
The Generic Haskell user’s guide, Version
1.80 - Emerald release

Andres Löh

Johan Jeuring

Thomas van Noort

Alexey Rodriguez

Dave Clarke

Ralf Hinze

Jan de Wit

Department of Information and Computing Sciences, Utrecht University

Technical Report UU-CS-2008-011

www.cs.uu.nl

ISSN: 0924-3275

2

The Generic H

A

SKELL User’s Guide

Version 1.80 (Emerald)

The Generic H

A

SKELL Team

Andres Löh
Johan Jeuring

Thomas van Noort
Alexey Rodriguez

Dave Clarke
Ralf Hinze
Jan de Wit

info@generic-haskell.org

April 11, 2008

Institute of Information and Computing Sciences
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands
http://www.generic-haskell.org

Contents

1 What is Generic H

A

SKELL? 5
1.1 Generic programming . 5
1.2 Generic H

A

SKELL overview . 5

2 Installation 6
2.1 System requirements . 6
2.2 Installing the binary distribution (Linux, Mac OS X) 6
2.3 Building from source . 7
2.4 Running gh . 7
2.5 Command line flags . 7
2.6 General overview of compilation . 8
2.7 Compiling and running the generated code 9
2.8 Testing the compiler . 9

3 Generic H

A

SKELL: The Language 10
3.1 Special Parentheses . 10
3.2 Type-indexed functions . 10
3.3 Generic type signatures . 13
3.4 Generic application . 15
3.5 Local redefinition . 16
3.6 Default cases . 16
3.7 Generic abstraction . 17
3.8 Type-indexed types . 18
3.9 Generic views . 19
3.10 Specialisation . 20
3.11 Generated function naming . 21
3.12 Module system . 21
3.13 Haskell compatibility . 21

4 Library 23
4.1 Introduction . 23
4.2 Module GH.Library.Bounds . 23
4.3 Module GH.Library.Collect . 23
4.4 Module GH.Library.Compare . 24
4.5 Module GH.Library.DeepSeq . 24
4.6 Module GH.Library.Enum . 25
4.7 Module GH.Library.Eq . 25
4.8 Module GH.Library.Map . 25
4.9 Module GH.Libary.MapM . 26

3

4.10 Module GH.Library.ReadShow . 26
4.11 Module GH.Library.Reduce . 26
4.12 Module GH.Library.Table . 27
4.13 Module GH.Library.ZipWith . 27

5 Future Work 29

6 Meta-information 30
6.1 Contact . 30
6.2 Caveats . 30
6.3 Known bugs and limitations . 30
6.4 Change log . 31
6.5 Acknowledgements . 31
6.6 Copyright information . 31

4

1 What is Generic H

A

SKELL?

1.1 Generic programming

Software development often consists of designing datatypes around which functionality is
added. Some functionality is datatype specific, whereas other functionality is defined on
almost all datatypes in a way that depends only on the structure of the datatype. A
function that works on many datatypes in this manner is called a generic (or polytypic)
function. Examples of generic functionality include editing, pretty-printing or storing a
value in a database, and comparing two values for equality.

Since datatypes often change and new datatypes are introduced, we have developed
Generic H

A

SKELL, an extension of the functional programming language Haskell [11] that
supports generic definitions, to save the programmer from (re)writing instances of generic
functions. The original design of Generic H

A

SKELL is based on work by Ralf Hinze [3].
The current release is based on recent work by Dave Clarke, Johan Jeuring and Andres
Löh [10, 9]. It extends Haskell with, among other things, a construct for defining type-
indexed functions. These functions can be specialised to all Haskell datatypes, facilitating
wider application of generic programming than provided by earlier systems such as PolyP [8].

1.2 Generic H
A

SKELL overview

Generic H

A

SKELL extends Haskell with a number of features.

• type-indexed functions are defined as functions indexed over the various Haskell type
constructors (unit, primitive types, sums, products, and user-defined type construc-
tors). In addition, we can also specify the behaviour of a type-indexed function for a
specific constructor using constructor cases, and reuse one generic definition in another
using default cases.

The resulting type-indexed function can be specialised to any type.

• type-indexed types are types which are indexed over the type constructors. These
can be used to give types to more involved type-indexed functions. The resulting
type-indexed types can be specialised to any type.

• generic definitions can be used by applying them to a type. This is called generic
application. The result is a type or a function, depending on which sort of generic
definition is applied.

• generic abstraction enables generic definitions to be defined by abstracting a type
parameter (of a given kind).

5

2 Installation

2.1 System requirements

Generic H

A

SKELL is written in Haskell. The package has been tested with GHC and comes
with a Makefile suitable to build it using GHC. Parts of the system are written using Utrecht
University’s attribute grammar system ag, Ralf Hinze’s frown :-(parser generator, and
the DrIFT tool, but neither of these tools is required to build the compiler, because the
generated Haskell sources are included in the distribution. The code that is generated
by Generic H

A

SKELL is such that it compiles using GHC, with extensions enabled. The
generated code makes use of rank-n polymorphism and of explicit kind-annotations for data
types – otherwise, it is Haskell 98 compliant.

Two kinds of distribution are available.
The binary distribution includes a gh compiler binary. The compiler translates Generic

H

A

SKELL input files into Haskell files, thus GHC is still required. We currently provide
binaries for Linux and Mac OS X. In principle, we can provide binaries for any platform
supported by GHC.

The source distribution includes the Haskell code for the gh compiler which has been
generated from our compiler source using both ag, frown :-(, and DrIFT. GHC is required
to compile this distribution. Configuration files are provided.

Current development versions and snapshots can be obtained by accessing the Generic
H

A

SKELL Subversion repository at

https://svn.cs.uu.nl:12443/repoman/info/Generic-Haskell.

2.2 Installing the binary distribution (Linux, Mac OS X)

Installation is also explained in the INSTALL file included in the distribution.

1. Unpack the tarball to a directory of your choice and change to this directory.

2. Issue the following commands:

cd build
../configure --prefix=install_path

The flag --prefix=install_path is optional and defaults to /usr/local/. It can be
used to select the place in the filesystem where the files specific to Generic H

A

SKELL
will be installed.

3. Next run (GNU make is required):

make install
make package

6

https://svn.cs.uu.nl:12443/repoman/info/Generic-Haskell

The first command will move all the files to their final locations. In particular, the
binary gh will be placed in the directory ${prefix}/bin. The second command will
register the package generic-haskell – containing the Generic H

A

SKELL libraries –
with GHC.

Note that make install requires that you have write permissions to the installation
directories, and make package requires that you have write permission to the global
GHC package configuration file.

Alternatively, you can install Generic H

A

SKELL for usage “in-place”, using the com-
mand

make in-place

4. If you have chosen a global installation, you can remove the distribution directory
now. For an in-place installation, it is still required.

2.3 Building from source

Building from source requires exactly the same command sequence as for installing the
binary distribution on a Unix system. The difference of course is the amount of work which
is subsequently done.

