
Towards a Definition of Higher Order
Constrained Delaunay Triangulations

Rodrigo I. Silveira

Marc van Kreveld

Department of Information and Computing Sciences, Utrecht University

Technical Report UU-CS-2008-007

www.cs.uu.nl

ISSN: 0924-3275



Towards a Definition of

Higher Order Constrained Delaunay Triangulations ∗

Rodrigo I. Silveira† Marc van Kreveld†

Abstract

When a triangulation of a set of points and edges is required, the constrained Delaunay
triangulation is often the preferred choice because of its well-shaped triangles. However, in
applications like terrain modeling, it is sometimes necessary to have flexibility to optimize
some other aspect of the triangulation, while still having nicely-shaped triangles and
including a set of constraints.

Higher order Delaunay triangulations were introduced to provide a class of well-shaped
triangulations, flexible enough to allow the optimization of some extra criterion. But
they are not able to handle constraints: a single constraining edge may cause that all
triangulations with that edge have high order, allowing ill-shaped triangles at any part of
the triangulation.

In this paper we generalize the concept of the constrained Delaunay triangulation to
higher order constrained Delaunay triangulations. We study several possible definitions
that assure that an order-k constrained Delaunay triangulation exists for any k ≥ 0, while
maintaining the character of higher order Delaunay triangulations of point sets.

Several properties of these definitions are studied, and efficient algorithms to support
computations with order-k constrained Delaunay triangulations are also discussed. For
the special case of k = 1, we show that many measures can be optimized efficiently in the
presence of constraints.

1 Introduction

Higher order Delaunay triangulations [11] are a generalization of the Delaunay triangulation.
They provide a class of triangulations that are reasonably well-shaped, depending on a pa-
rameter k. A triangulation is order-k Delaunay if the circumcircle of the three vertices of any
triangle contains at most k other points. If no four points are cocircular, for k = 0 there is
only one higher order Delaunay triangulation, equal to the Delaunay triangulation. As k is
increased, the shape quality of the triangles may decrease, but the number of triangulations
generally increases, and hence there is more flexibility to optimize some other criterion. The
concept of higher order Delaunay triangulation has been successfully applied to several areas,
including terrain modeling [7], minimum interference networks [2] and multivariate splines
[16].

When working with triangulations it is often the case that a given set of edges must be
included in the triangulation. We refer to these edges as constraints, or constraining edges. For

∗This research has been partially funded by the Netherlands Organisation for Scientific Research (NWO)
under the project GOGO.

†Department of Information and Computing Science, Utrecht University, the Netherlands, {rodrigo,
marc}@cs.uu.nl

1



C(u, v, w)

u

v

w

Figure 1: A point set is augmented with some constraining edges (in gray), which must be
incorporated into the triangulation. Any triangulation of this point set that includes the gray
edges must include triangle 4uvw, which has a very high order. This allows all the other
triangles to have high order too.

example, in mesh generation, the mesh must respect the boundary edges of the components.
When working with polyhedral terrains for hydrologic applications, it is common to augment
the terrain with the edges representing the drainage network [6]. Other uses of constrained
triangulations include hierarchical surface models [5], terrain data integration [14] and map
generalization [22].

Regardless of the reason for including a set of edges, in many cases it is important that
the triangulation containing them has nicely-shaped triangles. The constrained Delaunay tri-
angulation (CDT) [4] includes a given set of edges and is “as close as possible to the Delaunay
triangulation”. This is achieved by relaxing the empty-circle property of the Delaunay tri-
angulation: points are allowed inside the circumcircles of the triangles if they are separated
from the triangle by some constraining edge.

The only previous work on order-k Delaunay triangulations with constraints focuses on
finding a lowest-order Delaunay triangulation that includes a given set of edges [12], but
the definition of order used does not depend on the constraints. Until now, there was no
concept equivalent to the CDT for higher order Delaunay triangulations. That implies that
if one of the constraints causes the inclusion of a triangle of very high order, then the whole
triangulation will have at least that order (see Figure 1). Therefore, all the triangles, even
the ones far away from these constraints, will be allowed to have that very high order, and,
more important, a not very good shape.

The need for a higher order version of the constrained Delaunay triangulation arises in
situations where three requirements need to be met: (i) the triangulation must include a set
of constraints, (ii) the triangulation must be well-shaped (that is, triangles should be close to
equilateral) and (iii) some extra quality criterion must be optimized. The constrained Delau-
nay triangulation addresses only the first two requirements, whereas higher order Delaunay
triangulations address only the last two.

Situations in which these three requirements are present arise, for example, in terrain
modeling. For certain uses of terrain models, such as for intervisibility (determining whether
an observer at a given point can see another point on the surface) or drainage analysis
(for example, computing basin boundaries), it is common to augment the existing terrain
model (based solely on elevation data) with a set of surface-specific features like peaks, pits,

2



passes, (point features), together with ridges and valleys (edge features) that connect them.
These topographic features play an important role in these types of application, and their
incorporation into the terrain model improves the consistency between the model and the
real terrain [1, 10, 19]. When the terrain is represented by a polyhedral terrain (also known
as triangulated irregular network or TIN), the edge features (ridge and valley edges) act as
constraints that must be part of the triangulation. The triangle shape is also important,
in particular, for both the analysis and visualization of the terrain, long and thin triangles
should be avoided [19]. Finally, there are several extra criteria relevant to terrain analysis
that can be optimized, like minimizing the number of local minima or minimizing the angle
between surface normals [8, 15, 20, 24].

In this paper we address the problem of defining higher order constrained Delaunay tri-
angulations. We achieve this by proposing several definitions of the constrained order of a
triangle, which take the constraints into account when counting the number of points inside
the circumcircles of the triangles. In the standard definition, the order of a triangle is defined
as the number of points inside its circumcircle (every point is counted). The new definitions
proposed try to reflect that some triangles may have a bad shape because of the constraints,
thus their order should be defined in a different way. By defining these triangles to have a
lower order than by the standard definition, the order of the whole triangulation is also kept
lower.

This paper is structured as follows. We start by proposing several definitions for the
notion of constrained order of a triangle in Section 2. The next two sections study two algo-
rithmic problems that are important for dealing with higher order Delaunay triangulations:
computing the order of one triangle (Section 3) and computing all order-k constrained De-
launay triangles (Section 4). Section 5 studies the situation in which the constraints define a
simple polygon, and presents more efficient algorithms for computing the order of a triangle
in this case. In Section 6 we study the particular structure of first order constrained Delaunay
triangulations (that is, k = 1), and show that several measures can be efficiently optimized
over this class of well-shaped constrained triangulations. Finally, in Section 7, we provide
some concluding remarks.

From now on, we assume non-degeneracy of the input set P: no four points are cocircular.
For brevity, we will sometimes write order instead of constrained order.

