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Abstract

We use strategies to specify how a wide range of exercises can be solved incrementally (stepwise), such as
bringing a logic proposition to disjunctive normal form, reducing a matrix, or calculating with fractions.
With such a strategy, we can automatically generate worked-out solutions, track the progress of a student by
inspecting submitted intermediate answers, and report back suggestions in case the student deviates from
the strategy. Because we can calculate all kinds of feedback automatically from a strategy specification,
it becomes less labor-intensive and less ad-hoc to specify new exercise domains and exercises within that
domain.
A strategy describes valid sequences of transformation rules that solve the exercise at hand, which turns
tracking intermediate steps into a parsing problem. This is a promising view at the problem because it
allows us to take advantage of many years of experience in parsing sentences of context-free languages, and
transfer this knowledge and technology to the domain of stepwise solving exercises.
In this paper we work out the similarities between parsing and solving exercises incrementally, and we discuss
the implementation of a recognizer for strategies. We present a full implementation of such a recognizer,
and discuss a number of design choices we have made. In particular, we discuss the use of a fixed point
combinator to deal with repetition, and labels to mark positions in the strategy.

Keywords: grammars, parsing, strategies, exercise assistants, combinator languages

1 Introduction

Strategies are used in many domains such as programming, rewriting, compiler
construction, and theorem proving. We recently realized that strategies also play
an important role in exercise assistants that support incrementally solving exercises
in mathematics, logics, physics, etc. [5]. In the intelligent tutoring systems field, a
strategy is called procedural knowledge, a production system, or a procedural plan.
In this field, strategies are not used to rewrite terms, but they are used to check
that a user performs the correct steps towards a solution for an exercise.
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An exercise such as “rewrite the following arithmetic expression containing frac-
tions to its normal form”, consists of the expression to be rewritten, the rules with
which the expression can be rewritten (and possibly also some known buggy rules),
and a strategy to guide or direct the rewriting. If a user solves the exercise incre-
mentally, we can check at each step whether or not the step is a valid rewrite step,
and whether or not this rewrite step is valid according to the strategy. In a way we
check whether or not the sequence of rewrite steps performed by the user is a prefix
of a sentence in the language specified by the strategy.

This paper briefly explains a language for specifying strategies for exercises, and
it shows how we use this language for recognizing valid sequences of rewrite steps.
The paper has two contributions:

• It discusses the design choices when constructing a strategy language for specify-
ing exercises, and a strategy recognizer for such a language.

• It shows how we can use the strategy language to check whether or not user-input
is correct with respect to the strategy specified for an exercise.

The information provided by our strategy recognizer is necessary for determin-
ing what kind of feedback to give to a user of an exercise assistant. At the mo-
ment the feedback provided by exercise assistants is almost always limited to cor-
rect/incorrect. Using the diagnosis given by our strategy recognizer we can improve
a lot on this.

This paper is organized as follows. Section 2 introduces our language for speci-
fying strategies for exercises. We illustrate the language with a strategy for adding
fractions: this strategy is used as a running example throughout the paper. Sec-
tion 3 shows how we have implemented the components of our strategy language
to obtain a strategy recognizer, and discusses the main design choices. We then
present three extensions to our strategy recognizer in Section 4. Section 5 shows
how the strategy language can be used for diagnosing possible problems in the user
input. The last two sections (6 and 7) discuss related work and ongoing research,
and draw conclusions.

2 A strategy language

Before we introduce our strategy language, which is inspired by context-free gram-
mars (CFG), we give an example strategy.

Example 2.1 Consider the problem of adding two fractions, for example, 2
5 and 2

3 :
if the result is an improper fraction (the numerator is larger than or equal to the
denominator), then it should be converted to a mixed number. Figure 1 displays
four rewrite rules on fractions. The three rules on the right (B1 to B3) are buggy
rules that capture common mistakes. A possible strategy to solve this type of
exercise is the following:

• Step 1. Find the least common denominator (lcd) of the fractions: let this be n
• Step 2. Rename the fractions such that n is the denominator
• Step 3. Add the fractions by adding the numerators
• Step 4. Simplify the fraction if it is improper
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Fig. 1. Transformation rules in the domain of fractions

A context-free grammar distinguishes terminal and non-terminal symbols, and
has a set of production rules. For our strategy language, we take a different approach
and use combinators instead. Strategies are constructed in the following way:

• Transformation rule. Such a rule is the smallest building block to construct
composite strategies, and closely corresponds to a terminal symbol in a CFG.
Occasionally, we write symbol r for some transformation rule r to distinguish the
strategy from the transformation rule.

