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Abstract

While for many problems in medicine classification models are being developed,
Bayesian network classifiers do not seem to have become as widely accepted within
the medical community as logistic regression models. We compare first-order lo-
gistic regression and naive Bayesian classification in the domain of reproductive
medicine and demonstrate that the two techniques can resultin models of compara-
ble performance. For Bayesian network classifiers to becomemore widely accepted
within the medical community then, we feel that they should be better aligned with
their context of application. We describe how to incorporate well-known concepts
of clinical relevance in the process of constructing and evaluating Bayesian network
classifiers to achieve such an alignment.

Keywords and Phrases:Bayesian network classifiers, Naive Bayesian classifier,
Learning Bayesian classifiers, Medical alignment, Logistic regression, Accuracy,
Area under the ROC curve.

1 Introduction

Bayesian network classifiers are stochastic models that describe the relationship between
one or more feature variables and a class variable, and provide for establishing posterior
probabilities of the various classes for a given instance ofthe feature variables. Numer-
ous applications of Bayesian network classifiers exist. Yet, within the medical field where
most diagnostic problems can be considered classification problems, Bayesian classifiers
are hardly ever used. Stated informally, in a diagnostic medical problem, patients have
to be assigned to one of a usually small number of distinct diagnostic classes based upon
the patient’s characteristics. A similar observation alsoholds for many problems that
are prognostic in nature. In the domain of reproductive medicine, for example, patients
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are classified as elective or non-elective for single embryotransfer upon in vitro fertilisa-
tion. To support physicians in taking classification decisions about individual patients, the
most commonly employed models in the medical community, arebased on the technique
of logistic regression. Logistic regression serves to construct, from a set of available pa-
tient data, a model that describes the relationship betweenthe various feature variables
involved and a class variable. The model equally provides for establishing the posterior
probabilities of the classes, based upon which a decision isrecommended.

Bayesian network classifiers have a number of advantages over logistic regression
models, which should render them attractive alternatives for the medical field. A major
advantage of Bayesian network classifiers lies in their ability to give reliable classifica-
tions even if evidence is available for only a subset of the feature variables. Bayesian
network classifiers moreover provide a graphical representation of the independences be-
tween the modelled variables, which allows for transparency and ease of interpretation
of the models and their parameters. Bayesian network classifiers further range from the
simplest type of model, thenaive Bayesian classifierwhich makes strong independence
assumptions concerning the feature variables involved, through the slightly more sophis-
ticatedTAN classifierallowing restricted dependences between the feature variables, to
full Bayesian networks modelling the intricate dependencestructure that actually holds in
the application domain. Classifiers of varying complexity can thus be modelled within a
single framework.

Even though it is known in theory that first-order logistic regression models perform
at least as good as naive Bayesian classifiers for larger datasets, many researchers have
reported comparable or even better performance of the Bayesian network classifier for
smaller data sets [Ng and Jordan (2002), Twardy et al. (2006)]. In this paper we describe
our first steps aimed at the adoption of a Bayesian network classifier in the domain of
reproductive medicine. At our disposal we had a small data set from patients undergoing
single embryo transfer upon in vitro fertilisation. From this data set, a first-order logistic
regression model had been constructed for the problem of predicting ongoing pregnancies
[Verberg et al. (2007)]. From the small data set, we equally constructed a naive Bayesian
classifier and studied its performance compared to that of the logistic regression model.

Logistic regression models, developed to support physicians in making patient-specific
classification decisions, are typically evaluated using well-known concepts of clinical rel-
evance such as thearea under the ROC curve, or AUC, andsensitivityandspecificity.
The AUC gives an indication of quality, averaged over all possible decision thresholds for
assigning an instance to a particular class. For use in practice, a fixed decision thresh-
old is chosen based upon knowledge of the consequences of misclassification. Given this
threshold, the model has an associated sensitivity and specificity, where the sensitivity is
the percentage of true positives predicted by the model and the specificity is the percent-
age of true negatives.