2 Proposed definitions

Any suitable definition of order-k constrained Delaunay (k-OCD) triangulations must be in
line with the idea of the CDT and, at the same time, be consistent with the spirit of higher
order Delaunay triangulations of point sets. We summarize this by establishing a list of
properties that a suitable definition should satisfy:

1. For k = 0 there is only one constrained triangulation, which is the CDT.
2. If there are no constraining edges, any k-OCD triangulation is a k-OD triangulation,

and any k-OD triangulation is a k-OCD triangulation.
3. As k increases, the number of k-OCD triangulations also increases or stays the same.
4. If a point or endpoint of a constraint moves slightly, the constrained order changes only

slightly (this is made more precise below).
5. The definition is intuitive for triangulations of polygons.

3



6. The definition is intuitive for triangulations of points with constraining edges.

The last two properties are subjective and will not be explicitly addressed, although all
the definitions proposed here are meant to be intuitive generalizations of the standard one.
The important part in any definition of higher order constrained Delaunay triangulations is
defining when a point inside the circumcircle of a triangle must be counted. We propose
seven different definitions, where what varies is when a point is counted in the constrained
order. Recall that according to the standard definition, which we will denote STD, all points
are counted.

Let u, v, w ∈ P and let C = C(u, v, w) be the circle through u, v and w. Suppose we want
to compute the order of 4uvw. No other point can be in 4uvw, otherwise it is not a triangle
in the triangulation. In the definitions below, points p, r and s lie inside C, and belong to P.
Note that uv, vw and wu can be constraints.

PATHCON (Path connected). A point p is counted if and only if there is a constraint-free
path contained in C that connects p to some point interior to 4uvw.

SEESTRIANG (Sees triangle). A point is counted if and only if it can see some point in
the interior of 4uvw.

SEESVTX (Sees vertex of triangle). A point p is counted if and only if it can see some
vertex of 4uvw and some point in its interior.

CONFEDGE (Conflicting edge). A point p is counted if and only if there is a point r, in
C or in {u, v, w}, such that pr intersects the interior of 4uvw, and does not intersect
any constraint.

SEESOPP (Sees opposite). A point p is counted if and only if it sees the opposite vertex
of the triangle, that is, the vertex x ∈ {u, v, w} such that px intersects the interior of
4uvw.

SEES3VTX (Sees 3 vertices). A point p is counted if and only if it can see u, v and w.
EMPTYQUAD (Empty quadrilateral). A point p is counted if and only if the quadri-

lateral formed by the three vertices of 4uvw and p is empty, and the edge of 4uvw
that is a diagonal of the quadrilateral is not a constraint. This corresponds to the idea
of being able to flip one edge of 4uvw.

Figure 2 shows an example where the different definitions can be compared. The strongest
(most restrictive) definition is the standard one, where every point in the circumcircle is
counted. As the requirements for a point to be counted increase, the definitions become
weaker (less restrictive).

We now make Property 4 more precise. Assume that in some triangulation, a vertex p ∈ P
moves, without changing the structure of the triangulation. Then a change in the order of
the triangulation in all definitions can only occur if p becomes collinear with two points or
cocircular with three points. We call this a criticality during the move of p. Property 4 should
be interpreted such that if any point moves through only one criticality, then the order of the
triangulation changes by at most one.

We make the following simple observation.

Observation 1 All the previous definitions satisfy Properties 1 to 6, except for PATHCON,
which does not satisfy Property 4, and for EMPTYQUAD, which does not satisfy Property 2.

4



STD (k = 10) PATHCON (k=9) CONFEDGE (k=7)SEESTRIANG (k=8)

SEESVTX (k=6) SEESOPP (k=5) SEES3VTX (k=4) EMPTYQUAD (k=2)

Figure 2: What is the order (k) of the gray triangle? Different definitions yield different
orders. For each definition, the points that are counted are drawn as discs and the ones that
are not counted as empty circles. Constraints are drawn with thick edges.

Figure 3 gives the examples of this observation for both definitions. On the left, the order
of a triangle under PATHCON can increase by an arbitrary number if w is moved in such a way
that the shaded region becomes connected to 4uvw. On the right, an example shows that
the order according to EMPTYQUAD can be arbitrarily much smaller than the standard order,
even when there are no constraints.

Even though some of the definitions do not satisfy all the desired properties, this does not
mean they cannot be of use. Therefore in the next sections we still consider them as possible
definitions that one may want to use. In what follows we analyze the way the different
definitions relate to each other.

Definition 1 Given a point set P and set of constraints C, we define Tk(P, C, DEF), where
DEF is one of the definitions from above, as the set of all order-k constrained Delaunay trian-
gulations of P and C, using the definition DEF to compute the order of the triangles.

Lemma 1 For higher order constrained Delaunay triangulations of a point set P with con-
straining edges C (which can define a polygon), the following inclusion relations hold:

• Tk(P, C, STD) ⊆ Tk(P, C, PATHCON) ⊆ Tk(P, C, SEESTRIANG) ⊆ Tk(P, C, SEESVTX) ⊆
Tk(P, C, SEESOPP) ⊆ Tk(P, C, SEES3VTX) ⊆ Tk(P, C, EMPTYQUAD)

• Tk(P, C, SEESTRIANG) ⊆ Tk(P, C, CONFEDGE) ⊆ Tk(P, C, SEESOPP)
Proof: We begin with the first series of inclusions. We prove the pairs of consecutive

relations from left to right. Let T be a constrained triangulation of P and C. Denote the order
of the highest order triangle in T , using definition DEF, by θ(T, DEF). Clearly, if θ(T, DEF) = k,
then T ∈ Tj(P, C, DEF) for any j ≥ k.

The first inclusion follows immediately because PATHCON counts only points that are inside
the circumcircle of the triangle, hence any point counted under PATHCON will be counted under
the standard definition too.

5



x

z

y

u

w

v

Figure 3: Left: with PATHCON, the points in the shaded area will not be counted for 4uvw.
However, if w is moved an arbitrarily small distance towards uv, they will all be counted.
Right: the order of a triangle, using EMPTYQUAD definition, can be smaller than with respect to
the standard definition even when no constraints are present. Triangle 4xyz has constrained
order 1, no matter how many points lie in the shaded region, and despite the fact that no
constraints are involved.

Assume now that θ(T, PATHCON) = k. Any point that is counted under SEESTRIANG
can be connected by a line segment to the triangle, therefore will also be counted under
the PATHCON definition. It follows that θ(T, SEESTRIANG) ≤ θ(T, PATHCON) = k, hence T ∈
Tk(P, C, SEESTRIANG).

The inclusion Tk(P, C, SEESTRIANG) ⊆ Tk(P, C, SEESVTX) follows immediately by defini-
tion.

