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Abstract

While for many problems in medicine classification models being developed,
Bayesian network classifiers do not seem to have become agveiccepted within
the medical community as logistic regression models. Wepassn first-order lo-
gistic regression and naive Bayesian classification in th@ain of reproductive
medicine and demonstrate that the two techniques can iasulbdels of compara-
ble performance. For Bayesian network classifiers to beaoiore widely accepted
within the medical community then, we feel that they showdoetter aligned with
their context of application. We describe how to incorperatell-known concepts
of clinical relevance in the process of constructing anduatang Bayesian network
classifiers to achieve such an alignment.

Keywords and PhrasesBayesian network classifiers, Naive Bayesian classifier,
Learning Bayesian classifiers, Medical alignment, Logiségression, Accuracy,
Area under the ROC curve.

1 Introduction

Bayesian network classifiers are stochastic models thatideshe relationship between
one or more feature variables and a class variable, anddqedur establishing posterior
probabilities of the various classes for a given instanctheffeature variables. Numer-
ous applications of Bayesian network classifiers exist, Wehin the medical field where
most diagnostic problems can be considered classificatmsigms, Bayesian classifiers
are hardly ever used. Stated informally, in a diagnosticinsgroblem, patients have
to be assigned to one of a usually small number of distingribatic classes based upon
the patient’s characteristics. A similar observation aiedds for many problems that
are prognostic in nature. In the domain of reproductive miedi for example, patients



are classified as elective or non-elective for single emimgasfer upon in vitro fertilisa-
tion. To support physicians in taking classification demsiabout individual patients, the
most commonly employed models in the medical communitybased on the technique
of logistic regression Logistic regression serves to construct, from a set oflalbke pa-
tient data, a model that describes the relationship betwleerarious feature variables
involved and a class variable. The model equally provideg$tablishing the posterior
probabilities of the classes, based upon which a decisic@mmended.

Bayesian network classifiers have a number of advantageslayistic regression
models, which should render them attractive alternatieesHe medical field. A major
advantage of Bayesian network classifiers lies in theiitgttib give reliable classifica-
tions even if evidence is available for only a subset of theue variables. Bayesian
network classifiers moreover provide a graphical repregent of the independences be-
tween the modelled variables, which allows for transpayeartd ease of interpretation
of the models and their parameters. Bayesian network @issiurther range from the
simplest type of model, theaive Bayesian classifieavhich makes strong independence
assumptions concerning the feature variables involvedutih the slightly more sophis-
ticatedTAN classifierallowing restricted dependences between the featureblasato
full Bayesian networks modelling the intricate dependestogcture that actually holds in
the application domain. Classifiers of varying complexigy ¢hus be modelled within a
single framework.

Even though it is known in theory that first-order logistigression models perform
at least as good as naive Bayesian classifiers for largerséégamany researchers have
reported comparable or even better performance of the Bayeetwork classifier for
smaller data sets [Ng and Jordan (2002), Twardy et al. (3006)his paper we describe
our first steps aimed at the adoption of a Bayesian netwossifiar in the domain of
reproductive medicine. At our disposal we had a small datéree patients undergoing
single embryo transfer upon in vitro fertilisation. Fromstllata set, a first-order logistic
regression model had been constructed for the problem dfgineg ongoing pregnancies
[Verberg et al. (2007)]. From the small data set, we equaidlystructed a naive Bayesian
classifier and studied its performance compared to thateoldistic regression model.

Logistic regression models, developed to support physsdimmaking patient-specific
classification decisions, are typically evaluated usinti-krown concepts of clinical rel-
evance such as therea under the ROC cury®r AUC, andsensitivityand specificity
The AUC gives an indication of quality, averaged over allgbke decision thresholds for
assigning an instance to a particular class. For use inipeac fixed decision thresh-
old is chosen based upon knowledge of the consequences@ésssication. Given this
threshold, the model has an associated sensitivity andfistgcwhere the sensitivity is
the percentage of true positives predicted by the modellamdpecificity is the percent-
age of true negatives.