Bayesian network classifiers generally are not evaluated using the concepts of clinical
relevance mentioned above, but usingclassification accuracyas an indication of quality
instead. Classification accuracy refers to the percentage of instances that are correctly
classified by the model. The importance of communicating clinical relevance of con-
structed models, however, should not be underestimated: such concepts help convey to
the physician a detailed assessment of the quality and relevance of patient-specific deci-
sions based upon the model. We feel that the smaller acceptance of Bayesian network
classifiers in the medical community can be attributed to at least some extent to their un-
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familiar underlying concepts. For Bayesian network classifiers to become more widely
accepted, we feel more specifically that they should be better aligned with the medical
contexts in which they are to be used. In this paper, we describe how failure to use
concepts of clinical relevance results in medically unacceptable Bayesian network classi-
fiers. On the contrary, we show that incorporating such concepts both in the process of
constructing and of evaluating Bayesian network classifiers, helps us to achieve such an
alignment. In fact, we can report comparable results for thelogistic regression model and
a naive Bayesian network classifier only after alignment.

The paper is organised as follows. In Section 2, we review Bayesian network clas-
sifiers and compare them, theoretically, to logistic regression models. In Section 3 we
describe our domain of application and the data that we had available for our alignment
study; in addition, we describe the different concepts relevant for alignment. In Section
4 we elaborate on the incorporation of the concepts of clinical relevance in the process
of constructing and evaluating Bayesian network classifiers. The results for the naive
Bayesian classifiers constructed from our data set are presented in Section 5. We end with
our concluding observations in Section 6.

2 Bayesian network classifiers and logistic regression

Quite a number of stochastic classification paradigms exist; we refer to Larrañaga et al.
(2006) for an overview. In this paper, however, we focus on Bayesian network classi-
fiers and logistic regression models. We begin by reviewing different types of Bayesian
network classifier and compare them to logistic regression models.

2.1 Bayesian network classifiers

Stochastic classifiers in general provide for addressing problems in which an instance of a
set of feature variables has to be assigned to a value of the class variable. These classifiers
in essence establish the conditional probability distribution over the class variable given
the instance, from which they decide upon the class for that instance using a decision rule.

Bayesian network classifiers build upon a Bayesian network for establishing the prob-
ability distribution over their class variable. Such a network is a concise representation of
a joint probability distribution over the set of variables involved. For the purpose of clas-
sification, this set is divided into a set of feature variables, the class variable, and possibly
some intermediate, or hidden, variables. Bayesian networkclassifiers vary in complexity
from general models posing no restrictions on the dependences between the variables, to
very simple models with highly constrained dependency structures. Two well-known sim-
ple Bayesian network classifiers are thenaive Bayesian classifierand theTAN classifier
[Friedman, Geiger and Goldszmidt (1997)]. These models both assume an empty set of
hidden variables. The naive Bayesian classifier in additionassumes mutual independence
of the feature variables given the class variable; the TAN classifier, or tree augmented net-
work classifier, allows a tree-like dependency structure over its feature variables. Because
of their simplicity, naive Bayesian classifiers are being developed for a wide range of ap-
plication domains and, despite their simplicity, often very good performance is reported
[Friedman, Geiger and Goldszmidt (1997), Domingos and Pazzani (1997)].