The next two inclusions follow from the basic fact that seeing the opposite vertex implies
seeing a vertex, and seeing the three vertices implies seeing, in particular, the opposite one.
Finally, if a point can be used to create a (flippable) empty quadrilateral, it must see the
three vertices of the triangle, hence Tk(P, C, SEES3VTX) ⊆ Tk(P, C, EMPTYQUAD).

We now prove the second series of inclusions. For the leftmost inclusion note that conflict-
ing edges always intersect the triangle in question, hence if a point is counted under CONFEDGE,
it can also see the triangle and will be counted under SEESTRIANG. The rightmost inclusion
follows from the fact that if a point can see the opposite vertex, then it can use that vertex
to create a conflicting edge, hence that point is also counted for CONFEDGE. £

Figure 4 shows two examples where it can be seen that Tk(P, C, SEESVTX)* Tk(P, C, CONFEDGE)
and Tk(P, C, CONFEDGE) * Tk(P, C, SEESVTX). The relation between the different definitions
is illustrated in Figure 5.

Lemma 2 For higher order constrained Delaunay triangulations of a simple polygon defined
by a point set P and constraints C, Tk(P, C, SEES3VTX) = Tk(P, C, EMPTYQUAD)

Proof: Let t = 4uvw be a triangle in a triangulation T ∈ Tk(P, C, EMPTYQUAD). Let
p ∈ P be a point in C(u, v, w) that can see the three vertices of t. Line segments pu, pv
and pw do not intersect any constraint. There cannot be any point q ∈ P inside the quadri-
lateral defined by {p, u, v, w}, because some edge should intersect one of the three segments
mentioned above since q must be a vertex of the polygon boundary. Hence {p, u, v, w} is
an empty quadrilateral and p counts for the order of t under EMPTYQUAD. Therefore all the
points counted for SEES3VTX are also counted for EMPTYQUAD, hence Tk(P, C, EMPTYQUAD) ⊆

6



SEESVTX (k=2)
CONFEDGE (k=1)

SEESVTX (k=3)
CONFEDGE (k=4)

Figure 4: Examples showing that Tk(P, C, SEESTRIANG) * Tk(P, C, CONFEDGE) and
Tk(P, C, CONFEDGE) * Tk(P, C, SEESTRIANG).

Tk(P, C, STD)

Tk(P, C, PATHCON)

Tk(P, C, SEESTRIANG)

Tk(P, C, SEESVTX)

Tk(P, C, CONFEDGE)

Tk(P, C, SEESOPP)

Tk(P, C, SEES3VTX)

Tk(P, C, EMPTYQUAD)

Figure 5: Inclusion relations between the different classes of triangulations.

7



Tk(P, C, SEES3VTX). The other inclusion follows directly from Lemma 1. £

The notion of useful edge plays an important role in higher order Delaunay triangulations.
We define the constrained version as follows.

Definition 2 Let P be a set of points in the plane, and C a set of constraints. An edge uv
with u,v ∈ P is useful order k, under definition DEF, if there exists an order-k constrained
Delaunay triangulation of P (under DEF), with respect to C, that includes uv.

It is convenient to have efficient algorithms to test whether an edge is useful order-k, for
example to speed up the computation of all the order-k triangles (see Section 4). In the case
of (unconstrained) higher order Delaunay triangulations, this can be achieved by looking at
the order of two specific triangles adjacent to the edge. Below we study the situation in the
presence of constraints.

Lemma 3 Let uv be an edge with u, v ∈ P, let s1 the point to the left (right) of −→vu, such that
the circle C(u, s1, v) contains no points to the left (right) of −→vu, in the constrained Delaunay
sense, and such that us1 and vs1 do not intersect any constraint. If 4uvs1 is not a k-COD
triangle under definition SEESOPP or stronger, then uv is not a useful order-k edge under that
definition.

Proof: The proof follows the one for the unconstrained version (proof of Lemma 3 in
[11]). Assume 4us1v is not a k-COD triangle under SEESOPP. It follows that C(u, s1, v)
contains more than k points to the right of −→vu that can see the opposite vertex, namely s1.
Suppose that still a k-COD triangulation T exists that includes uv. Let 4usiv be the triangle
in T to the left of −→vu. Assume w.l.o.g. that point si lies such that usi intersects vs1. Let p1

and p2 be two points such that 4s1p1p2 is in T and it intersects the triangle 4uvs1 (possibly,
p1 = u or p2 = si). The circle C(s1, p1, p2) includes the whole part of C(u, v, s1) to the right
of −→vu since p1 or p2 lie outside C(u, v, s1). Moreover, the opposite vertex of 4s1p1p2, for the
points to the right of −→vu, is also s1. Therefore the order of 4s1p1p2, under SEESOPP, is at least
the order of 4us1v, hence cannot be order-k, contradicting the assumption that a k-COD
triangulation exists with uv. £

In the unconstrained case [11], the previous result is complemented with a result stating
that if both triangles 4uvs1 and 4uvs2 (the symmetric triangle to the right of −→vu) are order-
k, then uv can be completed to an order-k triangulation. The result is shown by presenting
an algorithm to compute what the authors call the greedy triangulation of the edge.

In our context, the greedy triangulation of an edge uv can be defined constructively as
follows. See Figure 6 for an example. Let uv be a k-COD edge. Take as initial triangulation
the constrained Delaunay triangulation of P and C, removing all the edges that intersect uv.
The remaining empty area is called the hull of uv. We explain how to triangulate this hull.
Let s1 be the point to the right of −→vu such that the part of C(u, v, s1) to the right of −→vu is
empty (in the constrained Delaunay sense), and such that us1 and vs1 do not intersect any
constraint. Add the two edges us1 and vs1 to the triangulation (they may be constraints that
are already present). Continue like this recursively for the two edges us1 and vs1 until the
hull of uv to the right of −→vu is completely triangulated. The same procedure is then performed
on the left side of −→vu.

8



u

v

u

s1

v

u

s1

v

u

s1

v

s2

(a) (b) (c) (d)

Figure 6: (a) Constrained Delaunay triangulation. (b) Edge uv is inserted, the crossing edges
from the CDT removed. (c) The first step of the greedy triangulation adds edge us1, (d) the
second step adds us2, triangulating the right part of the hull of uv.

This triangulation has the property that all the triangles used that are not Delaunay have
a circumcircle that can only contain points that were already contained in C(u, v, s1). In the
constrained case, this property is not always enough to guarantee that the order of the new
triangles is never more than k. For example, in Figure 6, with definition SEESOPP, 4uvs1 is
order 4, whereas 4us1s2 is order 5. However, it is easy to observe that the property remains
valid for definitions PATHCON and SEESTRIANG. This observation, together with Lemma 3,
implies the following.

