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Abstract

In many realistic problem domains, the main variable ofrieé behaves monotonically in the observ-
able variables, in the sense that higher values for the blariaf interest become more likely with
higher-ordered observations. This type of knowledge appwanaturally emerge from experts during
knowledge elicitation, without explicit prompting frometknowledge engineer. The experts’ concept
of monotonicity, however, may not correspond to the mathemleconcept of monotonicity in Bayesian
networks. We present a method that provides both for verifyivhether or not a network exhibits the
properties of monotonicity suggested by the experts andtiatlying the violated properties with the
experts. We illustrate the application of our method fora Bayesian network in veterinary science.

1 Introduction

For many diagnostic problems, the relation between theudwgriable of interest and the observable input
variables is isotone in the sense that higher values forrpativariables give rise to a higher-ordered
output for the variable of interest. In a medical diagnoapplication, for example, observing symptoms
and signs that are more severe will result in a more seveeasgésbecoming a more likely explanation.
Such sensations of isotonicity are commonly shared in a doofapplication. Upon developing models
to support experts in their diagnostic reasoning tasks, iinportant that the resulting model reflects any
commonly acknowledged sensations of isotonicity. If a nhadlelates one of these sensations, it will
exhibit a reasoning behaviour that is counterintuitivelte &xperts, which is likely to result in a dip in
acceptance of the model in daily practice. For many types odleh therefore, techniques have been
developed for studying properties of isotonicity, for exgetfor neural networks [1], for classification trees
[11], and for regression models [12]. Also for Bayesian relkg a mathematical concept of isotonicity
has been formulated [4]. A network is said to be isotone iolitservable input variables if the probability
distribution computed for the output variable given speafiservations is stochastically dominated by any
such distribution given higher-ordered observations.

Our experiences with developing Bayesian networks in maatgidiof medicine and veterinary science
show that, if sensations of isotonicity are commonly ackleolged in a domain, then experts will naturally
produce statements during knowledge elicitation that ssggroperties of isotonicity. They in fact will
do so without explicit prompting. These experiences cavrate results from educational research which
suggest the existence of an intuitive reasoning rule thdeties people’s tendency to recognise isotonicity,
namely ‘more of the input implies more of the output’ [13]. & experts’ sense of isotonicity is likely to
come from experiential knowledge, however, it is probaldutistic and may not hold for all situations that
can possibly be encountered. As a consequence, the matbairanslation of their concept of isotonicity
almost inherently differs from the mathematical concepsofonicity formulated for Bayesian networks.
Although the experts’ statements appear to imply propgufasotonicity, therefore, any such properties
have to be carefully verified before they can be exploitethédngineering of a network.

Based upon the above considerations, we developed a matheérifying isotonicity of Bayesian
networks with domain experts. Given the properties of ismtity that have been suggested by the experts



during knowledge elicitation, the method focuses on a eglesubset of the observable variables. For these
variables, a lattice of all possible joint value assignmestconstructed, which subsequently is enhanced
with probabilistic information about the effects of thessignments on the probability distribution over the
output variable of interest. The enhanced lattice thenasl diar identifying any violations of the suggested
properties of isotonicity within the network at hand. Theers subsequently are presented with these
violations by means of pairs of vignettes stated in their diors terminology, and are asked to carefully
study the properties of isotonicity that are not matchedhgyrtetwork. Our method thereby provides both
for verifying any implied isotonicities in the network andrfverifying the experts’ statements suggesting
isotonicity.

We applied our method for verifying monotonicity to a Bayesinetwork in veterinary science. In
recent years, we developed a network for the early deteofigtassical swine fever in individual animals.
Both the network’s structure and its associated probaslivere elicited from two domain experts. During
the elicitation interviews, the experts had produced sdvamtements that reflected their sensations of
isotonicity. We verified the isotonicities that were suggdgor some of the observable input variables with
our method. We found a relatively small number of violatiohthe implied properties of isotonicity in our
network and presented these violations to two independsetinarians. The results from the interviews
showed that the network should indeed have been isotone iolibervable variables under consideration
and that the identified violations were indicative of moutgjlinadequacies.