Bayesian network classifiers generally are not evaluatedyulse concepts of clinical
relevance mentioned above, but ustoigssification accuracgs an indication of quality
instead. Classification accuracy refers to the percentégestances that are correctly
classified by the model. The importance of communicatingicdl relevance of con-
structed models, however, should not be underestimatezh sancepts help convey to
the physician a detailed assessment of the quality andamebevof patient-specific deci-
sions based upon the model. We feel that the smaller acaaptErBayesian network
classifiers in the medical community can be attributed teasi some extent to their un-



familiar underlying concepts. For Bayesian network cliess to become more widely
accepted, we feel more specifically that they should be baliigned with the medical
contexts in which they are to be used. In this paper, we desdrow failure to use
concepts of clinical relevance results in medically unptaiele Bayesian network classi-
fiers. On the contrary, we show that incorporating such cptscboth in the process of
constructing and of evaluating Bayesian network classifieelps us to achieve such an
alignment. In fact, we can report comparable results fotdhestic regression model and
a naive Bayesian network classifier only after alignment.

The paper is organised as follows. In Section 2, we revieweB&n network clas-
sifiers and compare them, theoretically, to logistic regj@s models. In Section 3 we
describe our domain of application and the data that we hailiade for our alignment
study; in addition, we describe the different conceptsvaahe for alignment. In Section
4 we elaborate on the incorporation of the concepts of dinielevance in the process
of constructing and evaluating Bayesian network classifiefhe results for the naive
Bayesian classifiers constructed from our data set aremqexsen Section 5. We end with
our concluding observations in Section 6.

2 Bayesian network classifiers and logistic regression

Quite a number of stochastic classification paradigms jewstrefer to Larraiaga et al.
(2006) for an overview. In this paper, however, we focus ogeB#an network classi-
fiers and logistic regression models. We begin by reviewiffgreént types of Bayesian
network classifier and compare them to logistic regressiodets.

2.1 Bayesian network classifiers

Stochastic classifiers in general provide for addressinglpms in which an instance of a
set of feature variables has to be assigned to a value ofdke chriable. These classifiers
in essence establish the conditional probability distidruover the class variable given
the instance, from which they decide upon the class for tisihnce using a decision rule.

Bayesian network classifiers build upon a Bayesian netwarrkgtablishing the prob-
ability distribution over their class variable. Such a netkis a concise representation of
a joint probability distribution over the set of variablesolved. For the purpose of clas-
sification, this set is divided into a set of feature variabtbe class variable, and possibly
some intermediate, or hidden, variables. Bayesian netalasgsifiers vary in complexity
from general models posing no restrictions on the deperegeibetween the variables, to
very simple models with highly constrained dependencycstines. Two well-known sim-
ple Bayesian network classifiers are thave Bayesian classifiemnd theTAN classifier
[Friedman, Geiger and Goldszmidt (1997)]. These modelb besume an empty set of
hidden variables. The naive Bayesian classifier in addagsumes mutual independence
of the feature variables given the class variable; the TAdssifier, or tree augmented net-
work classifier, allows a tree-like dependency structuer ag feature variables. Because
of their simplicity, naive Bayesian classifiers are beingedeped for a wide range of ap-
plication domains and, despite their simplicity, oftenywgood performance is reported
[Friedman, Geiger and Goldszmidt (1997), Domingos and &&44997)].

Throughout this paper, we assume that the class varfalda binary variable, with a



positive class value denoted ynd a negative class value denoted/ye usey’ to refer
to either class. The set of feature variables is denoteX;byis used to denote a specific
instance of this set. The naive Bayesian network classifir explicitly models the
joint probability distribution P{X,Y) over its variables in terms of parametgieX; | Y)
specified for its feature variable§ € X, andp(Y) specified for the class variab¥e Its
independence assumptions result in the following parasagion:

Pr(X,Y) = p(Y) - [i pCX [Y)

Bayesian network classifiers in general are often congtduautomatically from a
data set. Algorithms for this purpose include a measure tiddeupon the dependences
between the variables to be included in order to optimisaribdel’s quality. Examples
of such measures are a model’s accuracy and its minimumigesardength (MDL). The
quality of a model in view of the data can only be establisti¢gkda model is fully speci-
fied, that is, if it includes estimates for all numerical paeders involved. These parame-
ters are estimated as simple frequency counts, which semaximise the log-likelihood
of the model given the data. The quality measure that is usea @ptimisation criterion
upon constructing the model often is also exploited for carmg different classifiers.