• Sequence. We can combine strategies s and t and put them in sequence, for
which we write s <?> t . A production rule in a CFG is a sequence of symbols.

• Choice. Another way to combine strategies is by choice: we write s <|> t for
choosing between strategy s and strategy t . In CFGs, choice is introduced by
having multiple production rules for a non-terminal symbol.

• Unit elements. We introduce two special elements that are the units for se-
quence and choice. The strategy succeed always succeeds (unit element for <?>),
whereas fail always fails (unit element for <|>).

• Labels. Because our primary interest in the strategy language is to automat-
ically calculate feedback from it, we need some mechanism to mark positions in
the strategy, for example, to encode the hierarchical structure of a strategy, or
to refine the textual feedback that is associated with a certain position in the
strategy. For this purpose, we introduce labels. Labeling a strategy s with some
label ` is written as label ` s. The exact representation of a label is irrelevant.

• Recursion. We need a way to deal with recursion, and for this we introduce a
fixed point combinator. We write fix f , where f is the function of which we take
the fixed point. Hence, the function f takes a strategy and returns one, and such
that the property fix f = f (fix f ) holds.

Example 2.2 Repetition is a well-known recursion pattern, i.e., zero or more oc-
currences of something. We can define this pattern using our fixed point recursion
combinator:

many s = fix (λx → succeed <|> (s <?> x ))

The strategy that applies transformation rule r zero or more times would thus be:

many (symbol r)
= succeed <|> (symbol r <?> many (symbol r))
= succeed <|> (symbol r <?> (succeed <|> (symbol r <?> many (symbol r))))
= ...

3



Heeren and Jeuring

Example 2.3 We use the strategy combinators to turn the informal strategy de-
scription from Example 2.1 into a strategy specification:

addFractions = label `0 ( label `1 ruleLCD
<?> label `2 (repeat (somewhere ruleRename))
<?> label `3 ruleAdd
<?> label `4 (try ruleSimpl)

)

The strategy contains the labels `0 to `4, and uses the transformation rules given in
Figure 1. The transformation ruleLCD is somewhat different: it does not change
the term, but it calculates the least common denominator and stores this in an
environment. The rule for renaming a fraction uses the computed lcd to determine
the value of a in its right-hand side. Rules that do not change the term but only
the context in which an exercise is solved are so-called administrative rules.

The definition of addFractions contains the strategy combinators repeat ,
somewhere, and try . In an earlier paper [5], we discussed how these combinators,
and many others, can be defined conveniently in terms of the strategy language.
The combinator repeat is a variant of the many combinator: it applies its argument
strategy exhaustively. The check that the strategy can no longer be applied is an
administrative rule. The definition of somewhere is another example of an admin-
istrative rule: this combinator changes the focus in the abstract syntax tree before
it applies its argument strategy. The zipper data structure [7] can be used to keep
a point of focus.

2.1 Semantics of the strategy language

Before we move on to the implementation, we make our strategy combinators more
precise by defining the language that is generated by a strategy. Such a language
is a set of sequences of transformation rules.

language (s <?> t) = { xy | x ∈ language s, y ∈ language t }
language (s <|> t) = language s ∪ language t
language (fix f ) = language (f (fix f ))
language (label ` s) = language s
language (symbol r) = {r}
language succeed = {ε}
language fail = ∅