Corollary 1 Let uv be an edge with u, v ∈ P, let s1 the point to the left of −→vu, such that the
circle C(u, s1, v) contains no points to the left of −→vu, in the constrained Delaunay sense, and
such that us1 and vs1 do not intersect any constraint. Let s2 be defined similarly but to the
right of −→vu. Edge uv is a useful k-COD edge under definition DEF ∈ {PATHCON, SEESTRIANG}
if and only if 4uvs1 and 4uvs2 are k-COD triangles, under definition DEF.

Therefore for PATHCON and SEESTRIANG the same test used for the unconstrained version
works in the presence of constraints. For two other definitions it is still possible to test whether
an edge is useful or not, using the same idea. The following result is proved for SEESOPP, and
automatically holds for CONFEDGE as well.

Lemma 4 For definitions CONFEDGE and SEESOPP, if uv is useful order-k then the greedy
triangulation has constrained order k.

Proof: Let uv be a useful order-k edge under SEESOPP. Let s1 be the point to the left
of −→vu defined as in the previous lemmas. Since uv is useful order-k, it follows from Lemma 3
that triangle 4uvs1 is order-k. Suppose the greedy triangulation of uv is not order k. Then
there must be some triangle 4p1sip2 in the greedy triangulation with order higher than k.
Assume w.l.o.g. 4p1sip2 lies to the left of −→vu. See Figure 7. The properties of the greedy
triangulation imply that the points inside C(p1, si, p2) are also inside C(u, v, s1). Since the
order of 4p1sip2 is higher than the one of 4uvs1, the difference must be due to points inside
C(p1, si, p2) that cannot see s1 but can see si. In any k-COD triangulation including uv,
there must be some other triangle with si as opposite vertex (with respect to points to the
right of −→vu). Because of the way the greedy triangulation is defined, any such triangle that

9



p1

p2

si

u

v

s1

Figure 7: Proof of Lemma 4. If4p1sip2, part of the greedy triangulation of uv, is not order-k,
no other triangle incident to si that faces uv can be order-k.

Definition Order of one triangle All k-COD triangles
PATHCON O(n log n) O(n3 log n)
SEESTRIANG O(n2) O(n3 log n)
CONFEDGE O(n2) O(n4)
SEESVTX O(n log n) O(n3 log n)
SEESOPP O(n log n) O(n3 log n)
SEES3VTX O(n log n) O(n3 log n)
EMPTYQUAD O(n log n) O(n3 log n)

Table 1: Summary of the running times of computing the order of one triangle and computing
all order-k triangles, for each of the definitions.

is not C(p1, s, p2) has a circumcircle that includes all points inside C(p1, s, p2), and since
the opposite vertex is the same, it will see at least as many points as counted for 4p1sip2.
Therefore its order is at least the order of 4p1sip2, leading to a contradiction. £

3 Computing the order of a triangle

A basic operation when dealing with higher order Delaunay triangulations is determining the
order of a triangle. In this section we analyze how efficiently this can be done for each of the
proposed definitions. Table 1 contains a summary of the results.

Let 4uvw be the triangle whose order should be computed, and let C be its circumcircle.
Let PC be the set of points inside C, and let EC be the set of constraining edges that are
contained in C or intersect its boundary. The running times in this section depend on |PC |,
but since |PC | can be linear in n, (where n is the total number of points and endpoints of
constraints), for convenience we will express them in terms of n.

PATHCON We build a point location data structure for the edges in EC , which allows us
to determine for each point inside C, if it lies in the same face of the subdivision induced by
the constraints and C as the interior of 4uvw. Those are the points that can be reached from
the triangle, and must be counted. The subdivision is made of parts of constraining edges

10



and circular arcs (fragments of C). The point location structure can be built in O(n log n)
time, and querying takes O(log n) time for each point, therefore the total running time is
O(n log n).

SEESTRIANG The points inside C can be in one of three regions, bounded by C and the
three edges of 4uvw. For a point in a given region, seeing 4uvw is equivalent to seeing one
of the edges of 4uvw. We process each region separately. Assume the current region is the
one bounded by uv. If uv is a constraint, no point is counted. Otherwise, let S be the set of
points (including endpoints of constraints) inside that region. For each point in S ∪ {u, v},
we sort the other points around it by angle. This can be done for all the points in O(n2) time
[17]. For each point, we go through the sorted list of points around it and check if at any
moment uv is visible. We can do this in linear time because we do not need to keep track of
the order in which the constraints become visible. At any time we only need to know whether
there is any constraint between the point and uv, so the algorithm only needs to maintain a
counter. Therefore the total running time is O(n2).

CONFEDGE We compute the visibility graph of the whole point set induced by (PC∪EC)
in O(n2) time [17]. To determine if a point must be counted we check if it has a visible point
in one of the other two regions of C or can see the opposite vertex of 4uvw. The total
running time is O(n2).

SEESVTX For each of the vertices of the triangle we compute the visibility polygon, where
the edges in EC and the points in PC are the obstacles. This can be done in O(n log n) time.
Then we simply count the number of different points that can see some vertex. The total
running time is O(n log n).

SEESOPP We apply the same method as before, but only for the opposite vertex. The
total running time is O(n log n).

SEES3VTX Same as for SEESVTX, but we count only the points that see the three vertices
of the triangle. The total running time is O(n log n).

EMPTYQUAD First we compute the points that see the three vertices. These points can
be in one of three regions of C. For each region there is a vertex of the triangle that is the
opposite vertex. We show how to proceed for the region where the opposite vertex is w, the
other two cases are identical. We need to discard the points p such that triangle 4uvp is
not empty. Let 4uvp and 4uvq be two triangles, and let αu (αv) denote the angle of 4uvp
at u (at v), and βu (βv) the same for 4uvq. It is easy to see that 4uvp contains point q
if and only if βu < αu and βv < αv. Each triangle with u and v as two of its vertices can
be represented by a point in the plane using its angles at u and at v as its coordinates. The
empty triangles, which are the ones that can create an empty quadrilateral, are the ones lying
on the lower-left staircase of the point set. They can be computed in O(n log n) time by a
sweep line algorithm. Therefore the total running time is O(n log n).

11



4 Computing all the k-OCD triangles

Another useful operation related to higher order Delaunay triangulations is computing all
the order-k triangles. For example, this is a fundamental step when triangulating polygons
optimally for order-k Delaunay triangulations [21]. Table 1 summarizes our results for the
constrained order definitions.

The general approach will be to generate all candidate edges, and then, for each edge, we
will find all the order-k triangles that are incident to it. In principle there are O(n2) candidate
edges to test.

We explain how to compute all the order-k triangles adjacent to one edge −→uv, which lie
to the right of −→uv, assumed not to be a constraint (if it is, the algorithms can be simplified).
The triangles laying on the other side can be found in a symmetric way.

PATHCON We describe an algorithm to compute, for each third point s to the right of−→uv, the number of points to the left of −→uv that can reach uv. Then the same must be done
with respect to the points to the right of −→uv, and the two results must be combined. We only
explain the first part, the rest is symmetric and straightforward.