Throughout this paper, we assume that the class variableY is a binary variable, with a
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positive class value denoted byy and a negative class value denoted by ¯y; we usey′ to refer
to either class. The set of feature variables is denoted byX; x is used to denote a specific
instance of this set. The naive Bayesian network classifier now explicitly models the
joint probability distribution Pr(X,Y) over its variables in terms of parametersp(Xi |Y)
specified for its feature variablesXi ∈ X, andp(Y) specified for the class variableY. Its
independence assumptions result in the following parametrisation:

Pr(X,Y) = p(Y) ·∏i p(Xi |Y)

Bayesian network classifiers in general are often constructed automatically from a
data set. Algorithms for this purpose include a measure to decide upon the dependences
between the variables to be included in order to optimise themodel’s quality. Examples
of such measures are a model’s accuracy and its minimum description length (MDL). The
quality of a model in view of the data can only be established if the model is fully speci-
fied, that is, if it includes estimates for all numerical parameters involved. These parame-
ters are estimated as simple frequency counts, which serve to maximise the log-likelihood
of the model given the data. The quality measure that is used as an optimisation criterion
upon constructing the model often is also exploited for comparing different classifiers.

Upon learning Bayesian network classifiers, the quality of amodel is not optimised
just by including appropriate dependences, but also by including only the most relevant
feature variables. Data sets often contain more variables than are strictly necessary for the
classification task at hand and the more or less redundant variables could result in an un-
desirable bias [Langley and Sage (1994)]. The process offeature selectionnow carefully
selects from the data set the variables that serve to improvethe model’s quality the most.
For this purpose, various feature-selection methods exist; we again refer to Larrañaga et
al. (2006) for an overview. Here we focus on the so-called wrapper approach to feature
selection and assume that a greedy forward-selection method is used for choosing the fea-
ture variables to be included. In this approach, feature variables are iteratively added to
an initially empty model until its quality given the data no longer increases.

Bayesian network classifiers use Bayes’ rule for establishing the posterior probability
distribution Pr(Y | X) over the class variable that is used for the actual classification:

Pr(Y | X) =
Pr(Y,X)

Pr(X)
=

Pr(X |Y) ·Pr(Y)

∑y′ Pr(X | y′) ·Pr(y′)

The decision rule that is commonly used with a naive Bayesianclassifier is thewinner-
takes-all rule, which for a binary class variable amounts to assigning an instance to the
class whose posterior probability exceeds the threshold probability of 0.5.

To conclude, if the performance of the constructed model is evaluated against the
same data set as that from which the model is learned, its performance will tend to be
overestimated as a result of overfitting the model to the data. To correct for this effect
of overfitting and estimate the model’s performance on unseen data, often ten-fold cross
validation is used.

2.2 Logistic regression

Logistic regression models are much more commonly used within the medical community
than Bayesian network classifiers, even though there are quite a number of similarities be-
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tween these types of model. A logistic regression model, like a Bayesian network classi-
fier, is a model over a class variableY and a set of feature variablesX. The model captures
the conditional probability distribution over the class variable directly as a function of the
feature variablesXi ∈ X. Logistic regression models again range from simple models
imposing a linear function on the feature variables, to morecomplex models involving
higher-order terms to describe interactions between the feature variables. The first-order
logistic regression model captures the conditional probability distribution Pr(Y | X) in
terms of a linear function of the feature variablesXi ∈ X through

Pr(y | X) = (1+exp(−β0−∑i βi ·Xi))
−1

in whichβi denote the model’s parameters.
Logistic regression models are also constructed automatically from data. The log-

likelihood of the model given the available data then is maximised by obtaining appro-
priate estimates for the parametersβi . While for the parameters of a Bayesian network
classifier, a closed-formula solution exists, the optimisation problem involved in finding
the parameters for a logistic regression model does not havesuch a solution. The param-
eter values therefore are established using an iterative method. As for Bayesian network
classifiers, furthermore, upon constructing a logistic regression model methods for feature
selection and for correcting for the effect of overfitting are applied.

A logistic regression model provides for directly computing the posterior probabili-
ties Pr(Y | x) for the class variable given an instancex, by filling in the values for the
feature variables. The decision rule used with the model is based upon a threshold proba-
bility t for this posterior probability. The value of thisdecision threshold tis based upon
knowledge of the consequences of the different types of misclassification in the domain
of application.