At the moment, the Windows platform is not supported. However, previous versions of
Generic Haskell could be compiled under Cygwin, so given some effort it should be possible
to produce working binaries.

2.4 Running gh

The Generic H

A

SKELL compiler is called gh. It has essentially two modes of operation.

• If you call gh without supplying a file to process, you will be asked for a file name.
Specify an input file relative to your working directory, and the compiler will process
the file and generate an output file with the same basename as the input file, but the
extension .hs. It will also generate an interface file with the extension .ghi.

• Alternatively, input files can be specified on the command line.

A typical invocation is:

gh your_file.ghs

Again, the compiler will produce an .hs and a .ghi file as result.

2.5 Command line flags

A number of command line flags are available:

Usage: gh [options...] files...
-v --verbose (number of v’s controls the verbosity)
-m --make compile dependent files first

7

-V --version, --release show version info
-h, -? --help show help
-C --continue continue after errors
-L DIR --library=DIR add DIR to search path

--odir=DIR place output files in DIR
--print-searchpath print search path

Verbosity (-v) The amount of output generated by the compiler can be selected by pro-
viding a number of -v flags. The default level of verbosity (no -v flag) produces only error
messages. The second level (-v) in addition provides some diagnostic information and warn-
ings. The third and fourth level (-vv and -vvv) in addition provide a significant amount of
debugging information.

Track module dependencies (-m) The -m (or --make) option attempts to chase depen-
dencies and compile those which require compilation. There are unfortunately cases where
this fails.

Continue after errors (-C) The -C (or --continue) option forces the compiler to continue
compilation even when an error is encountered. This can be used to generate more than
one error message or to see the resulting generated code, but unfortunately may result in
the compiler running until it crashes.

Search path (-L) The Generic H

A

SKELL compiler needs to find a number of files, in
particular the Generic H

A

SKELL prelude. There are three possibilities to make the location
of the standard libraries known to the compiler:
• Set the environment variable GH_HOME to the directory you unpacked the Generic

H

A

SKELL distribution to.
• Set the environment variable GH_LIBRARY_PATH to the directory where the libraries

are located (usually GH_HOME/lib).
• Pass the path where the libraries are located as an argument to the compiler, using

the -L option. This option can also be used to add other directories to the search
path.

During installation, GH_HOME is preset to the installation directory, and the gh executable
is in fact a wrapper script first setting the GH_HOME variable and then calling the real binary
called gh-bin. If GH_HOME is set by the user, this information overrides the preset directory.

For debugging purposes, the search path used by Generic H

A

SKELL can be queried using
the --print-searchpath flag.

2.6 General overview of compilation

The Generic H

A

SKELL compiler compiles .ghs files and produces .hs files which can subse-
quently be compiled using a Haskell compiler. In addition, the compiler also produces .ghi
interface files for compiled modules, which will be used in subsequent compilations to avoid
unnecessary recompilation.

8

2.7 Compiling and running the generated code

The Generic H

A

SKELL compiler generates ordinary Haskell code which can be run or com-
piled using GHC. The Generic H

A

SKELL distribution includes wrapper scripts called gh-ghc
and gh-ghci, for calling GHC and GHCi, respectively. These wrappers automatically pass
some options appropriate for running programs generated by Generic H

A

SKELL, such as
making the libraries accessible.

2.8 Testing the compiler

The release provides several tests for the Generic H

A

SKELL compiler, which can be found in
the tests directory. The tests can be run from this directory using the command

../bin/testGH

Unfortunately, there are some tests which fail, as mentioned in Section 6.3.

9

3 Generic H

A

SKELL: The Language

The Generic H

A

SKELL compiler implements a number of extensions to Haskell. These
are described briefly here, but this chapter is not intended as an introduction to generic
programming. Further information can be found by consulting the literature [9, 5, 6, 2, for
example]. In particular, Exploring Generic Haskell (EGH) [9] explains the Generic H

A

SKELL
language in much more detail than can be covered here. Most of the syntax used in EGH

can be used in the Generic H

A

SKELL compiler. Where there are significant differences, we
point them out in this guide.

Furthermore, the program files included in the distribution (the .ghs files in the subdi-
rectories lib/, examples/, and tests/) contain several examples of generic programming.

3.1 Special Parentheses

Type-indexed definitions take a type argument which is surrounded by special parentheses.
The parentheses {| |} (i.e., {| |}) wrap such a type argument. Although no longer required,
we still support the parentheses {[]} (i.e., {[]}), wrapping a kind argument of a kind-
indexed type.

3.2 Type-indexed functions

Generic H

A

SKELL introduces a new top-level declaration for type-indexed functions. A
type-indexed function is defined using the following syntax:

〈varid〉 {|〈gtyvars〉|} :: 〈gtypesig〉
〈varid〉 {|〈typat〉|} . . . = . . .
〈varid〉 {|〈typat〉|} . . . = . . .
...

A type-indexed function consists of a type signature followed by one or more cases that
define the function by matching on a type argument. Let us first look at these cases.

Type patterns A type pattern {|〈typat〉|} usually is the name of a type constructor, (fully)
applied to distinct type variables, so that the resulting pattern is a type expression of kind ∗.
For example,

Unit
[a]
Either a b
a → b

10

are all valid type patterns, whereas

Either a -- missing the second type variable
a → a -- no distinct variables
Int→ a -- (→) is not applied to only variables

are all illegal.
Type patterns may also consist only of the name of a type constructor. Thus,

Either
Sum
(→)

are also valid type patterns. Such named types correspond to the style of generic program-
ming that was supported by Generic H

A

SKELL prior to the Coral release. If named types
of a kind other than ∗ are used as type patterns, then the case of the function may take
additional parameters according to the dependencies of the function. Generic H

A

SKELL now
also supports dependency-style definitions, which make use of the type patterns with type
variables.

Structural representation types Type-indexed functions become generic if they are defined
for some or all of the structural representation types, which are used internally by Generic
H

A

SKELL to represent Haskell datatypes. These types are

data Unit = Unit
data Sum a b = Inl a | Inr b

-- Sum can be written as :+: in type indices
data Prod a b = a:*:b

-- Prod can be written as :*: in type indices
data Con a = Con a
data Label a = Label a

These types are defined in the module GH.Prelude, which is automatically imported in each
Generic H

A

SKELL program. The types Con and Label are used to represent constructors
and record field labels, respectively. When used as a type pattern, they get an additional
argument which is bound to a value (not a type) of type ConDescr or LabelDescr.

The correct dependency-style type patterns for Con and Label are thus:

Con d a
Label d a

and as named types, they receive the additional argument as well:

Con d
Label d

The datatypes ConDescr and LabelDescr are given here. These can be used for querying
information about constructors and labels.

11

data ConDescr = ConDescr {conName :: String,
conType :: String,
conArity :: Int,
conPosition :: (Int, Int),
conLabels :: Bool,
conFixity :: Fixity}

data Fixity = Nonfix
| Infix {prec :: Int}
| Infixl {prec :: Int}
| Infixr {prec :: Int}

data LabelDescr = LabelDescr { labelName :: String,
labelType :: String,
labelStrict :: Bool}

Naturally, none of these predefined identifiers should be used in the remainder of a pro-
gram in a way that clashes with their use in generic definitions, following the usual scoping
rules of Haskell.