Consider the connected components defined by the constraining edges (recall that they
may share endpoints, so some components may be composed of several edges). In a prepro-
cessing step, we will identify all these components and will keep only the ones with some
endpoint in the halfplane to the left of −→uv.

We will sweep a circle C through u and v that will start as the halfplane to the left of−→uv and will slide, always touching u and v, until it becomes the halfplane to the right of −→uv.
The event points will be the points and some of the endpoints of the components. During
the sweep, points that were counted after the previous event may stop to be counted for the
next one, but never the other way around. Note that there are two reasons for a point to
stop to be counted. The first is that the new circle position does not include it. The second
is that the region where the point lies is now disconnected from uv inside the circle. The first
type is usual for the standard higher order Delaunay definition, therefore we concentrate on
the second type, which is specific of this definition. Our goal is to compute, as we sweep the
circle through u, v and a third point in S, all the points that stop to be reachable from uv.

While sweeping the circle, the events (from now on we only consider the second type) will
not be all the endpoints of the constraints but only the spikes. Let p be the endpoint of a
constraint that belongs to some connected component. p is a spike if (i) p is not the first
point of the component that is touched when sliding C until touching the component; (ii) all
the edges incident to p have both endpoints to the same side of line `, where ` is the line
tangent to C(u, v, p) at p. The second condition states that p must have, roughly, the shape
of a spike, with respect to u and v.

Spikes have the property that part of C(u, v, p) always defines a closed region R inside
C(u, v, p) such that once the circle being slid touches p, the interior of R gets disconnected
from uv (unless the region of some previous spike of the same component contains R). In
other words, the points inside that region do not have to be counted anymore once the circle
reaches p. Each region is made of a polygonal chain and a circular arc, which is a part of
C(u, v, p). Figure 8 shows an example. A spike can define up to two regions, one on each side
of p. In the way we will process the spikes, explained below, only one of them can become
disconnected from uv at the event of that spike.

12



u v

p

p
′

Figure 8: Example showing the regions defined by two spikes, p and p′. All the black, round,
vertices are spikes.

u v

p
wl

wr

`

Figure 9: Tandem walk to identify the region to become disconnected, wl in the example.

The sweep algorithm identifies for each circle C(u, v, p), for a spike p, the region whose
points must not be counted anymore. Every time an event occurs, we proceed as follows.
We have to identify which of the two regions that the spike defines is the separated one,
that is, the one that does not contain uv. We can do this by walking around the edges, in
both regions simultaneously, until we find the first edge on the boundary of the region that
intersects C(u, v, p).

We start by identifying the two initial edges of each region (see Figure 9). With some
abuse of notation, we refer to the regions as to the left and to the right of p. We explain
how to walk through the left region. The right one is symmetric. The starting edge is the
first edge incident to p encountered when rotating ` around p in counterclockwise direction.
The edge can be found by examining all edges incident to p. Every edge will be examined
at most twice (once for each endpoint), because once the region is identified, p will not be
processed again. The total time spent on this (for all spikes defined by uv) is linear. Then we
walk along the edges, always choosing as the next edge the one with smallest angle with the
current one. This can be obtained in constant time by storing the components using some
standard data structure like a doubly-connected edge list.

We do a walk in both regions at the same time, that is, we alternate between traversing
one edge on each side of p. Every time we go to a new edge we check if it intersects C. When
such an edge is found, we can check if the region found contains uv by checking if the circular

13



u v

Figure 10: Example showing all the regions identified on one side of an edge uv.

arc that bounds the region contains u and v. If it does not, we found the disconnected region,
otherwise, the region that became disconnected is the other one. In that case we continue
traversing the boundary of the other region until we find an edge intersecting the circle. At
that point all the edges of the disconnected region have been identified.

Some of the vertices of the region that become disconnected can be spikes, but given the
order in which points are processed (starting from a large circle that becomes smaller), their
regions will be included in the current region, so they do not need to be considered and their
events can be skipped. Hence we remove them from the event queue.

Regarding the running time of the sweep, there are O(n) events. Handling each event
involves traversing the edges that define a region. For every spike we process, the traversal
takes time proportional to the number of edges bounding the region that becomes discon-
nected. The time spent on traversing the other region can be charged to the edges of the
region that will become disconnected. Hence the overall time complexity of identifying all the
regions is O(n). The total running time of the sweep algorithm is therefore O(n log n).

Once the sweep is over we will have a region associated with some of the spikes (see
Figure 10). Next all the points inside each region must be identified. The regions are disjoint
and are made of line segments and circular arcs. The points can be found in total time
O(n log n) by using a point location data structure able to handle circular arcs, for example
the one from [18]. The overall running time for one edge uv is O(n log n), and O(n3 log n)
time is needed to identify all the order-k triangles.

SEESTRIANG, SEESVTX, SEESOPP, SEES3VTX and EMPTYQUAD We will
sweep a circle in a way similar to the one used in the previous algorithm. All these definitions
are based on visibility between the points inside the circle and some elements (an edge, a
vertex, etc.) of the triangle of which the order is being computed. They have the property
that once a vertex is counted (that is, it sees the part of the triangle in question), it will be
counted until it stops being inside the current circle. Given the visibility graph of all points
and constraint endpoints, a vertex can be checked to determine if it must be counted in O(1)
time. In the case of EMPTYQUAD we can first discard all the points that create a non-empty
triangle with uv, in O(n log n) time, as explained in the previous section. A simple circle
sweep, where every point and endpoint of a constraint defines an event, is enough to keep
track of the order of 4uvw, for each possible third point w to the right of −→uv. After obtaining

14



Definition Order of one triangle
PATHCON O(n)
SEESTRIANG O(n)
CONFEDGE O(n log n)
SEESVTX O(n)
SEESOPP O(n)
SEES3VTX = EMPTYQUAD O(n)

Table 2: Summary of the running times for computing the order of one triangle for polygons.

the possible third points, only the ones that define empty triangles must be selected. Again,
this can be done in O(n log n) time. Therefore the running time for one edge uv is O(n log n)
(assuming the visibility graph is precomputed). It follows that all the order-k triangles can
be found in O(n3 log n) time.

CONFEDGE For this definition we can apply the algorithm used for the previous defini-
tions, but in this case checking if a point must be counted takes more time. This is because
every time a third point w to the right of −→uv is processed, many of the points inside C that
can see w will be counted from the next step on. Hence linear time is required to find these
points. The total running time, for one edge uv, increases to O(n2), leading to O(n4) time to
find all the order-k triangles.

5 Improved algorithms for polygons

When what needs to be triangulated is a simple polygon, instead of a point set, the compu-
tation of the order of one triangle can be done more efficiently. The results are summarized
in Table 2.

In what follows, we denote by P the polygon defined by the constraints, 4uvw is the
triangle whose order should be computed, and C = C(u, v, w) is its circumcircle.