The paper is organised as follows. In Section 2, we brieflgdes our Bayesian network for classical
swine fever. In Section 3, we review the mathematical cohoépnonotonicity defined for Bayesian
networks. In Section 4, we present our method for verifyimgperties of monotonicity with domain
experts. We report on the application of our method in Sackio The paper ends with our concluding
observations in Section 6.

2 A Bayesian network for classical swine fever

In close collaboration with two experts from the Centratitase of Animal Disease Control in the Nether-
lands, we are developing a Bayesian network for the earlgdien of classical swine fever in individual
pigs. Classical swine fever is an infectious disease of,pidggch has serious socio-economical conse-
guences upon an outbreak. As the disease has a potentiapidrspread, it is imperative that its oc-
currence is detected in the early stages. The Bayesian rietmder construction is aimed at supporting
veterinary practitioners in the diagnosis of the diseasemwhsiting pig farms because of disease problems
of unknown cause.

Classical swine fever is a viral disease. The virus caugieglisease is transmitted mainly by direct
contact between pigs, yet transmission by farmers is algovkrto occur. When a pig is infected, the
virus first invades the lymphatic system. It subsequenflycaés the blood vessels and the immune system,
which may give rise to haemorrhaging and diminished rest#dao secondary infections. The virus will
ultimately affect several organs and the pig will die. As asequence of the infection, a pig will show
different disease symptoms, among which are fever, negicdbdisorders, and skin haemorrhages. Clin-
ical symptoms seen by the farmer or by the veterinarian avallysthe first indications of the presence
of classical swine fever in a herd. The disease is hard tactdtewever, since its early symptoms are
rather atypical and are shared to a large extent by commeiragsry and gastro-intestinal infections. The
disease moreover has a low incidence.

Our Bayesian network for classical swine fever currentlgludes42 variables for which ove2400
parameter probabilities have been assessed. The varialtles network model the risk factors and the
pathogenesis of the disease. More specifically, the netaisik models the clinical signs observed in a
pig, to provide for diagnosis at a farm site. For the congtamcof the network, we held one unstructured
interview in which the experts were asked to describe thealopandl1 structured interviews in which
the experts were asked detailed questions. In six of thesetsted interviews, the probabilities required
for the network were obtained using standardised forms gughstions accompanied by a probability scale
containing verbal and numerical anchors [6]. Both experseapresent at all interview sessions and
consensus was always reached. An initial version of our oiitévas now been completed. The graphical
structure of this network is shown in Figure 1; in the seqwed, will refer to this network as the CSF
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Figure 1: The graphical structure of our Bayesian networklie early detection of classical swine fever
in individual pigs.

network. We currently are in the process of studying the oéts performance, both by evaluating its
output given real data gathered in a field test and by anajysiasoning patterns with artificial data.

3 The concept of monotonicity

Upon reviewing the mathematical concept of monotonicity Bayesian networks, we assume that the
variables of a network have different roles. We assume mpeeifically that the network includes a
single output variabl&€’ and one or more observable input variablgsin addition, it may include an
arbitrary number of intermediate variables which serve doectly model the domain’s knowledge yet
cannot be observed in practice. In the CSF network, for exantipe output variable models whether or
not a pig has a viraemia of classical swine fever, that is,tidreor not the virus has entered into the pig’s
system of blood vessels. Among other clinical symptoms &issthe observable input variables include
the presence or absence of skin haemorrhages and of a feterthat these symptoms can be directly
observed or measured at a farm site. An example intermedaigble, whose value cannot be observed
directly on location, is the variable that models whethematrthe pig suffers from bone marrow depletion.
Bayesian networks with multiple input variables and a graltput variable are typically found in any type
of diagnostic, or classification, application. Given a jaialue assignmerntto their set of observable input
variables, these networks are used for computing the posfeobability distributionPr(C' | e) for their
main variable of interest’. The CSF network, for example, will be used by a veterinatiacompute the
probability of a viraemia of classical swine fever for a plgpwiing a particular combination of symptoms
and signs.