Example A type-indexed function that checks whether two given values are structurally
equal can be defined as follows:

eq {|a :: ∗|} :: a → a → Bool
eq {|Unit|} Unit Unit = True
eq {|Sum a b|} (Inl x) (Inl y) = eq {|a|} x y
eq {|Sum a b|} (Inr x) (Inr y) = eq {|b|} x y
eq {|Sum a b|} = False
eq {|Prod a b|} (x1:*:x2) (y1:*:y2) = eq {|a|} x1 y1 ∧ eq {|b|} x2 y2

eq {|Int|} m n = m n -- Haskell standard equality
eq {|Char|} c d = c d -- Haskell standard equality

Generics defined for user-defined types Type-indexed functions (and also type-indexed
types) can be defined over (possibly user-defined) datatypes, not only the structural rep-
resentation types. This covers the cases for Int and Char, shown above. Additional cases
such as the following are also possible:

eq {|Range|} (R) (R) = True

for the user defined type

data Range = R Int Int

Constructor cases Datatypes which have a large number of constructors often require
functions that behave in some uniform manner for most constructors, but in some specific
way for certain other constructors. To write such functions Generic H

A

SKELL allows cases

12

for specific constructors to be written. Using these constructor cases a generic function can
have special cases to deal with the constructors requiring special treatment.

The syntax of the case is given by

case 〈qcon〉

as illustrated in the following

freecollect {|case Lambda|} (Lambda (v , t) e) = filter (6 v) (freecollect {|Expr|} e)

The case freecollect {|case Lambda|} will be applied only when the value of type Expr (from
which Lambda is a constructor) encountered has the form Lambda (v , t) e. The case should
be written to exploit this knowledge. Interestingly, when a constructor case produces a
value, it need not produce a value with the same constructor, but only of the correct type.

The type of a constructor case is the same as the type from which the constructor comes.
Thus, since Lambda is a constructor for the Expr datatype, the type of the right-hand side
is what it would be for the Expr case.

3.3 Generic type signatures

The syntax of a generic type signature is as follows:

〈varid〉 {|〈gtyvars〉|} :: 〈gtypesig〉

Generic H

A

SKELL supports dependency-style generic type signatures. A dependency-style
type signature uses one or more generic and zero or more non-generic (or parametric) type
variables, which are separated using a vertical bar, as type pattern. The pair of integers
consisting of the number of generic and parametric type variables of a type-indexed function
is called its arity. Generic type variables must always be of kind ∗, whereas parametric type
variables may have different kinds.

The example signature of the equality function,

eq {|a :: ∗|} :: a → a → Bool

consists of one generic variable a, and no parametric variables. Other examples are the
signatures of map and collect ,

map {|a1 :: ∗, a2 :: ∗|} :: (map {|a1, a2|})⇒ a1 → a2

collect {|a :: ∗ | v :: ∗|} :: (collect {|a | v |})⇒ a → [v]

with two generic and one generic plus one parametric variable, respectively. The precise
meaning of generic and parametric type variables is discussed in EGH. Other than in EGH,
the kind of the type variables can be omitted if it can be inferred.

The right-hand side of a dependency-style type signature is of the form

〈deps〉 ⇒ 〈type〉

a list of dependencies, followed by the base type.

13

Dependencies If a type-indexed function refers directly or indirectly to another type-
indexed function in its definition, it is usually (exceptions: the type argument of the call is
constant, or the other function is a generic abstraction) a dependency of the function.

The equality function, as given in the example, depends on itself, so the full type signature
of eq is

eq {|a :: ∗|} :: (eq {|a|})⇒ a → a → Bool

Often, Generic H

A

SKELL can infer dependencies. If no list of dependencies is given in a
generic type signature, Generic H

A

SKELL will try to infer the dependencies and complain if
it does not succeed. Dependency inference is a rather experimental feature, and it is likely
to be changed in future releases.

Note that in Generic H

A

SKELL a dependency in a type signature must always include the
variables, the EGH abbreviation of omitting the variables for functions of arity {|1 | 0|} is
not available.

In older releases, dependencies of generic functions had to be specified explicitly using
the dependency keyword. This is still possible when generic functions are defined using
kind-indexed types, but not needed when dependency-style type signatures are used.

Kind-indexed types In previous releases of Generic H

A

SKELL, type signatures of generic
functions made use of kind-indexed types. This style of generic programming is still sup-
ported. In fact, dependency-style type signatures are internally converted into applications
of kind-indexed types. Kind-indexed types are thus no longer required, but still supported
for backwards compatibility.

The function eq with the type signature given above behaves as if it had been defined
using the kind-indexed type Eq:

type Eq {[∗]} a = a → a → Bool
type Eq {[k → l]} a =

forall u .Eq {[k]} u → Eq {[l]} (a u)
eq {|t :: k |} :: Eq {[k]} t

Similarly, the function collect could be defined using the following kind-indexed type
Collect:

type Collect {[∗]} a v = a → [v]
type Collect {[k → l]} a v =

forall u .Collect {[k]} u v → Collect {[l]} (a u) v
collect {|t :: k |} :: forall v .Collect {[k]} t v

Note that the type variable v that is parametric in the dependency-style type signature of
collect is just passed on unchanged in the kind-indexed type, and is universally quantified
at the outer level.

If a function depends on other functions except itself, a kind-indexed type – in contrast
to a dependency-style type signature – is not sufficient. The dependencies have to be made
explicit using the dependency keyword. For example, the hypothetical function

pretty {|a :: ∗|} :: (important {|a|}, pretty {|a|})⇒ a → String

14

which pretty-prints the important parts of a data structure, can also be defined using the
kind-indexed type

type Pretty {[∗]} a = a → String
type Pretty {[k → l]} a =

forall u . Important {[k]} u → Pretty {[k]} u → Pretty {[l]} (a u)
pretty {|t :: k |} :: Pretty {|k |} t

but then, the statement

dependency pretty ← important pretty

must be supplied in addition. In general, kind-indexed types are defined according to the
syntax:

type 〈Conid〉 {[∗]} t1 . . . tn = 〈type〉
type 〈Conid〉 {[k → l]} t1 . . . tn = 〈type〉

3.4 Generic application

A type-indexed function can be specialised to a function by applying it to a type. Generic
application extends the syntax of expressions (〈aexp〉) as follows:

〈aexp〉 ::= . . .
| 〈varid〉 {|〈type〉|}

The type argument must not contain universal quantifiers or class constraints. When a
generic function is used, its type argument must always be supplied – it cannot (yet) be
inferred.

Similarly, a kind-indexed type can be specialised to a type by supplying the kind at which
the definition is to be applied. The syntax of type expressions (〈gtycon〉) is thus extended
as follows:

〈gtycon〉 ::= . . .
| 〈Conid〉 {[〈kind〉]}

Example Given the datatype:

data BinTree a = Empty | Node a (BinTree a) (BinTree a)

The map function for BinTree is map {|BinTree|}. The type of map {|BinTree|} is (a → b)→
(BinTree a → BinTree b).