2.3 A theoretical comparison

Naive Bayesian classifiers and first-order logistic regression models essentially index the
same set of conditional probability distributions, in the sense that for any combination
of parameter values of a first-order logistic regression model there exists a combination
of parameter values for a naive Bayesian classifier that describes the same distribution
Pr(Y | X), and vice versa (provided that Pr(Y,X) is strictly positive) [McLachlan (1992)].
Yet, given a particular data set, naive Bayesian classification and logistic regression will
typically not result in the same estimated distributionP̂r(Y | X), because the parameter
values for the Bayesian network classifier are chosen so as tomaximise the log-likelihood
of the joint probability distribution over the variables whereas the parameter values for
the logistic regression model are chosen so as to optimise the log-likelihood of thecon-
ditional distribution. If in learning a naive Bayesian classifier, its parameter values are
computed iteratively so as to maximise the log-likelihood of the conditional distribution,
called discriminative learning, the resulting model wouldin essence capture the same
distribution as a first-order logistic regression model learned from the data.

Several researchers have argued that discriminative learning is more appropriate for
classification purposes than generative learning in which the log-likelihood of the joint
distribution is maximised, since we are interested in predicting the class for a given in-
stance and not in their joint probability [Friedman, Geigerand Goldszmidt (1997)]. Oth-
ers, however, argue that such a conclusion may be premature [Ng and Jordan (2002)].
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For models fitted to infinite data sets, the asymptotic classification accuracy of a first-
order logistic regression model is never smaller than that of a naive Bayesian classifier.
This basically implies that given a large enough data set thenaive Bayesian classifier will
not outperform the first-order logistic regression model. The regression model would typ-
ically do better when the independence assumption underlying the naive Bayesian clas-
sifier does not hold in the data set, that is, when there are strong associations among the
feature variables [Anderson (1982)]. On the other hand, although naive Bayesian classi-
fication asymptotically converges to a lower accuracy, it does so significantly faster than
logistic regression. For smaller data sets, therefore, naive Bayesian classifiers can be ex-
pected to outperform first-order logistic regression models, as has been largely confirmed
experimentally [Ng and Jordan (2002)].

Similar observations in essence hold for TAN classifiers on the one hand and logistic
regression models with interaction terms for pairs of feature variables on the other hand.
The observations, however, cannot be extended to Bayesian network classifiers involving
more complex dependency structures over their feature variables. Such Bayesian network
classifiers index essentially different sets of conditional probability distributions than lo-
gistic regression models with higher-order interaction terms and as a consequence may
theoretically as well as effectively outperform any such regression model.

3 The medical context

In this section we describe the medical concepts relevant for our case study of aligning
Bayesian network classifiers with a medical context. We briefly introduce the domain of
reproductive medicine in which we conducted the case study,together we the data set and
logistic regression model that we had available.

3.1 Clinical performance

Classification models in medicine are often evaluated usingconcepts of clinical relevance
such as area under the ROC curve, and sensitivity and specificity. Given the importance of
these concepts for aligning Bayesian network classifiers with medical contexts, we briefly
review them here.

A Receiver Operator Characteristic, or ROC, curve visualises a classifier’s perfor-
mance by plotting its sensitivity against one minus its specificity for all possible values of
the decision thresholdt. Some example ROC curves are shown in Figure 1. The decision
threshold serves for classifying an instancex as belonging to classy only if the posterior
probability Pr(y | x) computed for the instance is at or above the threshold. Giventhis
threshold, the model has an associated sensitivity and specificity. The sensitivityof the
model is the probability that it correctly classifies a positive instancex+, that is, it is the
percentage of such instances for which the classifier predicts that Pr(y | x+) ≥ t. The
specificityof a classifier is the probability that it correctly classifies a negative instance
x−, that is, it is the percentage of such instances for which Pr(y | x−) < t is predicted.