In a Bayesian network, each of the variables can adopt onesef af discrete values. We assume
that there exists a total ordering on such a set of values. This ordering can for example be fem® |



to more, or from low to high. For the purpose of studying mamatity, the ordering to be used is best
chosen to conform with the natural ordering used by expartsasoning about their domain. In the CSF
network, the orderings of the values of the variables haemlmhosen to range from the value that will be
found in a healthy pig to the value that is the most indicati’eome disease being present. The values
yesandno for the variable modelling whether or not a pig has cyandsisexample, are orderego <
yes The total orderings per variable are taken to induce agastdering= on the set of all joint value
assignments to any subset of the network’s variables. I€8¥ network, for example, the combination of
valuesCyanosis = yesAbn faeces = nds ordered higher than the combinatiGganosis = noAbn faeces
= no. Note that the orderingt on the set of joint assignments is not a total ordering. FangXe, in the
CSF network the combination of valu€yanosis = yesAbn faeces = h@annot be ordered compared to
Cyanosis = npAbn faeces = yes

The concept of monotonicity for Bayesian networks now kaiid@on the posterior probability distribu-
tions over the output variable given the possible joint eassignments to the observable variables [4]. It
is defined in terms of stochastic dominance. For a probgldigtributionPr(C) over the output variable
C, the cumulative distribution functiofp, is defined agp,(c) = Pr(C < c¢) for all valuesc of C. For
two distributionsPr(C) andPr’(C) over C, associated withFp,.(C) and Fp, (C) respectively, we say
thatPr’(C) is stochastically dominant ovérr(C), denotedPr(C) < Pr'(C), if Fp,/(c) < Fp,(c) for all
valuesc. We now say that a Bayesian network is isotone in its obséswatriablesFE if

e=<e — Pr(Cle) <Pr(C|e)
for all joint value assignments ¢’ to E. However, if
e<xe — Pr(C|e)>Pr(C|¢)

for all e, ¢’, then the network is said to be antitonefh Informally speaking, we have that a Bayesian
network is isotone in its observable input variables if eintga higher-ordered value assignment to these
variables cannot make higher-ordered values of the outislbie less likely.

We would like to note that, given the above definition, a nekiis isotone in its observable variables
given the orderings: on their sets of values if and only if the network is antitonesg the reversed order-
ings. Although antitonicity thus is (reversely) equivalenisotonicity, we decided to explicitly distinguish
between the two types of monotonicity since a domain of apibn may exhibit an intricate combina-
tion of isotonicity and antitonicity for interrelated olygable variables. Using orderings for the various
variables that differ from the natural orderings used bydbeain experts then is very likely to result in
confusion in the process of verifying monotonicity.

4 A method for verifying monotonicity

As we have argued in our introduction, upon developing a Bayenetwork it is important that the result-
ing model reflects the commonly acknowledged sensationsomiotonicity in its domain of application.
These sensations typically are brought up during knowlesligéation. In our experiences, the domain
experts will naturally produce statements that suggestatamicity, even without explicit prompting from
the knowledge engineer. The experts will not explicitly tise word ‘monotone’, though. An example
statement suggesting isotonicity in our domain of applicais

"Observing skin haemorrhages always makes classical stever
more likely”

We have further argued that, although the experts’ stat&sregopear to imply properties of mono-
tonicity, the mathematical translation of their conceptainotonicity is quite likely to deviate from the
mathematical concept. A method for verifying monotoni@fyBayesian networks with domain experts
thus involves two verification tasks: on the one hand thestants produced by the experts have to be ver-
ified in terms of the mathematical concept of monotonicitgl an the other hand the suggested properties
of monotonicity have to be verified in the network.



Based upon the mathematical concept reviewed in the pre\deation, we designed a method for
verifying monotonicity of Bayesian networks with domairpexts. Given the properties of monotonicity
that have been suggested by the experts during knowledgtagdin, the method focuses on a specific
subset of the observable input variables. For these vasatite method constructs a lattice of all possible
joint value assignments, which subsequently is enhanctdprbbabilistic information computed from
the Bayesian network under study. From the enhanced lattieemethod identifies all violations of the
properties of monotonicity of the network’s output. Thesaations then are presented to the experts by
means of pairs of vignettes for their careful consideratibhe basic idea of our verification method thus
is to first verify the suggested properties of monotoniaitytie network and to then verify just the violated
properties with the domain experts.