15

Short notation Type-indexed functions (that are not defined via generic abstraction, see
Section 3.7) can be applied to type arguments of any kind. The dependencies for the
type arguments are required in the same order as specified in the type signature or the
dependency statement for the function. This mechanism is called short notation in EGH.

Other than in EGH, it is currently possible to use short notation with functions that have
multiple dependencies. It is even possible to use short notation with functions that have
inferred dependencies, although this is not recommended, as the order of dependencies then
depends on the implementation of the inference algorithm, and this behaviour is likely to
be disabled in future releases.

3.5 Local redefinition

It is possible to locally redefine the behaviour of a generic function, such as described in
Chapter 8 of EGH. Local redefinition looks much like an ordinary let statement:

let 〈varid〉 {|a0 a1 . . . an |} . . . = . . .
...

in . . .

The generic function referred to by 〈varid〉 must be in scope. Here, a0, a1, . . . , an are
all type variables. The variable a0 is the variable on which the function is redefined, the
arguments a1, . . . , an are local to the right-hand side, and only required if a0 is of kind
other than ∗.

Example Assume that size is a generic function of type

size {|t :: ∗|} :: (size {|t |})⇒ t → Int

computing the size of a value. All base types and Unit return 0. In sums, the size of
the particular alternative is chosen, and in products, the sizes of the components are added.
This function is useless on types of kind ∗ without local redefinition, because it would always
return 0. However,

let size {|a|} = const 1
in (size {|[[Int]]|} [[1, 2, 3], [4, 5]],

size {|[[a]]|} [[1, 2, 3], [4, 5]],
size {|[a]|} [[1, 2, 3], [4, 5]],
size {|a|} [[1, 2, 3], [4, 5]])

evaluates to (0, 5, 2, 1).

3.6 Default cases

Default cases allow one generic definition to be defined by implicitly copying the lines from
another, updating and adding cases where appropriate. This is particularly useful for defin-
ing functions which follow a specific traversal pattern.

16

Note Between the Beryl and Coral releases, the syntax of default cases has been changed
in a non backwards-compatible way. The original syntax [1] clashes with the more liberal
syntax of generic abstractions and has therefore been removed. Instead, the syntax described
in Chapter 14 of EGH is supported.

Example Suppose we have a crush-like function which collects a list of values of type a
from some datatype.

collect {|a :: ∗ | v :: ∗|} :: (collect {|a | v |})⇒ a → [v]

We can adapt this function to collect values of type Var, to produced a function of the
following more specific type

varcollect {|a :: ∗|} :: (varcollect {|a | Var|})⇒ a → [Var]

by writing but a few lines:

varcollect extends collect
varcollect {|Var|} v = [v]
varcollect {|Prod a b|} (x:*:y) = varcollect {|a|} x ∪ varcollect {|b|} y

The line containing the keyword extends is the default case, which has the effect of copying
the code from collect into the new generic function varcollect . The line for varcollect {|Var|}
specifies the desired additional functionality for type Var. The line for varcollect {|Prod a b|}
overrides the functionality for Prod, using union instead of concatenation to accumulate the
results.

3.7 Generic abstraction

A type variable (of fixed kind) can be abstracted generically from an expression using a
generic abstraction. Declarations take the following form:

〈varid〉 {|〈gtyvars〉|} :: 〈gtypesig〉
〈varid〉 {|t |} . . . = 〈exp〉

The difference with ordinary type-indexed functions is that the generic type arguments in
the type signature may be of a kind other than ∗, and the type variable t must be of the
same kind. Furthermore, a generic abstraction has exactly one case, of the given form.

Example An example is the so-called categorical strength:

strength {|t :: ∗ → ∗|} :: t a → b → t (a, b)
strength {|t |} ta b = map {|t |} (λx → (x , b)) ta

Deviating from EGH, the dependencies of generic abstractions are usually inferred when no
explicit dependencies are provided in a type signature. The same holds for the kind of the
type argument. It is, however, possible, to specify everything explicitly:

strength {|t :: ∗ → ∗|} :: (map {|t , t |})⇒ t a → b → t (a, b)

17

3.8 Type-indexed types

Warning The implementation of type-indexed types has not been updated to support
dependency-style definitions as used in EGH.

Type-indexed types [7] can be defined similar to type-indexed functions. A type-indexed
type is defined by a generic kind signature, which defines its dependencies and kind.

〈deps〉 ⇒ 〈kind〉

The generic kind signature is followed by a collection of definitions. The right-hand side
of such a definition consists of a constructor followed by a type:

〈Conid〉 {|〈gtyvars〉|} :: 〈gkindsig〉
type 〈Conid〉 {|〈stype〉|} t1 . . . tn = 〈con〉 〈type〉
type 〈Conid〉 {|〈stype〉|} t1 . . . tn = 〈con〉 〈type〉
...

Only named type constructors are supported as 〈stype〉, and Con and Label do not get
additional descriptor arguments on the type level. New constructors (〈con〉) must be in-
troduced for each case of such a definition – each case will be compiled into a newtype
declaration.

A type-indexed type can be specialised to a type by supplying its type argument.

〈gtycon〉 ::= . . .
| 〈Conid〉{|〈type〉|}

Example The type-indexed type FMap is defined as follows:

FMap {|a :: ∗|} :: (FMap {|a|})⇒ ∗ → ∗
type FMap {|Unit|} v = FMapUnit (Maybe v)
type FMap {|Sum|} fma fmb v = FMapSum (fma v , fmb v)
type FMap {|Prod|} fma fmb v = FMapProd (fma (fmb v))

The generic type FMap can be used anywhere a type can by supplying FMap with a type
parameter, for example in the following:

type Lookup {[∗]} t = forall v .FMap {|t |} v → t → Maybe v
type Lookup {[k → l]} t = forall a .Lookup {[k]} a → Lookup {[l]} (t a)

The constructors introduced in the definition of FMap can be used in pattern matching:

lookup {|t :: k |} :: Lookup {[k]} t
lookup {|Unit|} (FMapUnit fm) Unit = fm
lookup {|Sum a b|} (FMapSum (fma, fmb)) (Inl a) = lookup {|a|} fma a
lookup {|Sum a b|} (FMapSum (fma, fmb)) (Inr b) = lookup {|b|} fmb b
lookup {|Prod a b|} (FMapProd fma) (a:*:b) = do fmb ← lookup {|a|} fma a

lookup {|b|} fmb b

18

3.9 Generic views

Type-indexed functions and type-indexed types become generic, because Generic H

A

SKELL
internally encodes data types as sums of products. Besides this standard structural repre-
sentation, this release of Generic H

A

SKELL also implements the list-like sums and products
view and the fixed-point view. Several other generic views exist, such as the Scrap Your
Boilerplate (SYB) view and the balanced sums and products view, but these are not included
in this release.