This definition tells us whether a sequence of rules follows a strategy or not: the
sequence of rules should be a sentence in the language generated by the strategy,
or a prefix of a sentence since we solve exercises incrementally. Not all sequences
make sense, however. An exercise gives us an initial term (say t0), and we are
only interested in sequences of rules that can be applied successively to this term.
Suppose that we have terms (denoted by ti) and rules (denoted by ri), and let ti+1

be the result of applying rule ri to term ti. A possible derivation that starts with
t0 can be depicted in the following way:

t0
r0−→ t1

r1−→ t2
r2−→ t3

r3−→ . . .
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To be precise, applying a rule to a term can yield multiple results, but most domain
rules, such as the rules for fractions in Figure 1, return at most one term. Running
a strategy with an initial term returns a set of terms, and is specified by:

run s t0 = { tn+1 | r0 . . rn ∈ language s, ∀i∈0...n : ti+1 ∈ ri (ti) }

Recognizing a strategy comes down to tracing the steps that a student is taking,
but how would a tool get the sequence of rules? In exercise assistants that offer free
input, users submit intermediate terms. Therefore, the tool first has to determine
which of the known rules has been applied, or even which combination of rules has
been used. Discovering which rule has been used is obviously an important part
of an exercise assistant, and it influences the quality of the generated feedback. It
is, however, not the topic of this paper. An alternative to free input is to let users
select a rule, which is then applied automatically to the current term. In this setup,
it is no longer a problem to detect which rule has been used.

3 Design of a strategy recognizer

In this section we discuss the design of a strategy recognizer. Instead of designing our
own recognizer, we could reuse existing parsing libraries and tools. There are many
excellent parser generators and various parser combinator libraries around [8,12],
and these are often highly optimized and efficient in both their time and space be-
havior. The problem we are facing is quite different from other parsing applications.
To start with, efficiency is no longer a key concern. Because we are recognizing ap-
plications of rewrite rules applied by a student, the length of the input is very
limited. Our experience until now is that speed poses no serious constraints on the
design of the library. A second difference is that we are not building an abstract
syntax tree.

The following issues are important for a strategy recognizer, but are not (suffi-
ciently) addressed in traditional parsing libraries:

(i) We are only interested in sequences of transformation rules that can be applied
successively to some initial term, and this is hard to express in most libraries.
Parsing approaches that start by analyzing the grammar for constructing a
parsing table will not work in our setting because of the administrative rules.

(ii) The ability to diagnose errors in the input highly influences the quality of the
feedback services. It is not simply enough to detect that the input is not in
the language, but we also want to know at which point the input deviates from
the strategy, and what is expected at this point. Some of the more advanced
parser tools have error correcting facilities, which helps diagnosing an error to
some extent.

(iii) Exercises are solved incrementally, and therefore we do not only have to rec-
ognize full sentences, but also prefixes. Backtracking and look-ahead can not
be used because we want to recognize strategies at each intermediate step.

(iv) Labels help to describe the structure of a strategy in the same way as non-
terminals do in a grammar. For a good diagnosis it is vital that a recognizer
knows at all intermediate steps where it is in the strategy.
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(v) A strategy should be serializable, for instance because we want to communicate
with other e-learning tools and environments.

In earlier attempts to design a recognizer library for strategies, we tried to
reuse an existing error-correcting parser combinator [12], but failed because of the
reasons listed above. The library we develop in this paper is written in the functional
programming language Haskell [11]. The code in this paper is almost complete and
conforms to the Haskell 98 standard. Although the code is relatively short, we want
to emphasize that the library has been tested in practice on different domains. For
instance, strategies implemented for the domain of linear algebra are more complex
than the strategy for fractions reported in this paper. These strategies will be used
in several courses during 2008.

3.1 Representing grammars

Because strategies are grammars, we start by exploring a suitable representation for
grammars. The data type for grammars is based on the alternatives of the strategy
language discussed in Section 2:

data Grammar a = Grammar a :?: Grammar a
| Grammar a :|: Grammar a
| Rec Int (Grammar a)
| Symbol a | Var Int | Succeed | Fail deriving Show

The type variable a in this definition is an abstraction for the type of the symbols:
for strategies, the symbols are rules. The first design choice is how to represent
recursive grammars, for which we use the constructors Rec and Var . A Rec binds
all the Vars in its scope that have the same integer. We assume that all our
grammars are closed, i.e., there are no free occurrences of variables. This data type
makes it easy to manipulate and analyze grammars. Alternative representations for
recursion are higher-order fixed point functions, or nameless terms using de Bruijn
indices.