4.1 The assignment lattice and its use for studying monotoaity

In detailing the assignment lattice and its use, we redtrediscussion to binary variables, each of which
adopts one of the valuésie andfalse our concept of assignment lattice and the technical detdits use,
however, are readily generalised to non-binary variatB¢sf a variableV has adopted the valdrie, we
will write v; we usev to denotel = false We further take the total ordering with false < true on the
two values.

Theassignment latticéor a setX of n observable input variables in essence encodes all joineval
assignments t&, along with their partial ordering. For each joint valueigasnentx to X, we construct
a setL(z) C X such thatX; € L(z) if and only if X; = true occurs inz. From the2™ possible
value assignments t&, 2™ subsets ofX are thus obtained, which with each other constitute the powe
set of X. From these subsets, we construct a (standard) latticeeléineents of the lattice are the various
subsets ofX and the links in the lattice capture the set-inclusion refabetween them. We say that
a setL(z) directly precedes setL(z’) in the lattice if L(x) C L(a’) and there is no sek(z”) with
L(z) ¢ L(z")and L(z") c L('), whereC is used to indicate a proper subset. Note that the set-
inclusion relation of the lattice coincides with the pdrtidering < on the joint value assignments to
X. The bottom of the assignment lattice is the empty set, degadhe joint value assignment t& in
which all variables have adopted the vafatse the top of the lattice equals the st encoding the joint
value assignment in which all observable variables havetadothe valudrue. Figure 2 depicts, as an
example, the assignment lattice that is constructed fofitieeobservable variable&Abn faecesAtaxia
Fever, Malaise and Skin haemorrhagefom our Bayesian network for classical swine fever. In this
lattice, the elemenfAbn faeces, Skin haemorrhagefor example, encodes a pig showing a combination
of findings that indicate the presence of abnormal faecesépih-point bleedings of the skin; the pig
does not have a fever or ataxia and also does not show theatlpicture of malaise. The elemefibn
faeces, Skin haemorrhadedirectly precedes the elemefibn faeces, Skin haemorrhages, Feyédor
example, and is directly preceded by the eleméAtsn faecel and{Skin haemorrhagédsn the lattice.

The assignment lattice for the full set of observable inguiablesE of a Bayesian network captures all
possible joint value assignmentsibalong with the partial ordering between them. To descrileestifects
of the various assignments on the probability distributwar the output variabl€’, we enhance the lattice
with probabilistic information. For each elemehte) of the lattice, the conditional probabiliiyr(c | e)
is computed from the Bayesian network under study; this glodlty is associated with the elemehbte)
in the lattice. For the assignment lattice from Figure 2,dgample, we compute from the network the
posterior probabilityPr(Viraemia= yes| Abn faeces-= yes, Ataxia= no, Fever= no, Malaise= no, Skin
haemorrhages= yeg = 0.001 to be associated with the elemgtbn faeces, Skin haemorrhages-or
its direct successdrAbn faeces, Skin haemorrhages, Féverthe lattice, we computBr(Viraemia= yes
| Abn faeces-= yes, Ataxia = no, Fever yes, Malaise == no, Skin haemorrhages yeg = 0.017.

From the definition of isotonicity, we now recall that estahing whether or not a Bayesian network
is isotone in its set of observable input variablésamounts to verifying that entering a higher-ordered
value assignment t&' results in a stochastically dominant probability disttibn over the main variable
of interest or, for the binary variabtg, in a higher probability of” beingtrue. Since the partial ordering
on the value assignments coincides with the set-inclugtation of the assignment lattice féf, we have
that the lattice explicitly enumerates all pairs of prolii&ibs to be compared for establishing isotonicity.
More specifically, the network is isotone i if Pr(c | ¢) < Pr(c | ¢’) for each pair of element&(e)
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andL(e’) in the lattice wherd.(e) directly preceded.(¢’). We say that the pair of probabilitida(c | e)
andPr(c | €’) violatesthe properties of isotonicity iPr(c | €) > Pr(c | ¢'). Similar observations
hold for antitonicity in the set of observable variables.orfrthe assignment lattice from Figure 2, for
example, we thus need to compare the posterior probabiktssociated with the elemepAbn faeces,
Skin haemorrhagdsand its direct successgibn faeces, Skin haemorrhages, FdveNote that, since
numerical ordering is transitive, we have to study the pbaliges of directly linked pairs of elements in
the lattice only to decide upon monotonicity. We therefarendt need to compare the probability{afbn
faeces, Skin haemorrhagdesith that of the elemenfAbn faeces, Skin haemorrhages, Fever, Athxiar
example.