Generic views for generic functions With generic views for generic functions [4] it becomes
possible to define generic functions using different structural representations. Such functions
are sometimes harder or even impossible to define using the standard view of sums of
products. Thus, generic views increase the expressive power of Generic H

A

SKELL.
A generic function can use a different generic view than the standard view by specifying

it using the keyword viewed in its generic type signature as follows:

〈varid〉 {|〈gtyvars〉 viewed 〈gview〉|} :: 〈gtypesig〉

The function children is an example of a generic function defined using the fixed-point view.

children{|a :: ∗ viewed Fix|} :: (collect{|a | c|})⇒ a → [a],
children {|Fix f |} (In r) = let collect{|a|} x = [x] in collect{|f a|} r

The structural representation type for the fixed-point viewuses the type Fix to encode the
recursive occurrences of data types.

data Fix f = In (f (Fix f))

For instance, the Tree data type can be “viewed” as Fix applied to the base functor of Tree.

data Tree a = Leaf a | Branch (Tree a) (Tree a)
data TreeBase a r = LeafF a | BranchF r r
type TreeF a = Fix (TreeBase a)

where the pattern functor TreeBase abstracts from the recursive occurrences of Tree a in
the type argument r .

Instead of using a non-generic type parameter in the dependency on collect, we can
alternatively define the generic type signature of children using a kind-indexed type:

dependency children ← collect
type Children{[∗]} a = a → [a]
type Children{[k → l]} a =

forall x . (forall c .Collect{[k]} x c)→ Children{[l]} (a x)
children{|a :: k viewed Fix|} :: Children{[k]} a.

Note that in this example Collect is the kind-indexed type of collect .
Since the fixed-point viewonly uses a single type, i.e. the Fix type, generic functions

defined using the fixed-point viewonly need to define a single arm. In the definition of
children we use the function collect to collect the values of type Fix (TreeBase a) from the
pattern functor TreeBase a (Fix (TreeBase a)), i.e. the recursive occurrences, obtaining the
top-level recursive occurrences of the data type.

19

Generic views for generic types Besides using different structural representations in the
definitions of type-indexed types, this release also supports generic views for generic types [12].
As with generic views for generic types, this increases the expressive power of Generic
H

A

SKELL.
Similar to a generic function, a generic type can use a different generic view than the

standard view by specifying it using the keyword viewed in its generic kind signature:

〈Conid〉 {|〈gtyvars〉 viewed 〈gview〉|} :: 〈gkindsig〉

For example, the type Loc is a generic type that is defined using the fixed-point view. This
generic type is used in the implementation of the generic zipper, which can be found in the
examples directory of this release. The generic zipper is a data structure for tree traversals
in which we can only traverse to to subtrees, i.e. recursive occurrences. Therefore, use of
the fixed-point viewis required in its definition:

Loc {|a :: ∗ viewed Fix|} :: (GID,Path)⇒ ∗
type Loc {|Fix|} (gidF :: ∗ → ∗) (pathF :: ∗ → ∗ → ∗) = . . .

It is advisable to provide the dependency argument of a type-indexed type definition with
the appropriate kinds to guide the Generic H

A

SKELL compiler in kind inferencing.
The generic type Loc is used in the type of the navigation functions which allow us to

navigate through a tree. For example, the generic function down moves the point of focus
to the leftmost child of the current point of focus. Again, this generic function is defined
using the fixed-point view:

down {|a :: ∗ viewed Fix|} :: Loc {|a|} → Loc {|a|}
down {|Fix f |} x = . . .

The advantage of using the fixed-point view on the type level and the value level is that the
user is no longer required to provide the pattern functor explicitly when using the generic
zipper.

3.10 Specialisation

Generic functions and generic types are specialised at compile time, thus no run-time rep-
resentation of types is required. There is however the cost of encoding and decoding types.
The compiler determines which specific types a generic function or generic type is used with,
and then generates the set of specialised versions for that function or type in the output
file.

Specialisations are always generated locally per module. Thus, a generic function or
generic type which is defined in one module but used in many, results in some work being
duplicated.

The compiler proceeds by collecting specialisation requests and implications from the
source. The implications are then applied to the requests repeatedly, yielding new requests,
until a fixed-point is reached. If the compiler is working correctly, the fixed-point calculation
always terminates.

20

3.11 Generated function naming

The Generic H

A

SKELL programmer must be aware that the generated Haskell code is pol-
luted with additional names corresponding to instances of generic functions. These may
clash with a programmer’s own function names. Fortunately, this is highly unlikely as the
generated names are rather complicated, encoding details such as module and type names.
Names generated by the compiler all begin with gh?_ or GH?_, where ? is an arbitrary letter.

Unfortunately, this obfuscation makes it difficult to directly interface ordinary Haskell
code with the code generated by the Generic H

A

SKELL compiler. We offer a tip to the
adventurous who wish to do such a thing. If you wish to use a generic function such as
map {|List|} in ordinary Haskell code, add a line such as

mapList = map {|List|}

to the appropriate Generic H

A

SKELL file, and then use the function mapList in your Haskell
code.

3.12 Module system

The module system of Generic H

A

SKELL mirrors the behaviour of Haskell’s module system,
as far as the Haskell language is concerned. Additionally, generic entities (i.e., kind-indexed
types, type-indexed functions, and type-indexed types) may appear in export and import
lists. If no export or import list is given, then all generic entities are exported or imported,
respectively. If a generic entity appears in a list, then all of its cases are exported or
imported. It is not possible to export only some cases of a type-indexed function, or to limit
the constructors visible for a type-indexed type.

It is recommended that the kind-indexed type of a type-indexed function is also exported.
Forgetting to do so may result in unexpected behaviour.

At the moment, it is not possible to define a type-indexed function or type-indexed type
across modules. However, one can achieve a similar effect by importing a generic function
qualified and redefining a new function with the same name by means of a default case.

3.13 Haskell compatibility

Generic H

A

SKELL parses all Haskell programs, except in the following instances:
• The tokens forall, extends, and dependency are additional keywords in Generic

H

A

SKELL.
• The special parentheses for type and kind arguments, i.e., {|, |}, {[,]}, are all handled

as a single token. Unfortunately, some pieces of regular Haskell code can trick the
lexer and result in parse errors. For example, in

do { [x]← action; return x }

the initial {[is treated as a single token {[rather than the two tokens { and [which
an Haskell programmer would expect. In other instances, sequences such as +|} are
considered as the operator +| followed by a }, since | may occur in operators, whereas
{|+ is considered as the token {| followed by +.

21

The required fix in both cases is to insert a space in the appropriate place, for example,
by writing instead

do { [x]← action; return x }

22

4 Library

4.1 Introduction

The Generic H

A

SKELL system comes with a library of useful generic functions. These are
summarised below; for the details, consult the library itself (in subdirectory lib). We give
the dependency-style type signatures of the generic functions, as well as the instantiated
types for kind ∗ and kind ∗ → ∗, and usually a short description.