PATHCON Assume that uv is horizontal, u is to the left of v, and w is below the line
through u and v. We explain how to find the vertices of P that must be counted for the order
of 4uvw that are in the region of C to the left of −→uv. The procedure for the other two regions
is symmetric. The idea is to walk through the polygon boundary while keeping track of what
part of the boundary of C can still be reached from 4uvw.

We begin by adding dummy vertices where the polygonal boundary from u to v intersects
C. They divide the polygonal boundary into chains that are outside and inside C. We call
them internal and external chains, respectively. See Figure 11 (a). Between two consecutive
chains there is a dummy vertex. It is assumed to be both the end of a chain and the beginning
of a chain. Vertices on external chains will never be counted, but vertices on internal chains
may also not be counted.

The first step is to remove the chains of the polygon that wind around 4uvw, since they
can never be reachable. See Figure 12 for an example. Consider a half-line that extends
from some point of the triangle vertically downwards. Whenever a chain crosses this half-line
from left to right, we add one to a counter that maintains the winding. If a chain crosses the

15



u v

w

u v

w

P1

P2

P3
P4

P5

(a) (b)

P6

Figure 11: (a) Example with six internal chains (black edges) and five external chains (gray
edges). Dummy vertices are shown white. (b) Internal chains numbered by occurrence
along P .

half-line from right to left, we subtract one from this counter. Only chains that have winding
count 0 and are interior to C can contain vertices that are counted for the order.

Denote by P1, . . . , Pm the sequence of chains on the boundary of P from u to v that
are interior to C and have a winding count of 0. Some of the chains of P1, . . . , Pm have a
clockwise orientation: when considering C clockwise from u to v, in a clockwise chain we first
encounter its start dummy vertex and then its end dummy vertex (chains P1, P3, P5, and P6

in Figure 11 (b)). The other two chains have a counterclockwise orientation. It is easy to see
that vertices on counterclockwise chains cannot be path-connected to 4uvw in the interior
of C and P , and hence their vertices will not be counted. But not all clockwise chains have
vertices that are counted, like P3 in the figure. We observe:

Observation 2 For any prefix of chains P1, . . . , Pi (see Figure 13):

(i) The clockwise chains that are path-connected to 4uvw inside C with respect to P1, . . . , Pi

only, appear clockwise along C by increasing index.
(ii) The counterclockwise chains that are path-connected to 4uvw inside C with respect to

P1, . . . , Pi only, appear counterclockwise along C by increasing index.
(iii) The clockwise chains from (i) are all counterclockwise with respect to the counterclock-

wise chains from (ii).

We call the chains from (i) and (ii) alive for P1, . . . , Pi. In our algorithm, alive clockwise
chains will be kept on a stack S1 with the highest indexed one at the top. Similarly, alive
counterclockwise chains are kept on another stack S2 with the highest indexed one at the top.

Let the most clockwise dummy vertex of an alive clockwise chain be d1, it is the last vertex
of the chain on the top of S1. Similarly, the most counterclockwise dummy vertex of an alive
counterclockwise chain is d2, see Figure 13. If S1 is empty, then we define d1 = u, and if S2 is
empty, then d2 = v. The important observation is that the next alive chain Pj after Pi must
appear between d1 and d2. So we can ignore any chain after Pi if it does not appear between
d1 and d2. If the next chain to appear between d1 and d2, Pj , is clockwise, then it will extend
S1. Furthermore, it may kill some of the alive counterclockwise chains. These necessarily are

16



(a)

u
v

w

(b)

u
v

w

Figure 12: (a) Original polygon. (b) Polygon after removing parts that wind around 4uvw.

d1

d2

u
v

w

Pi

Figure 13: Three chains on the stack S1 for clockwise chains and two chains on the stack S2

for counterclockwise chains (all five black).

17



u

v

w

(a) (b)

u

v

w

Figure 14: (a) Part of the polygon, showing the visibility cones of some of the points that
must be tested. (b) Polygon after simplification, unreachable chains were removed (shown
in light gray) and dummy vertices and edges (dotted) were added to connect the remaining
chains.

at the top of the stack S2. Symmetrically, if Pj is counterclockwise, then it will extend S2

and possibly kill some chains from S1.
The implied incremental algorithm of treating the chains P1, . . . , Pm in order eventually

leads to a stack S1 that contains exactly the chains whose vertices are counted. Stack S2 will
be empty. It is clear that this algorithm runs in linear time.

SEESTRIANG For each of the three regions (see Section 3) where a point can lie we must
find the points that can see one of the edges of 4uvw. Given a triangulation of the polygon,
the visibility polygon with respect to an edge can be computed in linear time [13]. Therefore
if a linear-time algorithm is used for triangulating the polygon [3], the order of 4uvw can be
computed in linear time.

CONFEDGE First we simplify P as follows. We apply the algorithm for PATHCON to find
the chains of P that are in the same face as 4uvw inside C. We do this for all three regions
inside C and outside 4uvw. If any chain in C does not contain any real vertices (it connects
two dummy vertices), then we remove that chain. For the remaining chains, we connect
the dummy vertices of two consecutive chains by two edges outside C; these two edges are
tangent to C at the dummy vertices and have the intersection point of the tangents as one
more dummy vertex, see Figure 14. This way, the reachable chains of P are separated by
three dummy vertices (if the two dummy vertices where the parts end are too far apart, two
new dummy vertices are needed in between). The resulting augmented polygon P ′ is simple
and has O(n) vertices.

For every non-dummy vertex of P ′, we need to know what it can see “through” 4uvw.
Let s be a non-dummy vertex of P ′ between u and v (clockwise from u and counterclockwise
from v). Then we compute the largest interval of uv that s can see. If it is non-empty, we
perform ray shooting queries from s through the two endpoints of this interval, and find two
edges of P ′ that lie clockwise from v and counterclockwise from u.

18



Observation 3 (i) If the rays from s hit the same edge, then s is not involved in any con-
flicting edge.
(ii) If the rays from s hit two different edges and in between there are only dummy vertices,
then s is not involved in any conflicting edge.
(iii) In all other cases, s is involved in at least one conflicting edge.

By the observation above, and the fact that we never have more than four consecutive
dummy vertices in P ′, we can test if s is involved in a conflicting edge in constant time after
the ray shooting.

Computing the largest interval of uv, vw, and uw for all non-dummy vertices of P ′ can
be done by first triangulating P ′, and then applying the algorithm in [13]. It allows us to
find, for each vertex, the subsegment of uv that is visible in O(log n) time. Ray shooting also
takes O(log n) time per query [13]. Hence, we can determine the number of vertices of P ′

(and therefore of P ) that are involved in a conflicting edge in O(n log n) time in total.