The area under the ROC curve, or AUC, in essence measures the classifier’s ability
to discriminate between the different classes [Hanley and McNeil (1982)]. More specif-
ically, it captures the probability that a randomly chosen positive instance and a random
negative instance are correctly ranked, that is, it is the percentage of such pairs of in-
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stances for which the classifier predicts that Pr(y | x+) > Pr(y | x−). The area under
the curve gives an indication of a classifier’s quality, averaged over all possible decision
thresholds for assigning an instance to a particular class.Upon using the model in a
practical setting, however, a clinician typically has to base a decision upon the posterior
probability computed for a patient. For this purpose, a fixeddecision threshold is chosen,
based upon domain knowledge of the consequences of misclassification. In view of such
a fixed decision threshold, the quality of a classification model is captured by a single
point on the ROC curve. The area under the curve may then no longer be an appropriate
indication of the model’s performance, which is then expressed directly by the sensitivity
and specificity implied by the fixed decision threshold.

3.2 In vitro fertilisation

In vitro fertilisation, or IVF, is an assisted reproductivetechnique of embryo transfer used
to help infertile couples conceive a child. There are many factors that determine whether
or not IVF treatment results in an ongoing pregnancy, including the age of the patient,
the quality of the embryo, and the receptivity of the uterus.To increase the probability of
pregnancy, it used to be common practice for IVF programmes to transfer multiple em-
bryos. With the increasing success of the treatment, however, multiple embryo transfer
involves an increased risk of multiple pregnancy, associated with pregnancy loss, obstet-
rical complications, prematurity, and neonatal morbiditywith long term damage.

Single embryo transfer is now being used as a means of reducing the risks involved
with multiple pregnancy. Applying single embryo transfer without any selection based on
patient characteristics and embryo quality, however, has been shown to lead to a reduction
of the probability of an ongoing pregnancy per transfer. A patient may therefore need
to undergo multiple treatments for a pregnancy to persist. Multiple treatments involve
additional costs as well as physical and emotional discomfort for the patient. To guide
appropriate use of single embryo transfer, therefore, a patient-specific assessment of the
expected result of the transfer should be available.

In a recent study, a prognostic model was developed for establishing the probability of
an ongoing pregnancy after single embryo transfer [Verberget al. (2007)]. The data used
for constructing this logistic regression model were derived from a randomised controlled
trial on the effectiveness of in vitro fertilisation, in which 201 women with an indication
for IVF treatment were randomised to a mild stimulation protocol [Heijnen et al. (2007)].
For constructing the model, a subset of these data includingonly women with at least two
embryos suitable for transfer was used. The subset includesthe data of 152 women who
underwent single embryo transfer. In 42 of these women (28%), the treatment resulted in
an ongoing pregnancy.

In the data set, patient characteristics, treatment details, and embryo quality related
factors are recorded. The feature variables include such patient characteristics as female
age, previous pregnancy, cause and duration of infertility, and body mass index. Further
independent variables are related to the treatment and include the number of dominant
follicles, the number of oocytes retrieved, the proportionof fertilised oocytes, the du-
ration of the stimulation, the amount of administered recFSH per retrieved oocyte, and
endometrial thickness. The remaining feature variables are related to embryo quality and
include the grade of fragmentation, whether there was a top-quality embryo available for
transfer, and whether there were embryos available for cryopreservation. The number of

7



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

se
ns

iti
vi

ty

1- specificity

NB4
LR

Figure 1: ROC curves for the logistic regression model (dashed) and the naive Bayesian
network classifier (solid) with four variables each (uncorrected).

independent variables equals 17, of which 11 variables are continuous, 3 are binary, and
3 are multi-categorical. For two of the variables, data werenot complete, with 4% and
6% of the values missing, respectively. For these variables, single imputation was used
by filling in the predictive mean after regression on all other variables. The variable des-
ignated as the class variable in the data set captures whether or not single embryo transfer
results in an ongoing pregnancy.