Labels are absent and will be added later. Observe that we use the constructors
:?: and :|: for sequence and choice, respectively (instead of the combinators <?> and
<|> introduced earlier). Haskell infix constructors have to start with a colon, but
the real motivation is that we use <?> and <|> as smart constructors.

3.2 Smart constructors

A smart constructor is a normal function that in addition to constructing a value
performs some checks or some simplifications. We use smart constructors for sim-
plifying grammars, and to obtain a normal form. We introduce a smart constructor
for every alternative of the Grammar data type: the functions symbol , var , succeed ,
and fail do nothing special, but are introduced for consistency.

The smart constructor <?> for sequences removes the unit element Succeed , and
propagates the absorbing element Fail . Because the input is processed from left to
right, we associate sequences to the right. Pay close attention to the occurrences of
the smart constructors and the actual constructors in the following definition:
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(<?>) :: Grammar a → Grammar a → Grammar a
Succeed <?> t = t
s <?> Succeed = s
Fail <?> = fail

<?> Fail = fail
(s :?: t) <?> u = s :?: (t <?> u)
s <?> t = s :?: t

For choices, we remove occurrences of Fail , and we nest alternatives to the right:

(<|>) :: Grammar a → Grammar a → Grammar a
Fail <|> t = t
s <|> Fail = s
(s :|: t) <|> u = s :|: (t <|> u)
s <|> t = s :|: t

The smart constructor for recursive grammars checks that there is at least one free
occurrence of the variable in the body: a Rec is built only if this is the case.

rec :: Int → Grammar a → Grammar a
rec i s = if i ∈ freeVars s then Rec i s else s

Calculating the set of free variables of a grammar is straightforward, although we
have to take care of shadowing binders.

Finally, we define a constructor function for fixed points on grammars, which
gives us another way to specify recursive grammars:

fix :: (Grammar a → Grammar a)→ Grammar a

This function can be implemented using rec and var : the only difficulty in defining
fix is to discover which integer can be used. We omit the implementation details.

3.3 Empty and firsts

For recognizing sentences, we have to define the functions empty and firsts. The
function empty tests whether the empty sentence is part of the language.

empty :: Grammar a → Bool
empty (s :?: t) = empty s ∧ empty t
empty (s :|: t) = empty s ∨ empty t
empty (Rec i s) = empty s
empty Succeed = True
empty = False

The last definition covers the cases for Fail , Symbol , and Var . The most interesting
definition is for the pattern (Rec i s): it calls empty recursively on s as there is no
need to inspect recursive occurrences.
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The function firsts returns a list with all symbols that can appear as the first
symbol of a sentence. For each symbol, the function also returns the remaining
grammar, i.e., the sentences that can appear after that symbol.

firsts :: Grammar a → [(a,Grammar a)]
firsts (s :?: t) = [(a, s ′ <?> t) | (a, s ′)← firsts s ] ++

(if empty s then firsts t else [ ])
firsts (s :|: t) = firsts s ++ firsts t
firsts (Rec i s) = firsts (replaceVar i (Rec i s) s)
firsts (Symbol a) = [(a, succeed)]
firsts = [ ]

For a sequence (s :?: t), we determine which symbols can appear first for s, and we
change the results to reflect that t is part of the remaining grammar. Furthermore,
if s can be empty, then we also have to look at the firsts for t . For choices, we
simply combine the results for both operands. If the grammar is a single symbol,
then this symbol appears first, and the remaining strategy is succeed (we are done).
To find the firsts for (Rec i s), we have to look inside the body s. All occurrences of
this recursion point are replaced by the grammar itself before we call firsts again.
The replacement is performed by a helper-function: replaceVar i s t replaces all
free occurrences of (Var i) in t by s.