Naming conventions When generic functions defined in the Generic H

A

SKELL library have
an equivalent in the Haskell Prelude or libraries, the name of the generic function is prefixed
with a ‘g’.

4.2 Module GH.Library.Bounds

gminBound {|t :: ∗|} :: (gminBound {|t |}) ⇒ t
gmaxBound {|t :: ∗|} :: (gmaxBound {|t |})⇒ t
gminBound , gmaxBound {|t :: ∗|} :: t
gminBound , gmaxBound {|t :: ∗ → ∗|} :: a → t a

These are slight generalisations of the minBound and maxBound members of the Bounded
type class. They have the property that for all types t of kind ∗:

∀ a :: t . gminBound {|t |} 6 a 6 gmaxBound {|t |}

However, these functions are also defined for types for which Bounded is not derivable; i.e.,
types which are not enumerations or simple product types [11, Appendix D].

4.3 Module GH.Library.Collect

The functions in this module collect information about types, their constructors and their
labels.

constructorOf {|t :: ∗|} :: (constructorOf {|t |})⇒ t → ConDescr
constructorOf {|t :: ∗|} :: t → ConDescr
constructorOf {|t :: ∗ → ∗|} :: (a → ConDescr)→ t a → ConDescr

The function constructorOf returns a description of the topmost constructor in a value.

constructors {|t :: ∗|} :: (constructors {|t |})⇒ [ConDescr]
constructors {|t :: ∗|} :: [ConDescr]
constructors {|t :: ∗ → ∗|} :: [ConDescr]→ [ConDescr]

23

The function constructors returns a list of descriptions of all topmost constructors used in
a datatype.

labelsOf {|t :: ∗|} :: (labelsOf {|t |})⇒ t → [LabelDescr]
labelsOf {|t :: ∗|} :: t → [LabelDescr]
labelsOf {|t :: ∗ → ∗|} :: (a → LabelDescr)→ t a → LabelDescr

The function labelsOf returns a list of descriptions of labels in a value, or the empty list
when the current constructor has no labels.

labels {|t :: ∗|} :: (labels {|t |})⇒ [LabelDescr]
labels {|t :: ∗|} :: [LabelDescr]
labels {|t :: ∗ → ∗|} :: [LabelDescr]→ [LabelDescr]

The function labels returns a list of descriptions of labels for a type, or the empty list when
the datatype has no constructors with labels.

constructorsAndLabels {|t :: ∗|} :: (constructorsAndLabels {|t |}, labels {|t |})⇒
[(ConDescr, [LabelDescr])]

constructorsAndLabels {|t :: ∗|} :: [(ConDescr, [LabelDescr])]
constructorsAndLabels {|t :: ∗ → ∗|} :: [(ConDescr, [LabelDescr])]→

[LabelDescr] →
[(ConDescr, [LabelDescr])]

The function constructorsAndLabels combines the above information: it returns a list of all
constructors, paired with the labels present in the given type constructor.

The definitions of ConDescr and LabelDescr are given in Section 3.2.

4.4 Module GH.Library.Compare

gcompare {|t :: ∗|} :: (gcompare {|t |})⇒ t → t → Ordering
gcompare {|t :: ∗|} :: t → t → Ordering
gcompare {|t :: ∗ → ∗|} :: (a → a → Ordering)→ t a → t a → Ordering

The function gcompare is the generic version of compare in the Ord class.

4.5 Module GH.Library.DeepSeq

dSeq {|t :: ∗ | b :: ∗|} :: (dSeq {|t | b|})⇒ t → b → b

The function dSeq is a variant of the standard function seq , which evaluates its first argument
completely before returning the second.

This module also defines the type class DeepSeq

class DeepSeq a where
deepSeq :: a → b → b

24

and the operator

($!!) :: (DeepSeq a)⇒ (a → b)→ a → b

for completely strict application, a variant of ($!).
Class instances for DeepSeq are provided, using the generic function dSeq , for a few

standard datatypes.

4.6 Module GH.Library.Enum

empty {|t :: ∗|} :: (empty {|t |})⇒ t
empty {|t :: ∗|} :: t
empty {|t :: ∗ → ∗|} :: a → t a

The empty function generates a default value of a datatype. For datatypes with multiple
constructors, the leftmost constructor is preferred.

enum {|t :: ∗|} :: (enum {|t |})⇒ [t]
enum {|t :: ∗|} :: [t]
enum {|t :: ∗ → ∗|} :: [a]→ [t a]

The function enum enumerates all values of a datatype in a (possibly infinite) list. For
infinite datatypes, the function applies diagonalisation such that each value appears at a
finite position of the list.

4.7 Module GH.Library.Eq

eq {|t :: ∗|} :: (enum {|t |}, eq {|t |})⇒ t → t → Bool
eq {|t :: ∗|} :: t → t → Bool
eq {|t :: ∗ → ∗|} :: [a]→ (a → a → Bool)→ t a → t a → Bool

The function eq is the generic version of () in the Eq class. It depends on enum so that
functions with finite domain can be compared.

neq {|t :: ∗|} :: (enum {|t |}, eq {|t |})⇒ t → t → Bool
neq {|t :: ∗|} :: t → t → Bool
neq {|t :: ∗ → ∗|} :: [a]→ (a → a → Bool)→ t a → t a → Bool

The function neq is the generic version of (6). It is defined to be the negation of eq .

4.8 Module GH.Library.Map

gmap {|t1 :: ∗, t2 :: ∗|} :: (gmap {|t1, t2|})⇒ t1 → t2
gmap {|t :: ∗|} :: t → t
gmap {|t :: ∗ → ∗|} :: (a → b)→ t a → t b

The function gmap is the generic version of fmap in the Functor class.

25

4.9 Module GH.Libary.MapM

mapMl {|t1 :: ∗, t2 :: ∗ | m :: ∗ → ∗|} :: (mapMl {|t1, t2 | m|},Functor m,Monad m)⇒ t1 → m t2
mapMr {|t1 :: ∗, t2 :: ∗ | m :: ∗ → ∗|} :: (mapMr {|t1, t2 | m|},Functor m,Monad m)⇒ t1 → m t2
mapMl ,mapMr {|t :: ∗|} :: (Functor m,Monad m)⇒ t → m t
mapMl ,mapMr {|t :: ∗ → ∗|} :: (Functor m,Monad m)⇒ (a → m b)→ t a → m (t b)

These are the generic versions of the monadic map mapM in the Prelude. The function
mapMl traverses a data structure from left to right (just like mapM), while mapMr traverses
from right to left. The Monad in the context should also be an instance of class Functor.

