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Abstract

In many realistic problem domains, the main variable of interest behaves monotonically in the observ-
able variables, in the sense that higher values for the variable of interest become more likely with
higher-ordered observations. This type of knowledge appears to naturally emerge from experts during
knowledge elicitation, without explicit prompting from the knowledge engineer. The experts’ concept
of monotonicity, however, may not correspond to the mathematical concept of monotonicity in Bayesian
networks. We present a method that provides both for verifying whether or not a network exhibits the
properties of monotonicity suggested by the experts and forstudying the violated properties with the
experts. We illustrate the application of our method for a real Bayesian network in veterinary science.

1 Introduction

For many diagnostic problems, the relation between the output variable of interest and the observable input
variables is isotone in the sense that higher values for the input variables give rise to a higher-ordered
output for the variable of interest. In a medical diagnosticapplication, for example, observing symptoms
and signs that are more severe will result in a more severe disease becoming a more likely explanation.
Such sensations of isotonicity are commonly shared in a domain of application. Upon developing models
to support experts in their diagnostic reasoning tasks, it is important that the resulting model reflects any
commonly acknowledged sensations of isotonicity. If a model violates one of these sensations, it will
exhibit a reasoning behaviour that is counterintuitive to the experts, which is likely to result in a dip in
acceptance of the model in daily practice. For many types of model, therefore, techniques have been
developed for studying properties of isotonicity, for example for neural networks [1], for classification trees
[11], and for regression models [12]. Also for Bayesian networks a mathematical concept of isotonicity
has been formulated [4]. A network is said to be isotone in itsobservable input variables if the probability
distribution computed for the output variable given specific observations is stochastically dominated by any
such distribution given higher-ordered observations.

Our experiences with developing Bayesian networks in many fields of medicine and veterinary science
show that, if sensations of isotonicity are commonly acknowledged in a domain, then experts will naturally
produce statements during knowledge elicitation that suggest properties of isotonicity. They in fact will
do so without explicit prompting. These experiences corroborate results from educational research which
suggest the existence of an intuitive reasoning rule that underlies people’s tendency to recognise isotonicity,
namely ‘more of the input implies more of the output’ [13]. Asthe experts’ sense of isotonicity is likely to
come from experiential knowledge, however, it is probably heuristic and may not hold for all situations that
can possibly be encountered. As a consequence, the mathematical translation of their concept of isotonicity
almost inherently differs from the mathematical concept ofisotonicity formulated for Bayesian networks.
Although the experts’ statements appear to imply properties of isotonicity, therefore, any such properties
have to be carefully verified before they can be exploited in the engineering of a network.

Based upon the above considerations, we developed a method for verifying isotonicity of Bayesian
networks with domain experts. Given the properties of isotonicity that have been suggested by the experts
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during knowledge elicitation, the method focuses on a relevant subset of the observable variables. For these
variables, a lattice of all possible joint value assignments is constructed, which subsequently is enhanced
with probabilistic information about the effects of these assignments on the probability distribution over the
output variable of interest. The enhanced lattice then is used for identifying any violations of the suggested
properties of isotonicity within the network at hand. The experts subsequently are presented with these
violations by means of pairs of vignettes stated in their domain’s terminology, and are asked to carefully
study the properties of isotonicity that are not matched by the network. Our method thereby provides both
for verifying any implied isotonicities in the network and for verifying the experts’ statements suggesting
isotonicity.

We applied our method for verifying monotonicity to a Bayesian network in veterinary science. In
recent years, we developed a network for the early detectionof classical swine fever in individual animals.
Both the network’s structure and its associated probabilities were elicited from two domain experts. During
the elicitation interviews, the experts had produced several statements that reflected their sensations of
isotonicity. We verified the isotonicities that were suggested for some of the observable input variables with
our method. We found a relatively small number of violationsof the implied properties of isotonicity in our
network and presented these violations to two independent veterinarians. The results from the interviews
showed that the network should indeed have been isotone in the observable variables under consideration
and that the identified violations were indicative of modelling inadequacies.

The paper is organised as follows. In Section 2, we briefly describe our Bayesian network for classical
swine fever. In Section 3, we review the mathematical concept of monotonicity defined for Bayesian
networks. In Section 4, we present our method for verifying properties of monotonicity with domain
experts. We report on the application of our method in Section 5. The paper ends with our concluding
observations in Section 6.