From the above considerations, we have that the enhancephment lattice can be exploited di-
rectly for establishing whether or not a Bayesian networikdone in its observable input variables. We
now observe that the lattice encodes an exponential nunibailue assignments to the set of input vari-
ables. Constructing the lattice and computing the varigababilities to be associated with its elements,
therefore, takes exponential time and will be prohibitiee fhost real networks. We would like to note,
however, that establishing monotonicity in a straightfarsmanner by directly exploiting the definition of
the concept of monotonicity also takes exponential timeesgssentially the same probabilities need to be
computed and compared. Unfortunately, the problem of éstabg monotonicity of a Bayesian network
is highly intractable in general [4], which renders it vemylikely that polynomial-time algorithms to this
end will be found. It is not to be expected, therefore, thatimonore efficient methods can be constructed
than using the assignment lattice as described above.

The exponential complexity of our method forestalls its fmsdarge networks with many observable
input variables. We observe, however, that the assignnagéiitd also provides for studying monotonicity
properties of a network for a particulanbsebf the set of input variables. To this end, a relevant sulset
of observable variables is selected from the network. Aigassent lattice then is constructed from these
variables as described above. The probabilities assdordth the elements of this lattice are conditioned
on afixedjoint value assignment™ to the variables~ = E \ X, that is, with each elemert(x) of
the lattice is associated the conditional probabilty(c | =,e~). The lattice now provides for studying
monotonicity for the seX in the context ofthe assignment—. Both the subseX and the assignment
e~ for which the properties of monotonicity are to be verified dependent upon the domain under study
and should be chosen in close consultation with the expdits. many diagnostic problems in which
the observable input variables model symptoms of aberrahaviour, for example, a suitable context
assignment may be an assignment in which all context vasdidve adopted the valfgdse Alternatively,
the graphical structure of the Bayesian network at hand riley &or identifying sets of observable input
variables which are loosely interrelated and hence canuukext more or less independently.

4.2 \Verifying expert statements of monotonicity

We argued in our introduction that, if sensations of monmityhare commonly acknowledged in a do-
main, experts will naturally produce statements sugggstionotonicity during knowledge acquisition,
even without explicit prompting from the knowledge enginegince the experts in making these state-
ments may have a different conception of the idea of monoitynthan is captured by the mathematical
concept reviewed above, these statements have to be tareadftified before they can be further used for
engineering of the Bayesian network at hand. Now, if an expiéers statements of monotonicity during
knowledge elicitation, the properties of monotonicitytthae thus suggested can in essence be verified
directly. To this end, all pairs of directly linked elemeffitsm the constructed assignment lattice are put
to the expert for comparison. We will briefly describe hownagtes can be used for this purpose. We
will then argue that the task to be performed by the expelinguhis verification process, although not
demanding from a cognitive perspective, is quite time cariag and moreover tends to be annoying. To
reduce the time that is required from the expert and to fatistitation, we therefore propose to not verify
the various properties of monotonicity directly, but todstinstead only the violations of these properties
identified from the network using the assignment lattice.

We begin by observing that the knowledge to be acquired téirmothe mathematical properties of the
monotonicities suggested by an expert, concerns ordeoihgenditional probabilities. We consider again
a setX of observable input variables and an output varigbld-or any two joint value assignmentsand
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Figure 3: A vignette for the domain of classical swine fever.

2" with < 2/, the expert more specifically will have to indicate which loé two probabilitie®r(c | x)
andPr(c | 2') is the largest. By building upon the associated assignnadtité and the transitivity of the
numerical ordering of probabilities, the expert will in ease have to perform this task for all pairs of value
assignments andz’ of which the sef.(z) directly precedes the séf(z’) in the lattice.