The function nonempty removes the empty sentence from a grammar, and is
defined using firsts:

nonempty :: Grammar a → Grammar a
nonempty s = foldr (<|>) fail [symbol a <?> p | (a, p)← firsts s ]

Example 3.1 The repetition combinator many can be defined in the following way:

many :: Grammar a → Grammar a
many s = rec 0 (succeed <|> (nonempty s <?> var 0))

It can also be expressed using the function fix , resulting in the definition given in
Example 2.2. We have to apply nonempty to strategy s to avoid a left-recursive
grammar specification: this also holds when we use fix . In Section 4.2 we explain
how left recursion can be avoided by analyzing the grammar that is constructed.

3.4 Running a strategy

So far, nothing specific about recognizing strategies has been discussed. A strategy
is a grammar over rewrite rules: with the functions empty and firsts we can run a
strategy with an initial term:

run :: Grammar (Rule a)→ a → [a ]
run s a = [a | empty s ] ++ [c | (r , t)← firsts s, b ← apply r a, c ← run t b ]

The list of results returned by run consists of two parts: the first part tests whether
empty s holds, and if so, it yields the singleton list containing the term a. The
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second part takes care of the non-empty alternatives. Let r be one of the symbols
that can appear first in strategy s (r is a rewrite rule). We are only interested in
r if it can be applied to the current term a. It is irrelevant how the type Rule is
defined, except that applying a rule to a term returns a list of results. We run the
remainder of the strategy (that is, t) with the result of the application of rule r .

The function run can produce an infinite list. In most cases, however, we are only
interested in a single result (and rely on lazy evaluation). The part that considers
the empty sentence is put at the front to return sentences with few rewrite rules
early. Nonetheless, the definition returns results in a depth-first manner. We define
a variant of run which exposes a breadth-first behavior:

run ′ :: Grammar (Rule a)→ a → [[a ]]
run ′ s a = [a | empty s ] : merge [run ′ t b | (r , t)← firsts s, b ← apply r a ]

where merge = map concat ◦ transpose

The function run ′ produces a list of lists: results are grouped by the number of
rewrite steps that have been applied, thus making explicit the breadth-first nature
of the function. The helper-function merge merges the results of the recursive calls:
by transposing the list of results, we combine results with the same number of steps.

3.5 Labels

Labels are not included in the Grammar data type. We introduce two mutually
recursive types for strategies that can have labeled parts:

data LabeledStrategy l a = Label l (Strategy l a)
type Strategy l a = Grammar (Either (Rule a) (LabeledStrategy l a))

A labeled strategy is a strategy with a label (of type l). A strategy is a grammar
where the symbols are either rules or labeled strategies. For this choice, we use the
Either data type: rules are tagged with the Left constructor, labeled strategies are
tagged with Right . With the type definitions above, we can have grammars over
other grammars, and the nesting can be arbitrarily deep.

Excluding labels from the Grammar data type is a design choice. Functions that
work on the Grammar data type don’t have to deal with labels, which makes it, for
example, simpler to manipulate grammars. A disadvantage of our solution is that
symbols in a strategy must be tagged Left or Right . In our actual implementation
we circumvent the tagging by overloading the strategy combinators. As a result,
strategies can really be defined as the specification in Example 2.3.

Now that we can label parts of a strategy, we want to keep track at which point
in the strategy we are, and we do so without changing the underlying machinery.
We start with defining the Step helper data type:

data Step l a = Enter l | Step (Rule a) | Exit l deriving Show

A step is a rewrite rule (constructor Step), or a constructor to indicate that we
entered (or left) a labeled part of the strategy. A labeled strategy can be turned
into a grammar over steps in the following way:

9
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withSteps :: LabeledStrategy l a → Grammar (Step l a)
withSteps (Label l s) = symbol (Enter l)

<?> mapSymbol (either (symbol ◦ Step) withSteps) s
<?> symbol (Exit l)

For each label, we introduce symbols that mark the beginning and the end of that
label. We use the function mapSymbol to transform strategy s to a grammar of
steps. The function mapSymbol :: (a → Grammar b)→ Grammar a → Grammar b
applies its argument function f to all symbols in a grammar. Note that f returns a
grammar, and therefore can be used to change symbols and to flatten a grammar
of grammars in one traversal. Each symbol of s is either a rewrite rule or a labeled
strategy (see the type definition of Strategy): a rewrite rule becomes a symbol with a
step, and a labeled strategy is handled by calling the function withSteps recursively.