4.10 Module GH.Library.ReadShow

gshowsPrec {|t :: ∗|} :: (gshowsPrec {|t |})⇒ Bool→ Int→ t → ShowS
greadsPrec {|t :: ∗|} :: (greadsPrec {|t |})⇒ Bool→ Int→ ReadS t
gshowsPrec {|t :: ∗|} :: Bool→ Int→ t → ShowS
gshowsPrec {|t :: ∗ → ∗|} :: (Bool→ Int→ a → ShowS)→ Bool→ Int→ t a → ShowS
greadsPrec {|t :: ∗|} :: Bool→ Int→ ReadS t
greadsPrec {|t :: ∗ → ∗|} :: (Bool→ Int→ ReadS a)→ Bool→ Int→ ReadS (t a)

These functions are generic versions of show and read (in classes Show and Read). The first
argument of type Bool is used internally to specify whether field labels are to be printed
(and separated by commas). It should usually be False. The second argument of type Int
specifies the precedence level.

Since calling these functions is a bit cumbersome, the following abstractions are provided:

gshow {|t :: ∗|} :: (gshowsPrec {|t |})⇒ t → String
gshow1 {|t :: ∗ → ∗ | a :: ∗|} :: (gshowsPrec {|t |},Show a)⇒ t a → String
gread {|t :: ∗|} :: (greadsPrec {|t |})⇒ String→ t
gread1 {|t :: ∗ | a :: ∗|} :: (greadsPrec {|t |},Read a)⇒ String→ t a
gshow {|t :: ∗|} :: t → String
gshow1 {|t :: ∗ → ∗|} :: Show a ⇒ t a → String
gread {|t :: ∗|} :: String→ t
gread1 {|t :: ∗ → ∗|} :: Read a ⇒ String→ t a

4.11 Module GH.Library.Reduce

rreduce {|t :: ∗ | b :: ∗|} :: (rreduce {|t | b|})⇒ t → b → b
lreduce {|t :: ∗ | b :: ∗|} :: (lreduce {|t | b|})⇒ b → t → b
rreduce {|t :: ∗|} :: t → b → b
rreduce {|t :: ∗ → ∗|} :: (a → b → b)→ t a → b → b
lreduce {|t :: ∗|} :: b → t → b
lreduce {|t :: ∗ → ∗|} :: (b → a → b)→ b → t a → b

26

The function rreduce is a generic version of foldr (note the reversed order of the last two
arguments!), while lreduce is a generic foldl ([2, Section 5.4] and [9, Section 12.2]).

crush {|t :: ∗ → ∗ | a :: ∗|} :: (lreduce {|t | a|})⇒ (a → a → a)→ a → t a → a
crush {|t :: ∗ → ∗|} :: (a → a → a)→ a → t a → a

The function crush is an instance of lreduce with a slightly more familiar type.
The following functions are all defined in terms of the above functions, and most have

counterparts in the Haskell Prelude:

gsum, gproduct {|t :: ∗ → ∗ | a :: ∗|} :: (lreduce {|t | a|},Num a)⇒ t a → a
gand , gor {|t :: ∗|} :: (lreduce {|t | Bool|})⇒ t → Bool→ Bool
flatten {|t :: ∗ → ∗ | a :: ∗|} :: (rreduce {|t | [a]|})⇒ t a → [a]
count {|t :: ∗ → ∗ | a :: ∗|} :: (rreduce {|t | Int|})⇒ t a → Int
comp {|t :: ∗ → ∗ | a :: ∗|} :: (lreduce {|t | a → a|})⇒ t (a → a)→ (a → a)
gconcat {|t :: ∗ → ∗ | a :: ∗|} :: (lreduce {|t | [a]|})⇒ t [a]→ [a]
gall {|t :: ∗ → ∗ | a :: ∗|} :: (lreduce {|t | Bool|})⇒ (a → Bool)→ t a → Bool
gany {|t :: ∗ → ∗ | a :: ∗|} :: (rreduce {|t | Bool|})⇒ (a → Bool)→ t a → Bool
gelem {|t :: ∗ → ∗ | a :: ∗|} :: (rreduce {|t | Bool|},Eq a)⇒ a → t a → Bool
gsum, gproduct {|t :: ∗ → ∗|} :: Num a ⇒ t a → a
gand , gor {|t :: ∗ → ∗|} :: t Bool→ Bool
flatten {|t :: ∗ → ∗|} :: t a → [a]
count {|t :: ∗ → ∗|} :: t a → Int
comp {|t :: ∗ → ∗|} :: t (a → a)→ (a → a)
gconcat {|t :: ∗ → ∗|} :: t [a]→ [a]
gall , gany {|t :: ∗ → ∗|} :: (a → Bool)→ t a → Bool
gelem {|t :: ∗ → ∗|} :: Eq a ⇒ a → t a → Bool

The function flatten collects all values of type a in a list, and comp composes all functions
contained in a datatype.

4.12 Module GH.Library.Table

The module Table provides a type-indexed type and functions for building memo tables of
functions.

This module has not been updated to dependency-style and EGH syntax, because type-
indexed type support is currently lacking.

4.13 Module GH.Library.ZipWith

gzipWith {|t1 :: ∗, t2 :: ∗, t3 :: ∗|} :: (gzipWith {|t1, t2, t3|})⇒ (t1, t2)→ Maybe t3
gzipWith {|t :: ∗|} :: (t , t)→ Maybe t
gzipWith {|t :: ∗ → ∗|} :: ((a, b)→ Maybe c)→ (t a, t b)→ Maybe (t c)

A generic version of zipWith, except that it returns a Maybe value, the result being Nothing
when the two data structures do not have the same shape.

27

gunzipWith {|t1 :: ∗, t2 :: ∗, t3 :: ∗|} :: (gunzipWith {|t1, t2, t3|})⇒ t1 → (t2, t3)
gunzipWith {|t :: ∗|} :: t → (t , t)
gunzipWith {|t :: ∗ → ∗|} :: (a → (b, c))→ t a → (t b, t c)

The function gunzipWith is a generic version of unzip.

gzip {|t :: ∗ → ∗ | a :: ∗, b :: ∗|} :: (gzipWith {|t , t , t |})⇒ t a → t b → Maybe (t (a, b))
gunzip {|t :: ∗ → ∗ | a :: ∗, b :: ∗|} :: (gunzipWith {|t , t , t |})⇒ t (a, b)→ (t a, t b)
gzip {|t :: ∗ → ∗|} :: t a → t b → Maybe (t (a, b))
gunzip {|t :: ∗ → ∗|} :: t (a, b)→ (t a, t b)

These functions are more or less direct generalisations of zip and unzip respectively, defined
via generic abstraction as instances of gzipWith and gunzipWith.

28

5 Future Work

The future of Generic H

A

SKELL is uncertain. We have started designing a generic program-
ming library in Haskell, which might replace Generic H

A

SKELL to a certain extent. However,
we might continue our work on Generic H

A

SKELL, for example on:
• adding a type checker and better support for generic type inference
• dependency-style definitions of type-indexed types
• generic abstractions and local redefinitions on the type level
• . . .

As we have not yet decided how the next major release of the Generic H

A

SKELL compiler
will look, these topics are subject to change. Any input and feedback is most welcome!

29

6 Meta-information

6.1 Contact

The Generic H

A

SKELL Project For information regarding the Generic H

A

SKELL project
have a look at http://generic-haskell.org or send email to info@generic-haskell.org.