We briefly review the performance characteristics of the first-order logistic regression
model constructed from the data. The model includes four feature variables, which was
imposed as the maximum number of variables to be included. The variables of the model
are the patient’sbody-mass index, the total amount of administered follicle stimulating
hormone, thenumber of retrieved oocytes, andwhether there was a top-quality embryo
available for transfer. An ROC curve for the model is shown in Figure 1; its area under
the curve equals 0.68, or 0.60 after correcting for the effects of overfitting. Using a
decision threshold of 0.2, the model has a sensitivity of 0.90, or 0.86 after correction, and
a specificity of 0.37, or 0.14 after correction. These characteristics are summarisedin
Tables 1 and 2.

4 Aligning Bayesian classifiers

We recall that building stochastic classification models typically involves selecting a sub-
set of appropriate feature variables and that this subset isoften construed using a greedy
forward-selection approach, in which feature variables are iteratively added to an initially
empty model, until its performance no longer increases. Upon constructing a Bayesian
network classifier, performance is often measured byclassification accuracy, which refers
to the percentage of correctly classified instances. In thissection, we discuss why classifi-
cation accuracy is an unacceptable measure of performance in our domain of application
and show how concepts of clinical relevance can instead be used for this purpose.
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Table 1: Performance characteristics of the first-order logistic regression model and of the
naive Bayesian network classifier, with four selected variables each.

AUC (corrected) sensitivity(corrected) specificity(corrected)

logistic
regression model: 0.68 (0.60) 0.90 (0.86) 0.37 (0.14)

naive Bayesian
classifier: 0.85 (0.58) 0.95 (0.66) 0.55 (0.50)

Table 2: The variables included in the first-order logistic regression model and in the naive
Bayesian network classifier with four selected variables each.

logistic regression model naive Bayesian classifier

– duration of infertility (discretised)
number of retrieved oocytes number of retrieved oocytes(discretised)
top-quality embryo available top-quality embryo available
– endometrial thickness(discretised)
administered follicle stimulating hormone–
body-mass index –

4.1 Classification accuracy and its problems

Classification accuracy refers to the probability ofcorrectly classifying an arbitrary in-
stancex of the feature variables involved, wherex is considered correctly classified if
the classy′ to which x is assigned, corresponds to its true classy∗. We recall that the
assignment of a class value depends upon the threshold probability t that is used with the
classifier’s decision rule: an instancex is assigned to a classy′ whenever Pr(y′ | x) ≥ t.
Alternatively, a classifier’s accuracy can be interpreted as the percentage of randomly
chosen pairs of a positive instancex+ and negative instancex−, for which Pr(y | x+) ≥ t
and Pr(ȳ | x−) ≥ t. The winner-takes-all decision rule commonly employed by Bayesian
network classifiers implies a threshold probability oft = 0.5.

While the metric of classification accuracy is widely used within the Bayesian network
community, it is hardly ever used with logistic regression models in medical contexts. To
elaborate on why classification accuracy often is inappropriate for measuring performance
in medicine, we begin by observing that the accuracy of a classifier is highly dependent
upon the threshold probability that is used with the classifier’s decision rule. If instancesx
are assigned to a classy′ whenever Pr(y′ | x) ≥ t, then changing the value of the threshold
probability t will change the number of instances assigned to classy′. As a result, the
sensitivity and the specificity of the classifier also change.