To run a grammar with steps, we first have to overload the function apply such
that it also works on Step, and generalize the types of run and run ′ accordingly.
The step data type gives us more information, as we show in our next example.

Example 3.2 Suppose that we run the strategy of Example 2.3 on the term 2
5 + 2

3 :
what would be the result? Of course, we would expect to get the derivation:

2
5

+
2
3

=
6
15

+
2
3

=
6
15

+
10
15

=
16
15

= 1
1
15

The final answer, 1 1
15 , is indeed what we get. In fact, this term is returned twice

because the strategy does not specify which of the fractions should be renamed
first, which results in two different derivations. It is much more informative to step
through the above derivation and see the intermediate steps.

[Enter `0, Enter `1, Step ruleLCD , Exit `1, Enter `2
, Step down, Step ruleRename, Step up, Step down, Step ruleRename
, Step up, Step not, Exit `2, Enter `3, Step ruleAdd
,Exit `3, Enter `4, Step ruleSimpl ,Exit `4, Exit `0 ]

The list has twenty steps, but only four correspond to actual steps from the deriva-
tion: the rules of those steps are underlined. The other rules are administrative:
the rules up and down are introduced by the somewhere combinator, whereas not
comes from the use of repeat . Also observe that each Enter step has a matching
Exit step. In principle, a label can be visited multiple times by a strategy.

4 Extensions

The previous section presents the core of our work on recognizing strategies: strate-
gies can be labeled, and with the functions empty and firsts we can run a strategy. In
this section we present three extensions to illustrate the flexibility of our approach.

4.1 Parallel strategies

Suppose that we want to run the strategies s and t in parallel, denoted by s <||> t .
This operation makes sense in the domain of rewriting: for example, two parts have

10
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to be reduced, and steps to reduce any of the two parts can be interleaved until
we are done with both sides. In theory, we can express two strategies that run in
parallel in terms of sequences and choices. In practice, however, such a translation
does not scale because the grammar will grow tremendously.

In our setup, it is relatively easy to add a new constructor for parallel strategies
to the Grammar data type, and we will further explore this approach.

data Grammar a = ... | Grammar a :||: Grammar a

Just as we did for sequences and choices, we first introduce a smart constructor for
parallel strategies, which expresses that it has Succeed as its unit element, Fail as
its absorbing element, and that the combinator is associative:

(<||>) :: Grammar a → Grammar a → Grammar a
Succeed <||> t = t
s <||> Succeed = s
Fail <||> = fail

<||> Fail = fail
(s :||: t) <||> u = s :||: (t <||> u)
s <||> t = s :||: t

Next, we extend the definitions of empty and firsts with a new case:

empty (s :||: t) = empty s ∧ empty t
firsts (s :||: t) = [(a, s ′ <||> t ) | (a, s ′)← firsts s ] ++

[(a, s <||> t ′) | (a, t ′)← firsts t ]

Other functions that operate on the Grammar data type (such as freeVars and
mapSymbol) have to be extended as well, but these changes are minimal. Using a
generic traversal library [9] can further reduce the impact of adding a constructor.

In a similar way, we can define useful variants on this combinator, such as a left-
biased parallel combinator (which continues with its left operand strategy whenever
this is possible), or a parallel combinator that stops as soon as one of its operand
strategies is finished.

4.2 Removing left recursion

Because we can inspect the grammar, we can detect and remove left recursion in
a grammar. Left-recursive definitions cause the function firsts to loop, and are
therefore not desirable. Fortunately, removing left recursion from a context-free
grammar is a standard procedure, and we can transfer this knowledge directly to our
combinator approach. Consider the following left-recursive context-free grammar:

X ::= Xb | Xc | a | ε

We proceed by grouping the left-recursive alternatives (Xb and Xc) and the remain-
ing alternatives (a and ε), and arrive at the following grammar:

X ::= a | aY | ε | Y Y ::= b | bY | c | cY

11
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We briefly sketch how this procedure can be used for our Grammar data type.
Given a Rec constructor, we want to make sure that none of its Vars appears
first. We replace all variables of the Rec in question by a special symbol. Then,
we use firsts to analyze the grammar, and we divide the alternatives in the left-
recursive cases and the remaining cases. With the function empty we check for
the ε alternative. In the last step, we combine all alternatives as we did for the
context-free grammar. If necessary, we repeat the procedure until the left recursion
has disappeared. Other existing grammar analyses can be reused in a similar way.