Upon learning Bayesian network classifiers, the quality ai@lel is not optimised
just by including appropriate dependences, but also byidic only the most relevant
feature variables. Data sets often contain more variabbesare strictly necessary for the
classification task at hand and the more or less redundaiables could result in an un-
desirable bias [Langley and Sage (1994)]. The proce&satfire selectiomow carefully
selects from the data set the variables that serve to imghe/model’s quality the most.
For this purpose, various feature-selection methods exisiagain refer to Larrahaga et
al. (2006) for an overview. Here we focus on the so-calledppes approach to feature
selection and assume that a greedy forward-selection mé&hsed for choosing the fea-
ture variables to be included. In this approach, featureabées are iteratively added to
an initially empty model until its quality given the data ramber increases.

Bayesian network classifiers use Bayes’ rule for establigsthie posterior probability
distribution PfY | X) over the class variable that is used for the actual clas8dita

Pr(Y, X) Pr(X |Y)-PrY)

PrY | X) = Pr(X) - Sy Pr(X|Y)-Pr(y)

The decision rule that is commonly used with a naive Bayeslassifier is thevinner-
takes-all rule which for a binary class variable amounts to assigning atairce to the
class whose posterior probability exceeds the threshaldaility of 0.5.

To conclude, if the performance of the constructed modelv@uated against the
same data set as that from which the model is learned, itenpeaihce will tend to be
overestimated as a result of overfitting the model to the.d@tacorrect for this effect
of overfitting and estimate the model’'s performance on umska, often ten-fold cross
validation is used.

2.2 Logistic regression

Logistic regression models are much more commonly usedmititie medical community
than Bayesian network classifiers, even though there ate gmumber of similarities be-
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tween these types of model. A logistic regression modes, dilBayesian network classi-
fier, is a model over a class variaMeand a set of feature variabl¥s The model captures
the conditional probability distribution over the classiafle directly as a function of the
feature variables( € X. Logistic regression models again range from simple models
imposing a linear function on the feature variables, to namplex models involving
higher-order terms to describe interactions between thtife variables. The first-order
logistic regression model captures the conditional prdipglistribution Pr(Y | X) in
terms of a linear function of the feature variabldsc X through

Priy | X) = (1+exp(—Bo—5i Bi- X))t

in which ; denote the model’'s parameters.

Logistic regression models are also constructed autoaiBtitom data. The log-
likelihood of the model given the available data then is nmaged by obtaining appro-
priate estimates for the parametgs While for the parameters of a Bayesian network
classifier, a closed-formula solution exists, the optirtiggaproblem involved in finding
the parameters for a logistic regression model does not izste a solution. The param-
eter values therefore are established using an iteratitkade As for Bayesian network
classifiers, furthermore, upon constructing a logistiecesgion model methods for feature
selection and for correcting for the effect of overfitting applied.

A logistic regression model provides for directly compugtithe posterior probabili-
ties PXY | x) for the class variable given an instanceby filling in the values for the
feature variables. The decision rule used with the modeaset upon a threshold proba-
bility t for this posterior probability. The value of thitecision threshold ts based upon
knowledge of the consequences of the different types oflagsiication in the domain
of application.

2.3 Atheoretical comparison

Naive Bayesian classifiers and first-order logistic regoesmodels essentially index the
same set of conditional probability distributions, in trense that for any combination
of parameter values of a first-order logistic regression ehdldere exists a combination
of parameter values for a naive Bayesian classifier thatrdbescthe same distribution
Pr(Y | X), and vice versa (provided that(®rX) is strictly positive) [McLachlan (1992)].
Yet, given a particular data set, naive Bayesian classificand logistic regression will
typically not result in the same estimated distributlniY | X), because the parameter
values for the Bayesian network classifier are chosen soraaxamise the log-likelihood
of the joint probability distribution over the variables whereas theapzeter values for
the logistic regression model are chosen so as to optimestgzlikelihood of thecon-
ditional distribution. If in learning a naive Bayesian classifies, [farameter values are
computed iteratively so as to maximise the log-likelihodthe conditional distribution,
called discriminative learning, the resulting model wouldessence capture the same
distribution as a first-order logistic regression modetheal from the data.