To reduce the cognitive effort that is asked of the experteécomparison task, we propose to present
the various probabilities in a way that is easily accesditméhem. For each probability, a description of
a concrete case is constructed. By doing so, we situate shddabe performed in the experts’ working
practice, that is, in the situation in which his experiekimowledge is acquired; thus situating the task is
more likely to result in relevant and correct information 8. More specifically, for the probabilityr(c |
x,e” ), wheree™ is the context assignment introduced above, a case is cotetrwith the evidence that
is described by, e~. For each constructed case, a separase cardr vignetteis created for presentation
to the expert. These vignettes are stated in the expert'agol@anguage, again to situate the task and to
provide as many recognition cues as possible. Figure 3 stasnan example, a vignette describing a value
assignment to the five observable variabdm faecesAtaxia, Fever, Malaise and Skin haemorrhages
from our Bayesian network for classical swine fever. Thecdgson on the vignette mentions just the
variables for which the higher-ordered value has been @bdethe other variables are implicitly taken to
have adopted their lower-ordered value. By explicitly istgfjust the aberrant values, we build upon the
assumption that the experts will fill in normal values for treiables that are not mentioned explicitly.
We thereby build upon the implicit assumptions humans makdservational reasoning. For each pair of
vignettes thus created, the experts are asked to indicatbioh of the two described cases the outpig
more likely to occur. Note that by thus using vignettes thpests are never asked to actually provide or
peruse numerical probabilities.

While human experts tend to feel uncomfortable expressie knowledge and experience in terms of
probabilities and are known to provide imperfectly caliehassessments, they typically are able to state
probabilistic information of a semi-numerical or qualit@ nature with relative conviction and clarity, and
with less cognitive effort [9]. Experts, for example, carteof easily indicate which of two cases is the
least likely to occur. In addition to requiring less cogwétieffort, such relative judgements tend to be more
reliable than direct numerical assessments [10]. Based thEse observations, we feel that the results
from the elicitation procedure outlined above will be quitdiable. We would like to mention that in
domains in which experts have little experience with reaspabout single cases in terms of probabilities
and likelihoods, the constructed cases can be presentagl thg frequency format [7, 8].

Even though the task of comparing two probabilities is noy\demanding on the part of the experts,
direct confirmation of all suggested properties of monatityias outlined above requires a large number
of such comparisons. By building upon the assignment &fticn. observable variables in fact,

Z(Z‘) ‘(n—i)>2"
=0

pairs of probabilities have to be compared. For five obsdevadriables, for example, the experts will have
to perform as many &0 comparisons. Since statements implying monotonicity termbme up naturally
during the elicitation interviews with the domain expertsile constructing a Bayesian network, we feel
that verifying all suggested properties of monotonicitpkitly is too time consuming. The elicitation will



moreover give the impression of unnecessary duplicatiah) as a result, is likely to generate irritation.
We therefore propose to apply the method described aboyefonthe pairs of conditional probabilities

that are identified from the assignment lattice as violatiregmonotonicity properties that were implied by
the experts in their statements.

5 Application of the verification method

During the elicitation interviews held for the constructiof our Bayesian network for classical swine fever,
the veterinary experts involved had made various statesrtbat suggested properties of monotonicity for
the observable input variables. To study whether or not etwark adhered to the mathematical properties
thus implied, we used the verification method described @ gtevious section for various subsets of
observable variables. In this section, we review the regblt we obtained for one such subset.

We consider the five observable input variabds faecesAtaxia, Fever, Malaise andSkin haemor-
rhagesfrom our network and take for our output variable the vage®EF Viraemia From the five input
variables, we constructed an assignment lattice as dejictBigure 2. The lattice include®’ = 32 el-
ements to capture all possible joint value assignmentsetditk variables under study; it further includes
80 direct set-inclusion statements. Before the lattice chval@nhanced with posterior probabilities of the
presence of a viraemia of classical swine fever, we had tadagon the context in which the proper-
ties of monotonicity would be verified. For this context, wecitled to take a suckling piglet in which
all remaining observable variables had adopted the loweered value found in healthy pigs. We chose
this assignment since the various aberrant clinical sigwve fa rather small probability of occurrence and
moreover it is highly unlikely to find a large number of suchrs in a single live pig. Our choice of
assignment further had the advantage of fitting in with thetalenodel of humans which presumes signs
that are not mentioned explicitly to be absent. Note thati@fwould have chosen a different context, we
would have had to adapt the vignettes to include the clirsicals that were presumed to be present in the
context. Given the chosen context, we computed the variongittonal probabilities to be associated with
the elements of the assignment lattice.