Example 4.1 We extend the smart constructors for recursive grammars (rec and
fix ) and let them check for left recursion. It is now safe to apply the function firsts
to the left-recursive grammar fix (λx → (x <?> symbol ’a’) <|> succeed). Another
example is fix (λx → x ), which is simplified to fail .

4.3 Serializing the remaining strategy

In a recent project, we offered strategies as a service to the MathDox system [2].
For this binding, we designed a stateless protocol for diagnosing intermediate an-
swers submitted by students. One obstacle in establishing this binding was how to
communicate the remaining strategy, which is part of the state of an exercise, back
and forth. The representation of a strategy is finite and can be serialized. This is
not very appealing because strategies can become quite large, which means that it
takes longer to process a request.

The remainder of a strategy can also be encoded as a list of integers, with the
extra benefit that the rewrite rules applied so far can be recovered. The encoding
is rather simple: the integers in the list only encode which element of the firsts set
has to be used. A Prefix associates symbols (rewrite rules) with the integers from
the encoding, and contains the remaining grammar we are interested in:

data Prefix a = Prefix [(Int , a)] (Grammar a)

This data type is called Prefix because we are in the middle of a derivation, which
means that we have a prefix of a sentence. The following function constructs a
prefix from a list of integers and a labeled strategy:

makePrefix :: [Int ]→ LabeledStrategy l a → Prefix (Step l a)
makePrefix is = f [ ] is ◦ withSteps

where f acc [ ] s = Prefix (reverse acc) s
f acc (i : is) s = case drop i (firsts s) of

(a, t) : → f ((i , a) : acc) is t
→ error "invalid prefix"

The local function f has an accumulating argument which builds up a list in reverse
order for efficiency reasons. This explains why the list acc has to be reversed in the
case for the empty list. Each integer i from the list is used to select the ith element
of the list returned by the function firsts.

Example 4.2 Let us compute the list of integers that encodes the full derivation
of our running example (see Example 3.2):

12
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[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

The list contains twenty elements, just like the list of steps. The list is dominated
by zeros, which is not a coincident. At most places in our grammar, there is just
one path that can be followed, witnessed by the fact that firsts returns a singleton
list at these positions. A simple optimization is to not add an integer for the cases
where firsts offers no choice.

5 Error diagnosis and hints

In this section, we explain how strategies can help in diagnosing student errors and
reporting useful feedback and hints. We have implemented several kinds of feedback
for our own exercise assistants, but also for other e-learning systems that use our
feedback services as a back-end. The simplest form of feedback is correct/incorrect
for the final answer, which is the kind of feedback that is offered by several online
tools. A useful extension to this categorization is to check for equivalence between
the submitted term and the initial term. With this, we can distinguish a correct
but not yet final answer from an incorrect answer. In the rest of this section we
present a number of scenarios in the fraction domain to illustrate the possibilities.

Example 5.1 A student submits 16
15 as the final answer. The exercise assistant

reports back to the student that his answer is correct, but with a gentle reminder
that the exercise is not yet finished. In this scenario, the strategy tells exactly which
step needs to be done: the improper fraction should be simplified.

Example 5.2 A term is submitted as an intermediate step: the used rule is recog-
nized, but according to the strategy it shouldn’t have been applied. For instance,
[Rename] is recognized, but the denominators of the fractions are already equal.
The student can be warned that although the step is correct, it is better to do
something else.

Worked-out problems can be generated from a strategy, showing all the steps
to go from the initial term to the expected answer. A worked-out problem is the
presentation of a sentence that is generated by the strategy. The next step in a
derivation can be calculated with the function firsts. The information computed
with firsts can be presented in different ways: the hints can be very general or very
specific, for instance by using the levels of the labels in the strategy. A strategy can
complete the exercise, and therefore, progress information, such as the number of
steps remaining, is available.