Several researchers have argued that discriminativeitears more appropriate for
classification purposes than generative learning in whiehlog-likelihood of the joint
distribution is maximised, since we are interested in prioly the class for a given in-
stance and not in their joint probability [Friedman, Geigad Goldszmidt (1997)]. Oth-
ers, however, argue that such a conclusion may be prematigrarjd Jordan (2002)].
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For models fitted to infinite data sets, the asymptotic digssion accuracy of a first-
order logistic regression model is never smaller than that waive Bayesian classifier.
This basically implies that given a large enough data sem#ne Bayesian classifier will
not outperform the first-order logistic regression modéie Tegression model would typ-
ically do better when the independence assumption underiyie naive Bayesian clas-
sifier does not hold in the data set, that is, when there anagtassociations among the
feature variables [Anderson (1982)]. On the other hantipalgh naive Bayesian classi-
fication asymptotically converges to a lower accuracy, gslso significantly faster than
logistic regression. For smaller data sets, thereforezenBayesian classifiers can be ex-
pected to outperform first-order logistic regression medas has been largely confirmed
experimentally [Ng and Jordan (2002)].

Similar observations in essence hold for TAN classifierstandne hand and logistic
regression models with interaction terms for pairs of feattariables on the other hand.
The observations, however, cannot be extended to Bayestamrk classifiers involving
more complex dependency structures over their featurabiws. Such Bayesian network
classifiers index essentially different sets of conditigrabability distributions than lo-
gistic regression models with higher-order interactiomtg and as a consequence may
theoretically as well as effectively outperform any suaression model.

3 The medical context

In this section we describe the medical concepts relevarido case study of aligning
Bayesian network classifiers with a medical context. Weflyriatroduce the domain of
reproductive medicine in which we conducted the case stodgther we the data set and
logistic regression model that we had available.

3.1 Clinical performance

Classification models in medicine are often evaluated usimgepts of clinical relevance
such as area under the ROC curve, and sensitivity and spigci@iven the importance of
these concepts for aligning Bayesian network classifietis medical contexts, we briefly
review them here.

A Receiver Operator Characteristior ROC, curve visualises a classifier’'s perfor-
mance by plotting its sensitivity against one minus its gty for all possible values of
the decision threshold Some example ROC curves are shown in Figure 1. The decision
threshold serves for classifying an instamxcas belonging to clasgonly if the posterior
probability P(y | x) computed for the instance is at or above the threshold. Givisn
threshold, the model has an associated sensitivity andfigigc The sensitivityof the
model is the probability that it correctly classifies a pisiinstancext, that is, it is the
percentage of such instances for which the classifier pethat Pty | x*) >t. The
specificityof a classifier is the probability that it correctly classsfi@ negative instance
X~, that is, it is the percentage of such instances for whick P« ) < t is predicted.

The area under the ROC curyer AUC, in essence measures the classifier's ability
to discriminate between the different classes [Hanley actli®éll (1982)]. More specif-
ically, it captures the probability that a randomly chosesipve instance and a random
negative instance are correctly ranked, that is, it is thegeage of such pairs of in-



stances for which the classifier predicts thatyRrx™) > Pr(y | x~). The area under
the curve gives an indication of a classifier’'s quality, aged over all possible decision
thresholds for assigning an instance to a particular claggon using the model in a
practical setting, however, a clinician typically has t@®a decision upon the posterior
probability computed for a patient. For this purpose, a fidedision threshold is chosen,
based upon domain knowledge of the consequences of migiciassn. In view of such

a fixed decision threshold, the quality of a classificatiordeias captured by a single
point on the ROC curve. The area under the curve may then ryeidye an appropriate
indication of the model’s performance, which is then expeekdirectly by the sensitivity
and specificity implied by the fixed decision threshold.

3.2 Invitro fertilisation

In vitro fertilisation, or IVF, is an assisted reproductieehnique of embryo transfer used
to help infertile couples conceive a child. There are mawyois that determine whether
or not IVF treatment results in an ongoing pregnancy, incigdhe age of the patient,
the quality of the embryo, and the receptivity of the uteflsincrease the probability of
pregnancy, it used to be common practice for IVF programmodsansfer multiple em-
bryos. With the increasing success of the treatment, howewdtiple embryo transfer
involves an increased risk of multiple pregnancy, assediatith pregnancy loss, obstet-
rical complications, prematurity, and neonatal morbiaith long term damage.

Single embryo transfer is now being used as a means of regltivenrisks involved
with multiple pregnancy. Applying single embryo transfattvaut any selection based on
patient characteristics and embryo quality, however, le@nlshown to lead to a reduction
of the probability of an ongoing pregnancy per transfer. Aiggg may therefore need
to undergo multiple treatments for a pregnancy to persistltible treatments involve
additional costs as well as physical and emotional discanfido the patient. To guide
appropriate use of single embryo transfer, therefore, eepiaspecific assessment of the
expected result of the transfer should be available.

