, t}, the inflow of i equals the outflow of i, and
• for all i ∈ N ′, the cost of the outflow of i is at most Ei.

The signature of a pecf is a pair (q, ε), with q a function that maps each i ∈ X
to the outflow of i minus the inflow of i:

q(i) =
∑
ij∈A

fij −
∑
ji∈A

fji
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and ε a function that maps each i ∈ X to the used energy at sensor i:

ε(i) =
∑
ij∈A

fij · eij .

For ease of notation, we also use fij when there is no arc ij ∈ A; in such a case,
fij = 0. The algorithm we will design uses a special type of tree decomposition:
a nice tree decomposition where, in addition to the usual requirements, we
assume that the root of the tree decomposition r has a bag that contains only
s: Xr = {s}. A nice tree decomposition has four types of nodes:

• Leaf nodes: node α which is a leaf of the tree with |Xα| = 1.
• Introduce nodes: node α with one child β with Xα = Xβ ∪ {i} for some

node i.
• Forget nodes: node α with one child β, with Xα = Xβ −{i} for some node

i.
• Join nodes: node α with two children β, γ with Xα = Xβ = Xγ.

For each node α in the tree decomposition, we define a boundary directed
graph Gα = (Nα, Aα, Xα), with Nα the set of all vertices in Xα or Xβ with β
a descendant of α, and Aα the set of all arcs in A between vertices in Nα.

A small modification of the construction in [6] shows that we can obtain in
linear time, given a tree decomposition of width at most k of a graph G, a
nice tree decomposition of G of width at most k, such that the root node r
has Xr = {s}.

Our algorithm mainly consists of iteratively computing for each node α in the
tree decomposition a table consisting of all signatures of all pecf’s in Gα. The
tables are computed in post-order, i.e., we compute a table for a node when
the tables of its children are known.

Note that the size of each table is pseudo-polynomial, as there are pseudo-
polynomially many signatures of pecf’s in Gα: for each i ∈ Xα, ε(i) is an
integer between 0 and Ei, the outflow of i is an integer between 0 and Ei, the
inflow of i is an integer between 0 and

∑
ji∈A Ej, and hence q(i) is an integer

between −∑ji∈A Ej and Ei.

We now give for each of the four types of nodes a description of a procedure
that computes for a node α the table of all signatures of all pecf’s in Gα, given
such tables for the children of α.

Leaf nodes: It is trivial to see that the table can be computed directly for a
Leaf node.
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Introduce nodes: Suppose α is an Introduce node with β the unique child
of α and Xα = Xβ ∪ {i}. See Algorithm 1. For each element (qσ, εσ) from
the table of signatures of pecf’s in Gβ, the algorithm does the following. It
enumerates all assignments of flow values to all arcs ij ∈ A and ji ∈ A, where
fij is an integer between 0 and Ei, and fji is an integer between 0 and Ej. For
each of these assignments of flow values, it computes a corresponding signature
for a pecf in Gα, checks if no vertex in Xα uses too much energy, and if so,
stores it in the table for α.

Algorithm 1 Computation for Introduce nodes

for each signature (qσ, εσ) for β do
for each assignment fij ∈ {0, . . . , Ei} for all j ∈ Xβ with ij ∈ A do

for each assignment fji ∈ {0, . . . , Ej} for all j ∈ Xβ with ji ∈ A do
{determine a signature σ′ = (q′, ε′)}
εσ′(i) =

∑
j∈Xβ

fij · eij

for all j ∈ Xβ do
εσ′(j) = εσ(j) + fji · eji

end for
qσ′(i) =

∑
j∈Xβ

fij −
∑

j∈Xβ
fji

for all j ∈ Xβ do
qσ′(j) = qσ(j) + fji − fij

end for
if for all j ∈ Xα: εσ′(j) ≤ Ej then

store σ′ in the table of signatures for α
end if

end for
end for

end for

Lemma 24 Algorithm 1 correctly computes the table of signatures of all pecf ’s
in Gα for an Introduce node α.

PROOF. Suppose g is a pecf in Gα. Let g′ be the pecf in Gβ, obtained by
restricting g to the arcs in Gβ. Consider the iteration in Algorithm 1, where
fij = gij and fji = gji for all j ∈ Xβ, and where (qσ, εσ) is the signature of g′.
It is not hard to verify that we need to store the signature of g in this iteration,
if the energy constraint is satisfied. So, we store the signature of each pecf in
Gα.

Suppose we store a signature σ′ in the table, and suppose this is in the iteration
where we use signature (qσ, εσ) for β, and values fij, fji for all j ∈ Xβ. Let g′

be the pecf in Gβ with signature σ. Let g be the function, obtained by taking
gij = fij, gji = fji for all j ∈ Xβ, and gj` = g′j` for all arcs j` in Gβ. One
can verify that σ′ is the signature of g. Thus, the element in the table is the
signature of a pecf in Gα. 2
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Forget nodes: Suppose α has one child β, with Xβ = Xα − {i}. Note that
i 6= s, as the root of the tree decomposition contains s. See Algorithm 2.