For each pair of directly linked elements from the assignimattice, we compared the computed
posterior probabilities of a viraemia of classical swinedie We found four violations of the monotonicity
properties that had been implied by the experts during tieétation interviews. These violations all
pertained to adding the clinical sign of abnormal faecesdorabination of findings including the presence
of ataxia and malaise. All violations arose from minor diffieces in the computed posterior probabilities.
The largest difference was found when adding the sign of mbabfaeces to the combination of ataxia
and malaise. Contrary to the property implied by the expéhis posterior probability of a viraemia of
classical swine fever being present dropped fi@017 to 0.014 by adding the sign of diarrhoea to the
combination of ataxia and malaise. Note that the four vioret of the monotonicity properties identified
from our network show a clear pattern of regularity, in thaseethat once a violation has arisen, adding
further signs cannot remove it. We say that the combina@ataxia and malaise is tltentext of offence
for the entire set of violations.

We presented the pairs of assignments underlying the fikghtiiolations of monotonicity to two in-
dependent veterinarians using vignettes as describee iprévious section and asked them to indicate the
pig that would be more likely to have a viraemia of classieahe fever. Note that we thus asked the vet-
erinarians to perform four comparisons rather than’thheomparisons that would have been necessary for
eliciting the properties of monotonicity among the five wiles involved directly. Upon being confronted
with the pairs of vignettes, the two veterinarians indepgarily and with conviction indicated that the prob-
ability of a viraemia of classical swine fever should in@eaipon finding the additional sign of abnormal
faeces. Both veterinarians mentioned that the combinafiataxia and abnormal faeces especially served
to point to classical swine fever; within the scope of oumwtek, they could not think of any other disease
that would be more likely to give this combination of signssfiming that the properties of monotonicity
that were not confirmed explicitly indeed do hold in their dimof expertise, both veterinarians thus in-
dicated, through their orderings, that the network shontteed have been monotone in the mathematical
sense for the five variables under study in the absence ofthey signs.

To conclude, we would like to note that during the intervielws two veterinarians mentioned that



diagnostic reasoning patterns in the domain of infectiqumal diseases are not monotone in general.
Both could rather easily generate, from their accumulatem#edge and experience, examples in which
the output would be neither isotone nor antitone in the weridinical signs observed. As a side remark, one
of the veterinarians moreover suggested that for studyiogatonicity it would indeed not be necessary to
include more than six observable variables, since with rberrant clinical signs a pig would be dead.

6 Concluding observations

In this paper, we have presented a method for verifying mmmoity of Bayesian networks with the help of
domain experts. The method focuses on a subset of the obseraiables of a network and builds upon
a lattice of possible joint value assignments to these bbesa The lattice is enhanced with probabilistic
information about the effects of these assignments on thiegfnility distribution over the network’s main
variable of interest. The enhanced lattice then is useddentifying any violations of monotonicity.
The experts subsequently are presented with these viotalip means of pairs of vignettes stated in the
domain’s terminology, for their careful consideration. eTimethod thus provides both for verifying any
implied monotonicities in the network and for confirmingtstaents suggesting monotonicity with the
domain experts. The method has further been designed spdlgifso as to ask little time as well as
little cognitive effort from the experts in the verificatiarf their statements of monotonicity. In the paper,
we have focused our discussion on binary variables only anthe verification of either isotonicity or
antitonicity of a set of observable input variables. Ourmoel, however, has been extended to apply to sets
of observable variables of mixed monotonicity and to nomaby variables [5].

The results from applying our method for verifying monotgityi to a real network in veterinary science
indicate that it presents a practicable method for study@agoning patterns in Bayesian networks. We
feel in fact that through the availability of our method, #shbecome worthwhile to devote additional
attention to any statements made by experts during knowletigitation that appear to imply properties
of monotonicity. So far, our method provides just for idéyitig violations of properties of monotonicity.
Such violations may be indicative of modelling inadequscigowever, that need to be resolved upon
further engineering of the network under study. In the naturk, we hope to be able to further extend our
method to include techniques for identifying the parts ofay®sian network that have to be modified to
ensure the required properties of monotonicity.
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