In a recent study, a prognostic model was developed for ksitatiy the probability of
an ongoing pregnancy after single embryo transfer [Verle¢@). (2007)]. The data used
for constructing this logistic regression model were dedifrom a randomised controlled
trial on the effectiveness of in vitro fertilisation, in wdti 201 women with an indication
for IVF treatment were randomised to a mild stimulation poatl [Heijnen et al. (2007)].
For constructing the model, a subset of these data inclumhhgwomen with at least two
embryos suitable for transfer was used. The subset inclingegata of 152 women who
underwent single embryo transfer. In 42 of these women (28%é)treatment resulted in
an ongoing pregnancy.

In the data set, patient characteristics, treatment detaild embryo quality related
factors are recorded. The feature variables include suttarpacharacteristics as female
age, previous pregnancy, cause and duration of infertdityl body mass index. Further
independent variables are related to the treatment anddadhe number of dominant
follicles, the number of oocytes retrieved, the proportafertilised oocytes, the du-
ration of the stimulation, the amount of administered redF&r retrieved oocyte, and
endometrial thickness. The remaining feature variableselated to embryo quality and
include the grade of fragmentation, whether there was ajt@ity embryo available for
transfer, and whether there were embryos available forprggervation. The number of
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Figure 1: ROC curves for the logistic regression model (dd}land the naive Bayesian
network classifier (solid) with four variables each (unected).

independent variables equals 17, of which 11 variables@néraious, 3 are binary, and
3 are multi-categorical. For two of the variables, data wesecomplete, with 4% and
6% of the values missing, respectively. For these varialsiegle imputation was used
by filling in the predictive mean after regression on all ethariables. The variable des-
ignated as the class variable in the data set captures wlwgthet single embryo transfer
results in an ongoing pregnancy.

We briefly review the performance characteristics of the-farsler logistic regression
model constructed from the data. The model includes fouufeavariables, which was
imposed as the maximum number of variables to be included.vahables of the model
are the patient'®ody-mass indexhe total amount of administered follicle stimulating
hormone the number of retrieved oocyteandwhether there was a top-quality embryo
available for transfer An ROC curve for the model is shown in Figure 1; its area under
the curve equals .88, or Q60 after correcting for the effects of overfitting. Using a
decision threshold of @, the model has a sensitivity ofdD, or 086 after correction, and
a specificity of 037, or Q14 after correction. These characteristics are summairsed
Tables 1 and 2.

4  Aligning Bayesian classifiers

We recall that building stochastic classification modefsdsglly involves selecting a sub-
set of appropriate feature variables and that this subsd#tas construed using a greedy
forward-selection approach, in which feature variablesi@ratively added to an initially
empty model, until its performance no longer increases. rganstructing a Bayesian
network classifier, performance is often measuredlagsification accuracywhich refers
to the percentage of correctly classified instances. Irsénision, we discuss why classifi-
cation accuracy is an unacceptable measure of performaram& idomain of application
and show how concepts of clinical relevance can instead & fas this purpose.



Table 1: Performance characteristics of the first-ordeiskigregression model and of the
naive Bayesian network classifier, with four selected \#Hes each.

AUC (corrected) sensitivity(corrected) specificity(corrected)

logistic
regression model:  0.68 (0.60) 090 (0.86) 037 (014)

naive Bayesian
classifier: 0.85 (058) 095 (0.66) 055 (050)

Table 2: The variables included in the first-order logiséigression model and in the naive
Bayesian network classifier with four selected variablehea

logistic regression model naive Bayesian classifier

- duration of infertility (discretised)
number of retrieved oocytes number of retrieved oodgtssretised)
top-quality embryo available top-quality embryo availabl

- endometrial thicknes@&liscretised)
administered follicle stimulating hormone—
body-mass index -

4.1 Classification accuracy and its problems

Classification accuracy refers to the probabilityaoirrectly classifying an arbitrary in-
stancex of the feature variables involved, whexeis considered correctly classified if
the classy to which x is assigned, corresponds to its true clgtss We recall that the
assignment of a class value depends upon the thresholdiiigbtaithat is used with the
classifier’s decision rule: an instangds assigned to a clagé whenever Ry’ | x) > t.
Alternatively, a classifier's accuracy can be interpretediae percentage of randomly
chosen pairs of a positive instancé and negative instance , for which Py | x™) >t
and Pty | x™) > t. The winner-takes-all decision rule commonly employed lay&sian
network classifiers implies a threshold probabilityt 6f 0.5.