Mailing List A low volume mailing list exists. Currently it serves as a place for distributing
information relevant to Generic H

A

SKELL and for announcing our project meetings. This
is the appropriate forum for general language discussions and whatnot. The address is
generic-haskell@cs.uu.nl. To subscribe to the mailing list, point your browser to https:
//mail.cs.uu.nl/mailman/listinfo/generic-haskell and follow the instructions.

Bug Reports Bugs can be reported to bugs@generic-haskell.org.

6.2 Caveats

The Generic H

A

SKELL compiler is a research prototype. Many of its features, especially the
more experimental ones, may change as we gain more experience and understanding.

It should be noted that the compiler does not perform type checking of the Generic
H

A

SKELL source language. Thus type errors in Generic H

A

SKELL source will often be
discovered only when the generated Haskell source is compiled.

6.3 Known bugs and limitations

1. The constructor descriptors for user-defined data types that have infix constructors
with non-default fixity will be generated incorrectly with the default fixity.

2. Generic application to type arguments of higher kind does not work for generic ab-
stractions. For example, defining

import GH.Library.Eq

myeq {|a|} :: a → a → Bool
myeq {|a|} = eq {|a|}

you can call eq {|[]|} eqa , but not myeq {|[]|} eqa . However, you can use local redefini-
tion and say

let eq {|a|} = eqa in myeq ([a])

30

http://generic-haskell.org
https://mail.cs.uu.nl/mailman/listinfo/generic-haskell
https://mail.cs.uu.nl/mailman/listinfo/generic-haskell

3. The implementation of type-indexed types is lacking in several areas. For example, a
type-indexed type which is specialised to the same type in two separate modules results
in types which should be the same, but are treated differently by Haskell. Furthermore,
dependency-style definitions of type-indexed types are not yet supported.

4. Hiding imports does not work properly at the moment. A solution is to use qualified
identifiers to disambiguate name resolving.

5. . . .

6.4 Change log

Emerald (1.80) Generic views for generic types [12] are now supported. Furthermore, the
implementation of type-indexed types is improved. This release also supports GHC

6.8.2 while still being backwards compatible with GHC 6.6.

Diamond (1.62) This version builds correctly under GHC 6.6. It also fixes bugs with gread
and gshow when handling labeled records and infix constructors.

Diamond (1.60) Generic views as described in the generic views paper [4] are now sup-
ported. This release also corrects a few errors that occur with default cases.

Coral (1.42) Dependency-style definitions of type-indexed functions [10] are supported, i.e.,
generic functions can be written in a simpler and more natural style. In particular,
type signatures of generic functions have become simpler – there is no need to define
kind-indexed types any longer. Local redefinition, generic abstraction, and default
cases are now implemented as described in “Exploring Generic Haskell” [9].

Beryl (1.23) Syntax for using Con and Label in generic functions has slightly changed.
Added constructor and default cases. Improved support for the module system. Re-
vamped specialisation mechanism – it is now demand driven and generates less code.
Numerous bug fixes.

Amber (0.99) The first release.

6.5 Acknowledgements

Thanks to Ralf Hinze for frown :-(, to Arthur Baars and Doaitse Swierstra for ag, and to
Simon Marlow and Sven Panne for the original Happy Haskell grammar.

6.6 Copyright information

gh – a compiler for Generic H

A

SKELL.
Copyright c© 2001 – 2005 The Generic H

A

SKELL Team. Utrecht University
This library is free software; you can redistribute it and/or modify it under the terms

of the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version.

31

This library is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with
this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

32

Bibliography

[1] Dave Clarke and Andres Löh. Generic Haskell, specifically. In J. Gibbons and J. Jeuring,
editors, Generic Programming, IFIP, pages 21–47. Kluwer Academic Publishers, 2003.

[2] Ralf Hinze. Generic Programs and Proofs. 2000. Habilitationsschrift, Bonn University.

[3] Ralf Hinze. Polytypic values possess polykinded types. In Roland Backhouse and
José Nuno Oliveira, editors, Mathematics of Program Construction, volume 1837 of
LNCS, pages 2–27. Springer-Verlag, 2000.

[4] Stefan Holdermans, Johan Jeuring, Andres Löh and Alexey Rodriguez. Generic Views
on data types. In Tarmo Uustalu, editor, Mathematics of Program Construction, volume
4014 of LNCS, pages 209–234. Springer-Verlag, 2006.

[5] Ralf Hinze and Johan Jeuring. Generic Haskell: applications. In Generic Programming,
Advanced Lectures, volume 2793 of LNCS, pages 57–97. Springer-Verlag, 2003.

[6] Ralf Hinze and Johan Jeuring. Generic Haskell: practice and theory. In Generic
Programming, Advanced Lectures, volume 2793 of LNCS, pages 1–56. Springer-Verlag,
2003.

[7] Ralf Hinze, Johan Jeuring, and Andres Löh. Type-indexed data types. In Proceedings
of the 6th Mathematics of Program Construction Conference, MPC’02, volume 2386 of
LNCS, pages 148–174, 2002.

[8] Patrik Jansson and Johan Jeuring. PolyP — a polytypic programming language exten-
sion. In Conference Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 470–482. ACM Press, 1997.

[9] Andres Löh. Exploring Generic Haskell. PhD thesis, Utrecht University, September
2004.

[10] Andres Löh, Dave Clarke, and Johan Jeuring. Dependency-style Generic Haskell. In
Olin Shivers, editor, Proceedings of the International Conference on Functional Pro-
gramming, ICFP’03, pages 141–152. ACM Press, August 2003. Also appeared as
Technical Report UU-CS-2003-022, Institute of Information and Computing Sciences,
Utrecht University.

[11] Simon Peyton Jones, John Hughes, et al. Haskell 98 — A non-strict, purely functional
language. Available from http://haskell.org, Feb 1999.

[12] Thomas van Noort. Generic views for generic types. Master’s thesis, Utrecht University,
2008.

33

	What is Generic Haskell?
	Generic programming
	Generic Haskelloverview

	Installation
	System requirements
	Installing the binary distribution (Linux, Mac OS X)
	Building from source
	Running gh
	Command line flags
	General overview of compilation
	Compiling and running the generated code
	Testing the compiler

	Generic Haskell: The Language
	Special Parentheses
	Type-indexed functions
	Generic type signatures
	Generic application
	Local redefinition
	Default cases
	Generic abstraction
	Type-indexed types
	Generic views
	Specialisation
	Generated function naming
	Module system
	Haskell compatibility

	Library
	Introduction
	Module GH.Library.Bounds
	Module GH.Library.Collect
	Module GH.Library.Compare
	Module GH.Library.DeepSeq
	Module GH.Library.Enum
	Module GH.Library.Eq
	Module GH.Library.Map
	Module GH.Library.MapM
	Module GH.Library.ReadShow
	Module GH.Library.Reduce
	Module GH.Library.Table
	Module GH.Library.ZipWith

	Future Work
	Meta-information
	Contact
	Caveats
	Known bugs and limitations
	Change log
	Acknowledgements
	Copyright information