2 A Bayesian network for classical swine fever

In close collaboration with two experts from the Central Institute of Animal Disease Control in the Nether-
lands, we are developing a Bayesian network for the early detection of classical swine fever in individual
pigs. Classical swine fever is an infectious disease of pigs, which has serious socio-economical conse-
quences upon an outbreak. As the disease has a potential for rapid spread, it is imperative that its oc-
currence is detected in the early stages. The Bayesian network under construction is aimed at supporting
veterinary practitioners in the diagnosis of the disease when visiting pig farms because of disease problems
of unknown cause.

Classical swine fever is a viral disease. The virus causing the disease is transmitted mainly by direct
contact between pigs, yet transmission by farmers is also known to occur. When a pig is infected, the
virus first invades the lymphatic system. It subsequently affects the blood vessels and the immune system,
which may give rise to haemorrhaging and diminished resistance to secondary infections. The virus will
ultimately affect several organs and the pig will die. As a consequence of the infection, a pig will show
different disease symptoms, among which are fever, neurological disorders, and skin haemorrhages. Clin-
ical symptoms seen by the farmer or by the veterinarian are usually the first indications of the presence
of classical swine fever in a herd. The disease is hard to detect, however, since its early symptoms are
rather atypical and are shared to a large extent by common respiratory and gastro-intestinal infections. The
disease moreover has a low incidence.

Our Bayesian network for classical swine fever currently includes42 variables for which over2400
parameter probabilities have been assessed. The variablesin the network model the risk factors and the
pathogenesis of the disease. More specifically, the networkalso models the clinical signs observed in a
pig, to provide for diagnosis at a farm site. For the construction of the network, we held one unstructured
interview in which the experts were asked to describe the domain, and11 structured interviews in which
the experts were asked detailed questions. In six of these structured interviews, the probabilities required
for the network were obtained using standardised forms withquestions accompanied by a probability scale
containing verbal and numerical anchors [6]. Both experts were present at all interview sessions and
consensus was always reached. An initial version of our network has now been completed. The graphical
structure of this network is shown in Figure 1; in the sequel,we will refer to this network as the CSF
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Figure 1: The graphical structure of our Bayesian network for the early detection of classical swine fever
in individual pigs.

network. We currently are in the process of studying the network’s performance, both by evaluating its
output given real data gathered in a field test and by analysing reasoning patterns with artificial data.

3 The concept of monotonicity

Upon reviewing the mathematical concept of monotonicity for Bayesian networks, we assume that the
variables of a network have different roles. We assume more specifically that the network includes a
single output variableC and one or more observable input variablesE; in addition, it may include an
arbitrary number of intermediate variables which serve to correctly model the domain’s knowledge yet
cannot be observed in practice. In the CSF network, for example, the output variable models whether or
not a pig has a viraemia of classical swine fever, that is, whether or not the virus has entered into the pig’s
system of blood vessels. Among other clinical symptoms and signs, the observable input variables include
the presence or absence of skin haemorrhages and of a fever; note that these symptoms can be directly
observed or measured at a farm site. An example intermediatevariable, whose value cannot be observed
directly on location, is the variable that models whether ornot the pig suffers from bone marrow depletion.
Bayesian networks with multiple input variables and a single output variable are typically found in any type
of diagnostic, or classification, application. Given a joint value assignmente to their set of observable input
variables, these networks are used for computing the posterior probability distributionPr(C | e) for their
main variable of interestC. The CSF network, for example, will be used by a veterinarianto compute the
probability of a viraemia of classical swine fever for a pig showing a particular combination of symptoms
and signs.