While the metric of classification accuracy is widely usethivi the Bayesian network
community, it is hardly ever used with logistic regressioodals in medical contexts. To
elaborate on why classification accuracy often is inappat@for measuring performance
in medicine, we begin by observing that the accuracy of asdlasis highly dependent
upon the threshold probability that is used with the class#fidecision rule. If instances
are assigned to a clagswhenever Rty | x) > t, then changing the value of the threshold
probability t will change the number of instances assigned to gjas#\s a result, the
sensitivity and the specificity of the classifier also change

Now, by writing classification accuracy as

accuracyit) = sensitivityt) - p(y) + specificityt) - p(y)
two problems of using this metric as a performance measwerbe apparent [Bradley
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(1997)]. The first problem is that its dependence on the ewiidecision threshold makes
classification accuracy an inappropriate measure of padiace in general. In fact, the
threshold probability = 0.5 that is implied by the winner-takes-all rule is defendaiiéy

if the prior distribution of the class variable is close taform. In our domain of in vitro
fertilisation for example, this property does not hold:gaembryo transfer results in an
ongoing pregnancy in only 28% of the patients. Moreoveigpés with a small probabil-
ity of an ongoing pregnancy will receive multiple embryoslaas a consequence, will be
exposed to the risks of multiple pregnancy. For this reaaatgcision threshold of.2 for
predicting ongoing pregnancy was chosen for the logistigagsion model, and in fact
a decision threshold of.B may not result in medically acceptable behaviour. Sinee th
decision threshold generally is not a parameter of the legrprocess, it is questionable
whether feature selection based upon classification acgw@as a performance measure
would result in an acceptable model. Note that this paricploblem of the metric of
classification accuracy is only technical and could be kegbby fitting the choice of
decision threshold to the prior class distribution. A prdaes to this end is described in
Lachiche and Flach (2003).

The second problem with the metric of classification acoufac measuring perfor-
mance is that it assigns fixed importance weights to the sénhsiand the specificity
of a model, dictated by the prior probability distribution(®) over the class variable.
Thereby, it assigns a fixed weight to the costs of the two tygesisclassification. A
uniform class distribution, for example, entails that tlestoof misclassification is inde-
pendent of the predicted class. For many medical conteatgeter, the consequences of
false positive errors may be very different from those o$éahegative errors. Moreover,
for non-uniform priors, either the sensitivity or the sgexty is automatically weighed
more heavily, independent of any medical considerationsur domain of in vitro fer-
tilisation, for example, the prior distribution over thesk variable would assign a higher
weight to the model’s specificity, that is, to correctly ptshg non-implantation, than
to the sensitivity, that is, to predicting ongoing pregrieaaupon transferring a single
embryo. Experts in reproductive medicine, however, ingidaat the consequences of
acting upon a false negative prediction are more severeftidalse positive predictions.
A high sensitivity therefore is considered more importdrdrt a high specificity. This
second problem may very well be the reason why classificati@uracy is not used as a
measure of performance for logistic regression models idionee.

The inappropriateness of classification accuracy as a peaiacce measure has been
recognised in other domains as well. In the machine learoamymunity, the area under
the ROC curve has been used for some time now as a measureobotimiparing clas-
sifiers and for constructing them. Since the area under theeds not dependent on the
decision threshold chosen and is invariant to the prioriistion over the class variable,
it is more generally applicable as a performance measureldssification models than
the classification accuracy. In fact, it has been shown tlageBian network classifiers
constructed to maximise AUC, provide better ranking andplility estimates for the
instances to be classified, and in addition even score lmettelassification accuracy than
those optimised for that purpose [Ling, Huang and Zhang 300
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4.2 Clinical alignment

Bayesian network classifiers will only become an accepteradtive to logistic regres-
sion models in medicine, if their quality is at least comjdeand communicated in terms
of clinical relevance. Although this observation does netessarily affect the construc-
tion of Bayesian network classifiers, it has been recogrisaidf classifiers are evaluated
using some quality measure, then it makes sense to optitmse/éry measure during
construction. For this reason, on top of the problems wittssification accuracy men-
tioned above, we incorporate measures of clinical relesamthe learning process of our
Bayesian network classifiers.