Now, by writing classification accuracy as

accuracy(t) = sensitivity(t) · p(y)+specificity(t) · p(ȳ)

two problems of using this metric as a performance measure become apparent [Bradley
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(1997)]. The first problem is that its dependence on the choice of decision threshold makes
classification accuracy an inappropriate measure of performance in general. In fact, the
threshold probabilityt = 0.5 that is implied by the winner-takes-all rule is defendableonly
if the prior distribution of the class variable is close to uniform. In our domain of in vitro
fertilisation for example, this property does not hold: single embryo transfer results in an
ongoing pregnancy in only 28% of the patients. Moreover, patients with a small probabil-
ity of an ongoing pregnancy will receive multiple embryos and, as a consequence, will be
exposed to the risks of multiple pregnancy. For this reason,a decision threshold of 0.2 for
predicting ongoing pregnancy was chosen for the logistic regression model, and in fact
a decision threshold of 0.5 may not result in medically acceptable behaviour. Since the
decision threshold generally is not a parameter of the learning process, it is questionable
whether feature selection based upon classification accuracy as a performance measure
would result in an acceptable model. Note that this particular problem of the metric of
classification accuracy is only technical and could be resolved by fitting the choice of
decision threshold to the prior class distribution. A procedure to this end is described in
Lachiche and Flach (2003).

The second problem with the metric of classification accuracy for measuring perfor-
mance is that it assigns fixed importance weights to the sensitivity and the specificity
of a model, dictated by the prior probability distribution Pr(Y) over the class variable.
Thereby, it assigns a fixed weight to the costs of the two typesof misclassification. A
uniform class distribution, for example, entails that the cost of misclassification is inde-
pendent of the predicted class. For many medical contexts, however, the consequences of
false positive errors may be very different from those of false negative errors. Moreover,
for non-uniform priors, either the sensitivity or the specificity is automatically weighed
more heavily, independent of any medical considerations. In our domain of in vitro fer-
tilisation, for example, the prior distribution over the class variable would assign a higher
weight to the model’s specificity, that is, to correctly predicting non-implantation, than
to the sensitivity, that is, to predicting ongoing pregnancies upon transferring a single
embryo. Experts in reproductive medicine, however, indicate that the consequences of
acting upon a false negative prediction are more severe thanfor false positive predictions.
A high sensitivity therefore is considered more important than a high specificity. This
second problem may very well be the reason why classificationaccuracy is not used as a
measure of performance for logistic regression models in medicine.

The inappropriateness of classification accuracy as a performance measure has been
recognised in other domains as well. In the machine learningcommunity, the area under
the ROC curve has been used for some time now as a measure both for comparing clas-
sifiers and for constructing them. Since the area under the curve is not dependent on the
decision threshold chosen and is invariant to the prior distribution over the class variable,
it is more generally applicable as a performance measure forclassification models than
the classification accuracy. In fact, it has been shown that Bayesian network classifiers
constructed to maximise AUC, provide better ranking and probability estimates for the
instances to be classified, and in addition even score betteron classification accuracy than
those optimised for that purpose [Ling, Huang and Zhang (2003)].
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4.2 Clinical alignment

Bayesian network classifiers will only become an accepted alternative to logistic regres-
sion models in medicine, if their quality is at least comparable and communicated in terms
of clinical relevance. Although this observation does not necessarily affect the construc-
tion of Bayesian network classifiers, it has been recognisedthat if classifiers are evaluated
using some quality measure, then it makes sense to optimise that very measure during
construction. For this reason, on top of the problems with classification accuracy men-
tioned above, we incorporate measures of clinical relevance in the learning process of our
Bayesian network classifiers.

Upon learning Bayesian network classifiers from data, the area under the curve can be
readily incorporated in a greedy forward-selection approach to feature selection. We recall
that in this approach feature variables are iteratively added to an initially empty model un-
til its performance no longer increases. We further recall that with this approach, in each
iteration, for each (remaining) feature variable, the increase it incurs in the classifier’s
accuracy is computed, using the decision threshold 0.5 of the winner-takes-all rule. In
using the area under the curve as optimisation criterion, wenow compute instead for each
feature variable the increase it incurs in the classifier’s AUC. To this end, for each feature
variable, the sensitivitysensitivity(t) and the specificityspecificity(t) of the classifier, for
n different values of the decision thresholdt between zero and one is determined. From
then points thus obtained of the classifier’s ROC curve, the area under the curve can be
approximated by constructing trapezoids under the curve between every two consecutive
points. It can be readily shown that this approximation equals

1
2 · ∑

i=1,...,n−1

(
sensitivity(ti)+sensitivity(ti+1)

)
·
(

specificity(ti+1)−specificity(ti)
)

whereti is the decision threshold that resulted in theith sensitivity-specificity pair. We
then select for inclusion in the classifier, the feature thatresults in the largest increase in
AUC, if any. We would like to note that for establishing then points of the ROC curve,
we have to compute the posterior distribution over the classvariable only once.