In a Bayesian network, each of the variables can adopt one of aset of discrete values. We assume
that there exists a total ordering≤ on such a set of values. This ordering can for example be from less
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to more, or from low to high. For the purpose of studying monotonicity, the ordering to be used is best
chosen to conform with the natural ordering used by experts in reasoning about their domain. In the CSF
network, the orderings of the values of the variables have been chosen to range from the value that will be
found in a healthy pig to the value that is the most indicativeof some disease being present. The values
yesandno for the variable modelling whether or not a pig has cyanosis,for example, are orderedno ≤
yes. The total orderings per variable are taken to induce a partial ordering� on the set of all joint value
assignments to any subset of the network’s variables. In theCSF network, for example, the combination of
valuesCyanosis = yes, Abn faeces = nois ordered higher than the combinationCyanosis = no, Abn faeces
= no. Note that the ordering� on the set of joint assignments is not a total ordering. For example, in the
CSF network the combination of valuesCyanosis = yes, Abn faeces = nocannot be ordered compared to
Cyanosis = no, Abn faeces = yes.

The concept of monotonicity for Bayesian networks now builds upon the posterior probability distribu-
tions over the output variable given the possible joint value assignments to the observable variables [4]. It
is defined in terms of stochastic dominance. For a probability distributionPr(C) over the output variable
C, the cumulative distribution functionFPr is defined asFPr(c) = Pr(C ≤ c) for all valuesc of C. For
two distributionsPr(C) andPr′(C) over C, associated withFPr(C) andFPr′(C) respectively, we say
thatPr′(C) is stochastically dominant overPr(C), denotedPr(C) ≤ Pr′(C), if FPr′(c) ≤ FPr(c) for all
valuesc. We now say that a Bayesian network is isotone in its observable variablesE if

e � e′ → Pr(C | e) ≤ Pr(C | e′)

for all joint value assignmentse, e′ to E. However, if

e � e′ → Pr(C | e) ≥ Pr(C | e′)

for all e, e′, then the network is said to be antitone inE. Informally speaking, we have that a Bayesian
network is isotone in its observable input variables if entering a higher-ordered value assignment to these
variables cannot make higher-ordered values of the output variable less likely.

We would like to note that, given the above definition, a network is isotone in its observable variables
given the orderings≤ on their sets of values if and only if the network is antitone given the reversed order-
ings. Although antitonicity thus is (reversely) equivalent to isotonicity, we decided to explicitly distinguish
between the two types of monotonicity since a domain of application may exhibit an intricate combina-
tion of isotonicity and antitonicity for interrelated observable variables. Using orderings for the various
variables that differ from the natural orderings used by thedomain experts then is very likely to result in
confusion in the process of verifying monotonicity.

4 A method for verifying monotonicity

As we have argued in our introduction, upon developing a Bayesian network it is important that the result-
ing model reflects the commonly acknowledged sensations of monotonicity in its domain of application.
These sensations typically are brought up during knowledgeelicitation. In our experiences, the domain
experts will naturally produce statements that suggest monotonicity, even without explicit prompting from
the knowledge engineer. The experts will not explicitly usethe word ‘monotone’, though. An example
statement suggesting isotonicity in our domain of application is

”Observing skin haemorrhages always makes classical swinefever
more likely.”

We have further argued that, although the experts’ statements appear to imply properties of mono-
tonicity, the mathematical translation of their concept ofmonotonicity is quite likely to deviate from the
mathematical concept. A method for verifying monotonicityof Bayesian networks with domain experts
thus involves two verification tasks: on the one hand the statements produced by the experts have to be ver-
ified in terms of the mathematical concept of monotonicity and on the other hand the suggested properties
of monotonicity have to be verified in the network.
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Based upon the mathematical concept reviewed in the previous section, we designed a method for
verifying monotonicity of Bayesian networks with domain experts. Given the properties of monotonicity
that have been suggested by the experts during knowledge elicitation, the method focuses on a specific
subset of the observable input variables. For these variables, the method constructs a lattice of all possible
joint value assignments, which subsequently is enhanced with probabilistic information computed from
the Bayesian network under study. From the enhanced lattice, the method identifies all violations of the
properties of monotonicity of the network’s output. These violations then are presented to the experts by
means of pairs of vignettes for their careful consideration. The basic idea of our verification method thus
is to first verify the suggested properties of monotonicity in the network and to then verify just the violated
properties with the domain experts.

4.1 The assignment lattice and its use for studying monotonicity

In detailing the assignment lattice and its use, we restrictthe discussion to binary variables, each of which
adopts one of the valuestrueandfalse; our concept of assignment lattice and the technical details of its use,
however, are readily generalised to non-binary variables [5]. If a variableV has adopted the valuetrue, we
will write v; we usev̄ to denoteV = false. We further take the total ordering≤ with false≤ true on the
two values.