Upon learning Bayesian network classifiers from data, tea ander the curve can be
readily incorporated in a greedy forward-selection apphda feature selection. We recall
that in this approach feature variables are iterativelyeadd an initially empty model un-
til its performance no longer increases. We further redwdt tvith this approach, in each
iteration, for each (remaining) feature variable, the @ase it incurs in the classifier's
accuracy is computed, using the decision threshdbdod the winner-takes-all rule. In
using the area under the curve as optimisation criteriomaeve compute instead for each
feature variable the increase it incurs in the classifielBCATo this end, for each feature
variable, the sensitivitgensitivityt) and the specificitgpecificityt) of the classifier, for
n different values of the decision threshdletween zero and one is determined. From
the n points thus obtained of the classifier's ROC curve, the areleuthe curve can be
approximated by constructing trapezoids under the curtaed®n every two consecutive
points. It can be readily shown that this approximation égjua

%~ Z <sensitivit3(ti) +sensitivit)(ti+1)) : (specificit;(tiﬂ) - specificity(ti)>
i=1,...,n—1

wheret; is the decision threshold that resulted in the sensitivity-specificity pair. We
then select for inclusion in the classifier, the feature tkatilts in the largest increase in
AUC, if any. We would like to note that for establishing thgoints of the ROC curve,
we have to compute the posterior distribution over the classble only once.

5 Experimental results

Ouir first step into building a Bayesian network classifiertfte domain of reproductive
medicine has been to learn a collection of naive Bayesiassifiars from the available
data. Based upon the theoretical results reviewed in Se&jave could expect simi-
lar performance of the naive Bayesian classifier and thestmgiegression model con-
structed from the data. In fact, since our data set is redptismall, we could even expect
slightly better performance of the Bayesian network cfessiWe used oubazzletool-
box [Schrage, Van 1Jzendoorn and Van der Gaag (2005)], fostcocting various naive
Bayesian network classifiers. Before doing so, however, agkth discretise the continu-
ous variables from the data set. For this purpose, knowledgeelicited from the domain
experts who had been involved in the collection of the data.Wuld like to note that
the resulting discretisation might not be the best situédedur classifiers. For the pur-
pose of feature selection, we employed the greedy forwaletson approach outlined
above, using the area under the curve for our optimisatidarmn. In this section, we
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review the results that we obtained. For each constructetkimee report the area under
the curve, as well as the sensitivity and specificity charastics that result from using a
decision threshold of.@ on the entire data set; we further report corrected perdoice
characteristics obtained using ten-fold cross validation

To allow for comparing the performance of the first-orderisig regression model
constructed from the available data and that of our naiveeBiay classifiers in detail, we
decided to construct network classifiers with different wens of feature variables. With
a maximum of four variables, as was imposed on the regressantel, the constructed
naive Bayesian classifier includes the feature variabledatting theduration of the in-
fertility, the number of retrieved oocyteendometrial thicknesandwhether there was
a top-quality embryo available for transfehe area under the curve of this classifier
equals 85, or 058 after correcting for the effects of overfitting. Using ad#on thresh-
old of 0.2, the classifier has a sensitivity aB®, or Q66 after correction, and a specificity
of 0.58, or Q50 after correction. These characteristics are summairs@dbles 1 and
2. By comparing the characteristics after correction ofrthare Bayesian classifier with
those of the first-order logistic regression model, we finat time differences between
their area under curve and their sensitivities are not figamt; the specificity of the naive
Bayesian classifier, however, is significantly larger thazat of the regression model (us-
ing a Student distribution with a significance level af = 0.05).

In addition to the naive Bayesian classifier with four valesh we also constructed
classifiers with fewer and with more variables. The resutisifall constructed network
classifiers are summarised in Table 3. With the restrictiba single feature variable,
the constructed classifier includes just theation of the infertility the addition of this
variable is found to increase the area under the curve ofritially empty classifier the
most. When allowed a second feature variable, the learmgugithm includes theumber
of retrieved oocytesn addition to theduration of the infertilityin the classifier. The
feature variables modellingndometrial thicknesand whether there was a top-quality
embryo available for transfeare included as the third and fourth variable respectively.
The fifth feature variable included in the model is tb&al amount of administered follicle
stimulating hormonelf the inclusion of feature variables is continued unté ttiassifier's
area under the curve no longer increases, a total of eiglathles is included. In addition
to the five variables mentioned above, also the feature bl@samodelling theyrade of
fragmentation of the embrythenumber of normally fertilised oocyteand the patient’s
ageare included. The remaining variables are not included tinéoclassifier since they
in fact serve to decrease the classifier's area under thecurv