SEESVTX, SEESOPP and SEES3VTX The visibility polygon of a point inside a sim-
ple polygon can be computed in linear time [9]. Therefore the order of a triangle, under these
three definitions, can be found in linear time as well.

6 First order constrained Delaunay triangulations

The class of first order Delaunay triangulations (for the unconstrained case) has a special
structure that allows many measures to be optimized efficiently [11, 23]. For a given point
set, if we take all the edges that are present in any first order Delaunay triangulation of the
point set (fixed edges), they form a subdivision of the convex hull into triangles and convex
quadrilaterals. It follows that to generate any 1-OD triangulation of the point set it is enough
to choose one of the two diagonals of each quadrilateral.

In this section we study the special structure of first order constrained Delaunay triangu-
lations. For SEESOPP and the stronger definitions, we show that in the presence of constraints,
1-COD triangulations have the same structure as first order Delaunay triangulations, hence
all the measures that can be optimized for non-constrained first order Delaunay triangula-
tions can also be optimized when constraints are present. For the SEES3VTX definition we
show that the structure becomes more complex, and the existing techniques cannot be ap-
plied. As mentioned in Observation 1, the constrained order under the EMPTYQUAD definition
can be much larger than the order under the standard definition, so the first order Delaunay
structure is not preserved either.

We begin by observing that when k = 1, two pairs of definitions become equivalent,
whereas the other definitions remain different for k = 1, as illustrated by Figure 15.

Lemma 5 For any point set P and set of constraints C, we have T1(P, C, SEESVTX) = T1(P, C, SEESTRIANG)

Proof: The inclusion T1(P, C, SEESTRIANG) ⊆ T1(P, C, SEESVTX) follows from Lemma 1.
For the other direction, let t = 4uvw be an order-1 triangle under SEESVTX, and let C be
its circumcircle. If t is not order-1 under SEESTRIANG, there must be a point p ∈ P inside
C that sees t but does not see a vertex of t. Let q be a point on uv such that pq does not
intersect any constraint. Such a point exists because p can see t. Assume w.l.o.g. that vertex

19



SEESOPP: k = 1

SEESVTX: k = 2

CONFEDGE: k = 1

SEESTRIANG: k = 2

EMPTYQUAD: k = 1

SEES3VTX: k = 2

PATHCON: k = 1

STD: k = 2

SEES3VTX: k = 1

SEESOPP: k = 2

SEESTRIANG: k = 1

PATHCON: k = 2

Figure 15: Except for {SEESTRIANG, SEESVTX} and {CONFEDGE, SEESOPP}, the other definitions
remain different when k = 1. The examples shown here illustrate the pairs of definitions whose
inclusions are proper for k = 1.

u lies to the right of −→pq and v to its left. Since p cannot see u, there must be at least one
constraint intersecting pu, and each such constraint has one endpoint in 4upq. Let c1 be an
endpoint in 4upq of the constraint such that ∠vuc is minimum. Then c1 can see vertex u and
is inside C, thus must be counted under SEESVTX. Proceeding analogously for the left side,
there is a point c2, endpoint of some constraint inside 4pvq visible from vertex v, we observe
that c2 6= c1. Therefore the order of t under SEESVTX is at least two, giving a contradiction. £

Lemma 6 For any point set P and set of constraints C, we have T1(P, C, SEESOPP) =
T1(P, C, CONFEDGE)
Proof: The result follows from the fact that if at most one point is allowed inside the circum-
circle of each triangle, then any conflicting edge must be created with the opposite vertex.
Hence the points that can see the opposite vertex and the ones that can create a conflicting
edge are the same for k = 1. £

The following corollary summarizes how the hierarchy of definitions looks when k = 1.

Corollary 2 For first order constrained Delaunay triangulations of a point set P with con-
straining edges C (which can define a polygon), the following inclusion relations hold:
T1(P, C, STD) ⊆ T1(P, C, PATHCON) ⊆ T1(P, C, SEESTRIANG) = T1(P, C, SEESVTX) ⊆
T1(P, C, CONFEDGE) = T1(P, C, SEESOPP) ⊆ T1(P, C, SEES3VTX) ⊆ T1(P, C, EMPTYQUAD)

We now study the structure (in relation to fixed edges) of first order constrained Delaunay
triangulations. We begin with the following definition.

20



u

t

v

s

u

t

v

s

u

t

v = b

s

xx x

a

b

a

Figure 16: Left: no extra point x can lie inside the two dotted circles. Center and right:
if some triangulation contains an edge vx that crosses ut, there must be a triangle whose
opposite vertex is t and whose circumcircle includes {u, s}, both visible from t.

Definition 3 A triangle t in T ∈ Tk(P, C, DEF) is single-flippable if at least two of its edges
are present in every triangulation of Tk(P, C, DEF).

Lemma 7 The triangles of any first order constrained Delaunay triangulation of a point set
P and constraint set C, under definition SEESOPP or stronger, are single-flippable.

Proof: Suppose 4usv and 4uvt are triangles in the constrained Delaunay triangulation
of P, such that {u, s, v, t} forms a flippable quadrilateral, that is, a quadrilateral of which
both diagonals uv and st can be used to construct a 1-OCDT. We show that for SEESOPP
(and hence also for all the stronger definitions), the four edges of the quadrilateral are fixed.

Since4usv and4uvt are constrained Delaunay triangles, the circles C(u, s, v) and C(u, v, t)
must be empty (in the constrained Delaunay sense). Moreover, st is a useful order-1 edge,
hence it follows from Lemma 3 that 4ust and 4vts are order-1 triangles. Since the circles
C(u, s, t) and C(v, t, s) already contain one point each (in the SEESOPP sense), namely v and
u, respectively, no other point that sees the opposite vertex can be inside them.

Suppose edge ut is not fixed (the other cases are symmetric). Then there is a 1-OCD
triangulation that contains an edge crossing ut.

Assume that edge is vx, for x some vertex outside C(u, s, v) and C(u, v, t). In the tri-
angulation that contains vx there must exist some triangle 4abt, such that ab intersects the
interior of 4uvt. See Figure 16. Assume first that b = v. Then a must lie outside C(v, t, s),
otherwise 4vts would not be order 1 (because v can see both u and a). But then C(a, b, t)
contains both u and s. Both u and s can see the opposite vertex t, hence the order of 4abt,
under SEESOPP or any stronger definition, is at least two. If b 6= v, C(a, b, t) is even larger, and
must contain u and s as well. Therefore no edge like vx can exist in an order-1 triangulation. £

The previous lemma implies that for the SEESOPP definition, all the optimization tech-
niques that exist for first order Delaunay triangulations [11, 23] can be applied in the presence
of constraints. Examples of measures that can be minimized efficiently include maximal area
triangle, maximal triangle angle, total edge length, number of local minima, angle between
triangle normals and number of convex vertices.