Theassignment latticefor a setX of n observable input variables in essence encodes all joint value
assignments toX , along with their partial ordering. For each joint value assignmentx to X , we construct
a setL(x) ⊆ X such thatXi ∈ L(x) if and only if Xi = true occurs inx. From the2n possible
value assignments toX , 2n subsets ofX are thus obtained, which with each other constitute the power
set ofX . From these subsets, we construct a (standard) lattice: theelements of the lattice are the various
subsets ofX and the links in the lattice capture the set-inclusion relation between them. We say that
a setL(x) directly precedesa setL(x′) in the lattice ifL(x) ⊂ L(x′) and there is no setL(x′′) with
L(x) ⊂ L(x′′) and L(x′′) ⊂ L(x′), where⊂ is used to indicate a proper subset. Note that the set-
inclusion relation of the lattice coincides with the partial ordering� on the joint value assignments to
X . The bottom of the assignment lattice is the empty set, denoting the joint value assignment toX in
which all variables have adopted the valuefalse; the top of the lattice equals the setX , encoding the joint
value assignment in which all observable variables have adopted the valuetrue. Figure 2 depicts, as an
example, the assignment lattice that is constructed for thefive observable variablesAbn faeces, Ataxia,
Fever, Malaise, and Skin haemorrhagesfrom our Bayesian network for classical swine fever. In this
lattice, the element{Abn faeces, Skin haemorrhages}, for example, encodes a pig showing a combination
of findings that indicate the presence of abnormal faeces andof pin-point bleedings of the skin; the pig
does not have a fever or ataxia and also does not show the clinical picture of malaise. The element{Abn
faeces, Skin haemorrhages} directly precedes the element{Abn faeces, Skin haemorrhages, Fever}, for
example, and is directly preceded by the elements{Abn faeces} and{Skin haemorrhages} in the lattice.

The assignment lattice for the full set of observable input variablesE of a Bayesian network captures all
possible joint value assignments toE along with the partial ordering between them. To describe the effects
of the various assignments on the probability distributionover the output variableC, we enhance the lattice
with probabilistic information. For each elementL(e) of the lattice, the conditional probabilityPr(c | e)
is computed from the Bayesian network under study; this probability is associated with the elementL(e)
in the lattice. For the assignment lattice from Figure 2, forexample, we compute from the network the
posterior probabilityPr(Viraemia= yes| Abn faeces= yes, Ataxia= no, Fever= no, Malaise= no, Skin
haemorrhages= yes) = 0.001 to be associated with the element{Abn faeces, Skin haemorrhages}. For
its direct successor{Abn faeces, Skin haemorrhages, Fever} in the lattice, we computePr(Viraemia= yes
| Abn faeces= yes, Ataxia = no, Fever= yes, Malaise == no, Skin haemorrhages= yes) = 0.017.

From the definition of isotonicity, we now recall that establishing whether or not a Bayesian network
is isotone in its set of observable input variablesE amounts to verifying that entering a higher-ordered
value assignment toE results in a stochastically dominant probability distribution over the main variable
of interest or, for the binary variableC, in a higher probability ofC beingtrue. Since the partial ordering�
on the value assignments coincides with the set-inclusion relation of the assignment lattice forE, we have
that the lattice explicitly enumerates all pairs of probabilities to be compared for establishing isotonicity.
More specifically, the network is isotone inE if Pr(c | e) ≤ Pr(c | e′) for each pair of elementsL(e)
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andL(e′) in the lattice whereL(e) directly precedesL(e′). We say that the pair of probabilitiesPr(c | e)
and Pr(c | e′) violates the properties of isotonicity ifPr(c | e) > Pr(c | e′). Similar observations
hold for antitonicity in the set of observable variables. From the assignment lattice from Figure 2, for
example, we thus need to compare the posterior probabilities associated with the element{Abn faeces,
Skin haemorrhages} and its direct successor{Abn faeces, Skin haemorrhages, Fever}. Note that, since
numerical ordering is transitive, we have to study the probabilities of directly linked pairs of elements in
the lattice only to decide upon monotonicity. We therefore do not need to compare the probability of{Abn
faeces, Skin haemorrhages} with that of the element{Abn faeces, Skin haemorrhages, Fever, Ataxia}, for
example.