Algorithm 2 Computation for Forget nodes

for each signature (qσ, εσ) for β do
if qσ(i) = 0 or i = t then
{determine a signature σ′ = (q′, ε′)}
for all j ∈ Xα do

qσ′(j) = qσ(j)
εσ′(j) = εσ(j)

end for
store σ′ in the table of signatures for α

end if
end for

Note that Gα and Gβ have the same vertex and arc sets. As the boundary of
Gα is a subset of the boundary of Gβ, each pecf in Gα is a pecf in Gβ. A pecf
in Gβ is also a pecf in Gα, if and only if the inflow for i equals the outflow or
i ∈ {s, t}. This is because i is a new internal vertex. Because the root of the
tree decomposition contains s, we have i 6= s, and the condition can be stated
as qσ(i) = 0 or i = t. If this condition holds, Algorithm 2 stores the restriction
of the signature to the nodes in Xα in the table of signatures for α. Thus:

Lemma 25 Algorithm 2 correctly computes the table of signatures of all pecf ’s
in Gα for a Forget node α.

Join nodes: Suppose α has two children β and γ, with Xα = Xβ = Xγ.

Below, we assume a function to be 0 for all elements outside its domain.

Lemma 26 Let f be a function, mapping each arc in Gα to a non-negative
integer. Then f is a pecf in Gα, if and only if there is a pecf f ′ in Gβ and a
pecf f ′′ in Gγ, with

(1) f = f ′ + f ′′, and
(2) for all i ∈ Xα,

∑
ij∈A, j∈Ni

fij ≤ Ei.

PROOF. Suppose f is a pecf in Gα. Let f ′ be the restriction of f to the
arcs in Gβ. Let f ′′ be obtained by taking f ′′ij = 0 if i ∈ Xα and j ∈ Xα, and
f ′′ij = fij for all arcs in Gβ with at least one endpoint not in Xα. One can
verify that f ′ is a pecf in Gβ, and f ′′ is a pecf in Gγ. Clearly f = f ′ + f ′′. The
last stated condition follows directly, as f is a pecf in Gα.

Now, suppose we have a pecf f ′ in Gβ and a pecf f ′′ in Gγ that fulfill the two
conditions. Note that when the inflow equals the outflow for a node i in f ′

and in f ′′, it also does so in f = f ′+f ′′. So, the first condition of a pecf holds,
and the second condition holds by assumption. 2
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We now compute the table of the signatures of the pecf’s in Gα. See Algorithm
3.

Algorithm 3 Computation for Join nodes

for each signature (qσ, εσ) for β do
for each signature (qσ′ , εσ′) for γ do
{determine a signature σ′ = (q′, ε′)}
for all i ∈ Xα do

εσ′′(i) = εσ(i) + εσ′(i)
qσ′′(i) = qσ(i) + qσ′(i)

end for
if for all i ∈ Xα: εσ′′(i) ≤ Ei then

store σ′′ in the table of signatures for α
end if

end for
end for

We now establish its correctness.

Lemma 27 Algorithm 3 correctly computes the table of the signatures of
pecf ’s in Gα for a Join node α.

PROOF. One can verify that if σ is the signature of a pecf f ′ in Gβ, and
σ′ is the signature of a pecf f ′′ in Gγ, then the signature σ′′ as computed by
Algorithm 3 is the signature of f ′ + f ′′. Correctness follows now directly from
Lemma 26. 2

We now complete the proof of Theorem 23. Using the procedures for the
different types of nodes, we can compute all tables, in post-order. As each
table has pseudo-polynomial size, and the time per table is polynomial in the
number of signatures of the tables of the children for Join, Introduce and
Forget nodes, and O(1) for Leaf nodes, this costs pseudo-polynomial time.

Lemma 28 F packets can be transmitted from s to t in the network, if and
only if the table of the root r of the tree decomposition contains a signature
(q, ε) for some ε with q(s) = F .

PROOF. Note that Gr has the same vertices and arcs as G. Thus, a pecf in
G is a flow in G that fulfills the energy constraint, and vice versa. The value
of a flow with signature (q, ε) equals q(s). Now the lemma follows. 2

After all tables have been computed, we can find the value of the optimal flow
by inspecting the table of the root node: by Lemma 28, this value equals the
maximum F , such that a signature (q, ε) for some ε with q(s) = F belongs to
the table of the root of the tree decomposition. With additional bookkeeping,
one can also find the corresponding flow. 2
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5 Conclusion

The Maximum Flow WSNC problem is an interesting and relevant problem,
with practical implications in the context of wireless ad hoc networks. In this
paper, we studied the integer variant of the problem. We obtained a good
polynomial time approximation algorithm for the problem, which is however
not of constant performance ratio. We also studied how the complexity of the
problem depends on the treewidth of the network. We found that except for
the case where each sensor has one fixed power setting or when the underlying
graph is of treewidth two with an edge joining the source and sink nodes, the
problem is weakly NP-complete for bounded treewidth greater than two. It is
strongly NP-complete for networks of unbounded treewidth and in fact even
APX-hard. It is also strongly NP-complete on geometric configurations on a
line.
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