Corollary 3 For definitions SEESOPP or stronger, all the existing optimization techniques

21



Figure 17: For the SEES3VTX definition, chains of overlapping flippable quadrilaterals can
exist. Thick edges are constraints. All crossing-free combinations of the dotted edges can be
completed to an order-1 constrained Delaunay triangulation.

for first order Delaunay triangulations can be applied to first order constrained Delaunay
triangulations.

The structure of first order Delaunay triangulations is not preserved when the definition
SEES3VTX is used. Figure 17 shows an example of the kind of structure one can get, comprised
of a chain of overlapping flippable quadrilaterals. The quadrilaterals are not independent and
the polygon of fixed edges can have linear size, hence the techniques of [11, 23] cannot be
applied.

7 Concluding remarks

In the context of higher order Delaunay triangulations, we proposed seven different definitions
of the order of a triangle that take into account a set of constraining edges. This constitutes
an attempt to extend the concept of constrained Delaunay triangulations to higher order
Delaunay triangulations. The proposed definitions can be seen as natural generalizations of
the idea of order of a triangle. They define a hierarchy (with one exception) that goes from
the standard order definition to a very permissive definition that counts much fewer points
than the original one. In general it cannot be stated which definition is the best one, and
which one to choose will probably depend on the application. Several theoretical properties
of the different definitions were studied.

For each definition we presented algorithms to compute the order of one triangle and to
find all the order-k triangles of a point set with constraining edges. These are basic problems
that need to be solved for most implementations of higher order Delaunay triangulations.
For the special case of triangulations of polygons we provided faster algorithms that allow to
compute the order of a triangle in linear time for all but one definition.

Furthermore, we showed that for k = 1, several of the definitions preserve the structure
present in (unconstrained) first order Delaunay triangulations. This is important from a
practical point of view because it makes all the tools for optimizing first order Delaunay
triangulations available for the constrained version as well.

22



One of the most interesting problems left open is analyzing the number of useful k-COD
edges. For the unconstrained case it is known that this number is O(kn), whereas for the
constrained case we only have the trivial upper bound of O(n2). It is possible that the O(nk)
bound also holds in the presence of constraints, at least for some of the definitions, but it
is unclear how to prove it. If such a result could be proven, this would imply, for the four
definitions for which the useful order of an edge can be tested efficiently, that the asymptotic
running time of the algorithms to find all the order-k triangles can be reduced considerably
for small values of k. This would be an important improvement, given that the smallest values
of k are most interesting [7].

References

[1] B. Ben-Moshe, M. J. Katz, J. S. B. Mitchell, and Y. Nira. Visibility preserving terrain
simplification- an experimental study. Comput. Geom. Theory Appl., 28:175–190, 2004.

[2] M. Benkert, J. Gudmundsson, H. Haverkort, and A. Wolff. Constructing interference-minimal
networks. In J. Wiedermann, J. Stuller, G. Tel, J. Pokorný, and M. Bieliková, editors, Proc.
32nd Int. Conf. on Current Trends in Theory and Practice of Computer Science (SOFSEM’06),
volume 3831 of Lecture Notes in Computer Science, pages 166–176. Springer-Verlag, 2006.

[3] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6(5):485–
524, 1991.

[4] L. P. Chew. Constrained Delaunay triangulations. Algorithmica, 4:97–108, 1989.

[5] L. De Floriani. A pyramidal data structure for triangle-based surface description. IEEE Comput.
Graph. Appl., 9(2):67–78, Mar. 1989.

[6] L. de Floriani, P. Magillo, and E. Puppo. Applications of computational geometry to geographic
information systems. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry,
pages 333–388. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

[7] T. de Kok, M. van Kreveld, and M. Löffler. Generating realistic terrains with higher order
Delaunay triangulations. Comput. Geom. Theory Appl., 36:52–65, 2007.

[8] N. Dyn, D. Levin, and S. Rippa. Data dependent triangulations for piecewise linear interpolation.
IMA Journal of Numerical Analysis, 10:137–154, 1990.

[9] H. ElGindy and D. Avis. A linear algorithm for computing the visibility polygon from a point.
J. Algorithms, 2:186–197, 1981.

[10] R. J. Fowler and J. J. Little. Automatic extraction of irregular network digital terrain models.
In Proc. 6th Annu. Conf. Computer graphics and Interactive Techniques, pages 199–207, 1979.

[11] J. Gudmundsson, M. Hammar, and M. van Kreveld. Higher order Delaunay triangulations.
Comput. Geom. Theory Appl., 23:85–98, 2002.

[12] J. Gudmundsson, H. Haverkort, and M. van Kreveld. Constrained higher order Delaunay trian-
gulations. Comput. Geom. Theory Appl., 30:271–277, 2005.

[13] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms for
visibility and shortest path problems inside triangulated simple polygons. Algorithmica, 2:209–
233, 1987.

[14] A. Koch and C. Heipke. Semantically correct 2.5D GIS data – the integration of a DTM and
topographic vector data. ISPRS Journal of Photogrammetry & Remote Sensing, 61:23–32, 2006.

[15] D. Mark. Network models in geomorphology. In M. G. Anderson, editor, Modelling Geomorpho-
logical Systems, chapter 4, pages 73–97. John Wiley & Sons, 1988.

23



[16] M. Neamtu. Delaunay configurations and multivariate splines: a generalization of a result of B.
N. Delaunay. Trans. Amer. Math. Soc., 359(7):2993–3004, 2007.

[17] M. H. Overmars and E. Welzl. New methods for computing visibility graphs. In Proc. 4th Annu.
ACM Sympos. Comput. Geom., pages 164–171, 1988.

[18] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Commun. ACM,
29(7):669–679, July 1986.

[19] L. Scarlatos and T. Pavlidis. Hierarchical triangulation using terrain features. In Proc. 1st
Conference on Visualization, pages 168–175, 1990.

[20] B. Schneider. Geomorphologically sound reconstruction of digital terrain surfaces from contours.
In Proc. 8th Int. Symp. on Spatial Data Handling, pages 657–667, 1998.

[21] R. I. Silveira and M. van Kreveld. Optimal higher order Delaunay triangulations of polygons.
Accepted for publication, Comput. Geom. Theory Appl., 2007.

[22] P. M. van der Poorten and C. B. Jones. Characterisation and generalisation of cartographic lines
using Delaunay triangulation. Int. J. Geographical Information Science, 16:773–794, 2002.

[23] M. van Kreveld, M. Löffler, and R. I. Silveira. Optimization for first order Delaunay triangulations.
In F. Dehne, J.-R. Sack, and N. Zeh, editors, Proc. 10th Workshop on Algorithms and Data
Structures, volume 4619 of Lecture Notes in Computer Science, pages 175–187, 2007.

[24] Q. Zhu, Y. Tian, and J. Zhao. An efficient depression processing algorithm for hydrologic analysis.
Computers & Geosciences, 32:615–623, 2006.

24