From the above considerations, we have that the enhanced assignment lattice can be exploited di-
rectly for establishing whether or not a Bayesian network isisotone in its observable input variables. We
now observe that the lattice encodes an exponential number of value assignments to the set of input vari-
ables. Constructing the lattice and computing the various probabilities to be associated with its elements,
therefore, takes exponential time and will be prohibitive for most real networks. We would like to note,
however, that establishing monotonicity in a straightforward manner by directly exploiting the definition of
the concept of monotonicity also takes exponential time since essentially the same probabilities need to be
computed and compared. Unfortunately, the problem of establishing monotonicity of a Bayesian network
is highly intractable in general [4], which renders it very unlikely that polynomial-time algorithms to this
end will be found. It is not to be expected, therefore, that much more efficient methods can be constructed
than using the assignment lattice as described above.

The exponential complexity of our method forestalls its usefor large networks with many observable
input variables. We observe, however, that the assignment lattice also provides for studying monotonicity
properties of a network for a particularsubsetof the set of input variables. To this end, a relevant subsetX

of observable variables is selected from the network. An assignment lattice then is constructed from these
variables as described above. The probabilities associated with the elements of this lattice are conditioned
on afixed joint value assignmente− to the variablesE− = E \ X , that is, with each elementL(x) of
the lattice is associated the conditional probabilityPr(c | x, e−). The lattice now provides for studying
monotonicity for the setX in the context ofthe assignmente−. Both the subsetX and the assignment
e− for which the properties of monotonicity are to be verified, are dependent upon the domain under study
and should be chosen in close consultation with the experts.For many diagnostic problems in which
the observable input variables model symptoms of aberrant behaviour, for example, a suitable context
assignment may be an assignment in which all context variables have adopted the valuefalse. Alternatively,
the graphical structure of the Bayesian network at hand may allow for identifying sets of observable input
variables which are loosely interrelated and hence can be studied more or less independently.

4.2 Verifying expert statements of monotonicity

We argued in our introduction that, if sensations of monotonicity are commonly acknowledged in a do-
main, experts will naturally produce statements suggesting monotonicity during knowledge acquisition,
even without explicit prompting from the knowledge engineer. Since the experts in making these state-
ments may have a different conception of the idea of monotonicity than is captured by the mathematical
concept reviewed above, these statements have to be carefully verified before they can be further used for
engineering of the Bayesian network at hand. Now, if an expert offers statements of monotonicity during
knowledge elicitation, the properties of monotonicity that are thus suggested can in essence be verified
directly. To this end, all pairs of directly linked elementsfrom the constructed assignment lattice are put
to the expert for comparison. We will briefly describe how vignettes can be used for this purpose. We
will then argue that the task to be performed by the expert during this verification process, although not
demanding from a cognitive perspective, is quite time consuming and moreover tends to be annoying. To
reduce the time that is required from the expert and to forestall irritation, we therefore propose to not verify
the various properties of monotonicity directly, but to study instead only the violations of these properties
identified from the network using the assignment lattice.

We begin by observing that the knowledge to be acquired to confirm the mathematical properties of the
monotonicities suggested by an expert, concerns orderingsof conditional probabilities. We consider again
a setX of observable input variables and an output variableC. For any two joint value assignmentsx and
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Figure 3: A vignette for the domain of classical swine fever.

x′ with x � x′, the expert more specifically will have to indicate which of the two probabilitiesPr(c | x)
andPr(c | x′) is the largest. By building upon the associated assignment lattice and the transitivity of the
numerical ordering of probabilities, the expert will in essence have to perform this task for all pairs of value
assignmentsx andx′ of which the setL(x) directly precedes the setL(x′) in the lattice.