Example 5.3 A student has no clue how to add the fractions 2
5 and 2

3 , and presses
the hint button. The system reports the hint: “make the denominators equal”. The
fact that the denominators are not yet equal can be concluded from the strategy. If
this does not help the student, the system can emit a more specific message stating
that the fractions should be renamed such that the denominators become 15. This
number is calculated and present in the environment in which the strategy is run.
A final hint could suggest to rewrite the part 2

5 into 6
15 .

13
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Strategies can work together with buggy rules: these rules capture common
mistakes, and help to report specialized messages for specific (but often occurring)
errors. In addition to the buggy rules, it is also possible to formulate buggy strate-
gies, i.e., common procedural mistakes. In our fraction domain, for example, a
buggy strategy would be to make the numerators equal before adding fractions.

Example 5.4 A student submits 4
8 as the solution to the exercise 2

5+2
3 . Because the

terms are not equivalent, the buggy rules are considered (B1 to B3 from Figure 1),
and in this case, rule B1 matches. A special message associated with this rule
(e.g., “it is not sound to add the numerators and the denominators of the fractions:
rename the fractions first”) is reported to the student.

Strategies and rules are essentially the same, except that the structure of a
strategy is made explicit. Hence, it is straightforward to turn a strategy into a rule,
or a part of a strategy with a certain label. This is convenient if following a strategy
becomes a routine, and a step-wise approach is no longer helpful to the student.
Similarly, a tool can ask a student to solve the entire problem first, and decompose
the problem in steps if the submitted answer is not correct.

Example 5.5 A student is asked to provide the final answer to a question, and in
case it is incorrect, the exercise tool poses sub-problems to the student. These sub-
problems can be calculated automatically from the strategy by looking at the labels.
The strategy for adding fractions, for instance, can be decomposed in 4 steps.

6 Related work

There are many tools that offer students an environment in which they can solve
exercises incrementally, such as MathDox [2] and LeActiveMath [4]. Most of these
tools are limited to correct/incorrect feedback, because it is often difficult and la-
borious in these systems to diagnose mistakes. However, some tools use external
domain reasoners for making a diagnosis, which is exactly what our strategy recog-
nizer has to offer. Some work has been done on diagnosing student mistakes on the
level of rewrite rules [1,6,14].

In this paper, we discuss the design and implementation of a strategy recognizer,
which makes it possible to use strategies for improving error diagnosis. Strategies
for specifying exercises are introduced in a different paper [5]. By viewing strategy
recognition as a parsing problem, we take advantage of almost 50 years of experience
in parsing sentences of context-free languages. The strategy language on which our
work is based is very similar to languages that are used in parser libraries [8,12], but
also to strategic programming languages such as Stratego [10,13], data conversion
libraries [3], and languages in other domains.

7 Conclusions

This paper presents a complete implementation of a recognizer for strategies. A
strategy describes valid sequences of rewrite rules, and is very similar to context-
free grammars. Knowledge and experience from the field of parsing sentences can
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be transferred to the domain of stepwise solving exercises. One example of such a
transfer is the grammar transformation to remove left recursion.

Although it is tempting to reuse existing parsing tools and libraries, a closer look
at the problem reveals subtle differences that make the existing tools unsuitable for
dealing with the problem we are facing. Nevertheless, the strategy combinators
that we selected as our starting point are inspired by context-free grammars. Some
design choices were discussed, in particular how to deal with recursion, and how
to mark positions in a strategy. In Section 5 we have shown how strategies can be
used to report improved feedback.

We will continue our research on strategy recognizers in several directions. We
are working on creating bindings with a number of existing tutoring tools, such
as LeActiveMath [4]. Protocols are needed to exchange information with such an
environment, and we are working on developing and standardizing these protocols.
Our tool has a binding with MathDox [2], and has recently been used in a classroom
setting. We have collected data from these session, and preliminary analyses show
that providing feedback on the strategy level improves far transfer: students that
received feedback on the strategic level did better in advanced exercises. A final
area that requires further investigation is how to make strategies (and the associated
feedback messages) more accessible to teachers.
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