We note that upon constructing a naive Bayesian classifiercontribution of each
feature variable to the area under the curve is studied i viethe entire data set. The
uncorrected AUC values reported in Table 3 therefore aredhees used upon construct-
ing the model. While the classifier's area under the curve&egcreasing upon including
a fourth and even further feature variables when the fubidat is considered, the values
that have been corrected for the effects of overfitting, atgmrted in Table 3, reveal a
decrease in the expected area under the curve on unseeii des&. observations support
the conclusion that for our small data set selecting four orenfeature variables would
result in a naive Bayesian classifier that is overfitted tockia.

When comparing the performance characteristics of theouarcconstructed naive
Bayesian classifiers, especially the corrected valuehimatea under the curve and the
sensitivity suggest that the best classifier is the one tithtides three feature variables.

12



Upon comparing the characteristics of this model with thafsthe first-order logistic re-
gression model constructed from the data, we find that thierdiices between their area
under curve and their sensitivity are not significant; thecsiicity of the naive Bayesian
classifier, however, again is significantly larger than tifehe regression model (using a
Student distribution with a significance level af = 0.10).

Table 3: Characteristics of the naive Bayesian networksdiass with different numbers
of variables.

#variables\ AUC (corrected) sensitivity(corrected) specificity(corrected)

0 0.50 (0.50) 1.00 (1.00) 0(0)

1 0.69 (0.53) 0.93 (0.80) 0.31(0.22)
2 0.76 (0.63) 0.93 (0.78) 0.45 (0.35)
3 0.80 (0.65) 0.90 (0.80) 0.55 (0.46)
4 0.85 (0.58) 0.95 (0.66) 0.58 (0.50)
5 0.86 (0.56) 0.93 (0.65) 0.63 (0.51)
8 0.89 (0.56) 0.95 (0.57) 0.67 (0.52)

To conclude, we would like to illustrate the inappropriass of using classification
accuracy for measuring performance for our domain of aptibe. We constructed an
additional naive Bayesian network classifier from our datiavdth a maximum of four
feature variables; for this classifier we used accuracyHerdptimisation criterion. The
corrected area under the curve of the classifiersgl0With the winner-takes-all rule, the
corrected sensitivity is.Q3; the corrected specificity equals8@. This classifier would
not exhibit medically acceptable performance, as a coresampiof its low sensitivity.

6 Concluding observations

While for many problems in medicine classification modetslaing developed, Bayesian
network classifiers do not seem to have become as widely satt@pthin the medical
community as logistic regression models. To promote Bayesetwork classifiers as al-
ternatives to logistic regression, it is important that amson between the two can be
done in terms familiar to the medical community. In the matittomain, concepts of clin-
ical relevance are used, such as the area under the curveeasitivdty and specificity.
We have argued that for Bayesian network classifiers to beamare widely accepted
within the medical community, they should be better alignatth their medical contexts
by using these concepts of clinical relevance. In additiwill have to demonstrate that
Bayesian network classifiers are acceptable or bettenaltiees in terms of performance,
ease of construction and ease of interpretation.

Given an infinite data set and optimising accuracy, a naiweBian classifier cannot
outperform a logistic regression model. Comparing a presiip constructed regression
model with a naive Bayesian network classifier for the probtd selecting patients for
single embryo transfer in reproductive medicine, we foumat even for a small data set
the naive Bayesian classifier can be outperformed by far &yaistic regression model,
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that is, if the former is constructed using classificationusacy as a performance mea-
sure. We have argued, however, that the metric of classditatccuracy may not be
appropriate for measuring performance of classificatiomet®in the medical domain.
Serious problems are associated with using the metric foruroform distributions over
the class variable and for unequal cost distributions dverdifferent types of misclassi-
fication, which may give rise to classification models of wegtable medical behaviour.
We have shown that concepts of clinical relevance can bélygallen into account upon
constructing naive Bayesian classifiers from data. For elatively small data set in re-
productive medicine, we have shown that by doing so, naiye8an classifiers can result
that exhibit at least comparable behaviour to logisticesgron models. The promising
results from aligning the simplest type of Bayesian netwadssifier to its medical con-
text, have made our medical experts enthusiastic.
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