To reduce the cognitive effort that is asked of the experts inthe comparison task, we propose to present
the various probabilities in a way that is easily accessiblefor them. For each probability, a description of
a concrete case is constructed. By doing so, we situate the task to be performed in the experts’ working
practice, that is, in the situation in which his experiential knowledge is acquired; thus situating the task is
more likely to result in relevant and correct information [2, 3]. More specifically, for the probabilityPr(c |
x, e−), wheree− is the context assignment introduced above, a case is constructed with the evidence that
is described byx, e−. For each constructed case, a separatecase cardor vignetteis created for presentation
to the expert. These vignettes are stated in the expert’s domain language, again to situate the task and to
provide as many recognition cues as possible. Figure 3 shows, as an example, a vignette describing a value
assignment to the five observable variablesAbn faeces, Ataxia, Fever, Malaise, andSkin haemorrhages
from our Bayesian network for classical swine fever. The description on the vignette mentions just the
variables for which the higher-ordered value has been observed; the other variables are implicitly taken to
have adopted their lower-ordered value. By explicitly stating just the aberrant values, we build upon the
assumption that the experts will fill in normal values for thevariables that are not mentioned explicitly.
We thereby build upon the implicit assumptions humans make in observational reasoning. For each pair of
vignettes thus created, the experts are asked to indicate inwhich of the two described cases the outputc is
more likely to occur. Note that by thus using vignettes the experts are never asked to actually provide or
peruse numerical probabilities.

While human experts tend to feel uncomfortable expressing their knowledge and experience in terms of
probabilities and are known to provide imperfectly calibrated assessments, they typically are able to state
probabilistic information of a semi-numerical or qualitative nature with relative conviction and clarity, and
with less cognitive effort [9]. Experts, for example, can often easily indicate which of two cases is the
least likely to occur. In addition to requiring less cognitive effort, such relative judgements tend to be more
reliable than direct numerical assessments [10]. Based upon these observations, we feel that the results
from the elicitation procedure outlined above will be quitereliable. We would like to mention that in
domains in which experts have little experience with reasoning about single cases in terms of probabilities
and likelihoods, the constructed cases can be presented using the frequency format [7, 8].

Even though the task of comparing two probabilities is not very demanding on the part of the experts,
direct confirmation of all suggested properties of monotonicity as outlined above requires a large number
of such comparisons. By building upon the assignment lattice forn observable variables in fact,

n
∑

i=0

(

n

i

)

· (n − i) > 2n

pairs of probabilities have to be compared. For five observable variables, for example, the experts will have
to perform as many as80 comparisons. Since statements implying monotonicity tendto come up naturally
during the elicitation interviews with the domain experts while constructing a Bayesian network, we feel
that verifying all suggested properties of monotonicity explicitly is too time consuming. The elicitation will
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moreover give the impression of unnecessary duplication and, as a result, is likely to generate irritation.
We therefore propose to apply the method described above only for the pairs of conditional probabilities
that are identified from the assignment lattice as violatingthe monotonicity properties that were implied by
the experts in their statements.

5 Application of the verification method

During the elicitation interviews held for the construction of our Bayesian network for classical swine fever,
the veterinary experts involved had made various statements that suggested properties of monotonicity for
the observable input variables. To study whether or not our network adhered to the mathematical properties
thus implied, we used the verification method described in the previous section for various subsets of
observable variables. In this section, we review the results that we obtained for one such subset.

We consider the five observable input variablesAbn faeces, Ataxia, Fever, Malaise, andSkin haemor-
rhagesfrom our network and take for our output variable the variable CSF Viraemia. From the five input
variables, we constructed an assignment lattice as depicted in Figure 2. The lattice includes25 = 32 el-
ements to capture all possible joint value assignments to the five variables under study; it further includes
80 direct set-inclusion statements. Before the lattice couldbe enhanced with posterior probabilities of the
presence of a viraemia of classical swine fever, we had to decide upon the context in which the proper-
ties of monotonicity would be verified. For this context, we decided to take a suckling piglet in which
all remaining observable variables had adopted the lower-ordered value found in healthy pigs. We chose
this assignment since the various aberrant clinical signs have a rather small probability of occurrence and
moreover it is highly unlikely to find a large number of such signs in a single live pig. Our choice of
assignment further had the advantage of fitting in with the mental model of humans which presumes signs
that are not mentioned explicitly to be absent. Note that, ifwe would have chosen a different context, we
would have had to adapt the vignettes to include the clinicalsigns that were presumed to be present in the
context. Given the chosen context, we computed the various conditional probabilities to be associated with
the elements of the assignment lattice.

For each pair of directly linked elements from the assignment lattice, we compared the computed
posterior probabilities of a viraemia of classical swine fever. We found four violations of the monotonicity
properties that had been implied by the experts during the elicitation interviews. These violations all
pertained to adding the clinical sign of abnormal faeces to acombination of findings including the presence
of ataxia and malaise. All violations arose from minor differences in the computed posterior probabilities.
The largest difference was found when adding the sign of abnormal faeces to the combination of ataxia
and malaise. Contrary to the property implied by the experts, the posterior probability of a viraemia of
classical swine fever being present dropped from0.017 to 0.014 by adding the sign of diarrhoea to the
combination of ataxia and malaise. Note that the four violations of the monotonicity properties identified
from our network show a clear pattern of regularity, in the sense that once a violation has arisen, adding
further signs cannot remove it. We say that the combination is ataxia and malaise is thecontext of offence
for the entire set of violations.

We presented the pairs of assignments underlying the identified violations of monotonicity to two in-
dependent veterinarians using vignettes as described in the previous section and asked them to indicate the
pig that would be more likely to have a viraemia of classical swine fever. Note that we thus asked the vet-
erinarians to perform four comparisons rather than the80 comparisons that would have been necessary for
eliciting the properties of monotonicity among the five variables involved directly. Upon being confronted
with the pairs of vignettes, the two veterinarians independently and with conviction indicated that the prob-
ability of a viraemia of classical swine fever should increase upon finding the additional sign of abnormal
faeces. Both veterinarians mentioned that the combinationof ataxia and abnormal faeces especially served
to point to classical swine fever; within the scope of our network, they could not think of any other disease
that would be more likely to give this combination of signs. Assuming that the properties of monotonicity
that were not confirmed explicitly indeed do hold in their domain of expertise, both veterinarians thus in-
dicated, through their orderings, that the network should indeed have been monotone in the mathematical
sense for the five variables under study in the absence of any other signs.

To conclude, we would like to note that during the interviewsthe two veterinarians mentioned that
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diagnostic reasoning patterns in the domain of infectious animal diseases are not monotone in general.
Both could rather easily generate, from their accumulated knowledge and experience, examples in which
the output would be neither isotone nor antitone in the various clinical signs observed. As a side remark, one
of the veterinarians moreover suggested that for studying monotonicity it would indeed not be necessary to
include more than six observable variables, since with moreaberrant clinical signs a pig would be dead.

6 Concluding observations

In this paper, we have presented a method for verifying monotonicity of Bayesian networks with the help of
domain experts. The method focuses on a subset of the observable variables of a network and builds upon
a lattice of possible joint value assignments to these variables. The lattice is enhanced with probabilistic
information about the effects of these assignments on the probability distribution over the network’s main
variable of interest. The enhanced lattice then is used for identifying any violations of monotonicity.
The experts subsequently are presented with these violations by means of pairs of vignettes stated in the
domain’s terminology, for their careful consideration. The method thus provides both for verifying any
implied monotonicities in the network and for confirming statements suggesting monotonicity with the
domain experts. The method has further been designed specifically so as to ask little time as well as
little cognitive effort from the experts in the verificationof their statements of monotonicity. In the paper,
we have focused our discussion on binary variables only and on the verification of either isotonicity or
antitonicity of a set of observable input variables. Our method, however, has been extended to apply to sets
of observable variables of mixed monotonicity and to non-binary variables [5].

The results from applying our method for verifying monotonicity to a real network in veterinary science
indicate that it presents a practicable method for studyingreasoning patterns in Bayesian networks. We
feel in fact that through the availability of our method, it has become worthwhile to devote additional
attention to any statements made by experts during knowledge elicitation that appear to imply properties
of monotonicity. So far, our method provides just for identifying violations of properties of monotonicity.
Such violations may be indicative of modelling inadequacies, however, that need to be resolved upon
further engineering of the network under study. In the near future, we hope to be able to further extend our
method to include techniques for identifying the parts of a Bayesian network that have to be modified to
ensure the required properties of monotonicity.
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