5 Experimental results

Our first step into building a Bayesian network classifier forthe domain of reproductive
medicine has been to learn a collection of naive Bayesian classifiers from the available
data. Based upon the theoretical results reviewed in Section 2, we could expect simi-
lar performance of the naive Bayesian classifier and the logistic regression model con-
structed from the data. In fact, since our data set is relatively small, we could even expect
slightly better performance of the Bayesian network classifier. We used ourDazzletool-
box [Schrage, Van IJzendoorn and Van der Gaag (2005)], for constructing various naive
Bayesian network classifiers. Before doing so, however, we had to discretise the continu-
ous variables from the data set. For this purpose, knowledgewas elicited from the domain
experts who had been involved in the collection of the data. We would like to note that
the resulting discretisation might not be the best situatedfor our classifiers. For the pur-
pose of feature selection, we employed the greedy forward-selection approach outlined
above, using the area under the curve for our optimisation criterion. In this section, we
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review the results that we obtained. For each constructed model, we report the area under
the curve, as well as the sensitivity and specificity characteristics that result from using a
decision threshold of 0.2 on the entire data set; we further report corrected performance
characteristics obtained using ten-fold cross validation.

To allow for comparing the performance of the first-order logistic regression model
constructed from the available data and that of our naive Bayesian classifiers in detail, we
decided to construct network classifiers with different numbers of feature variables. With
a maximum of four variables, as was imposed on the regressionmodel, the constructed
naive Bayesian classifier includes the feature variables modelling theduration of the in-
fertility, the number of retrieved oocytes, endometrial thicknessandwhether there was
a top-quality embryo available for transfer. The area under the curve of this classifier
equals 0.85, or 0.58 after correcting for the effects of overfitting. Using a decision thresh-
old of 0.2, the classifier has a sensitivity of 0.95, or 0.66 after correction, and a specificity
of 0.58, or 0.50 after correction. These characteristics are summarisedin Tables 1 and
2. By comparing the characteristics after correction of thenaive Bayesian classifier with
those of the first-order logistic regression model, we find that the differences between
their area under curve and their sensitivities are not significant; the specificity of the naive
Bayesian classifier, however, is significantly larger than that of the regression model (us-
ing a Studentt distribution with a significance level ofα = 0.05).

In addition to the naive Bayesian classifier with four variables, we also constructed
classifiers with fewer and with more variables. The results from all constructed network
classifiers are summarised in Table 3. With the restriction of a single feature variable,
the constructed classifier includes just theduration of the infertility: the addition of this
variable is found to increase the area under the curve of the initially empty classifier the
most. When allowed a second feature variable, the learning algorithm includes thenumber
of retrieved oocytesin addition to theduration of the infertilityin the classifier. The
feature variables modellingendometrial thicknessandwhether there was a top-quality
embryo available for transferare included as the third and fourth variable respectively.
The fifth feature variable included in the model is thetotal amount of administered follicle
stimulating hormone. If the inclusion of feature variables is continued until the classifier’s
area under the curve no longer increases, a total of eight variables is included. In addition
to the five variables mentioned above, also the feature variables modelling thegrade of
fragmentation of the embryo, thenumber of normally fertilised oocytes, and the patient’s
ageare included. The remaining variables are not included intothe classifier since they
in fact serve to decrease the classifier’s area under the curve.

We note that upon constructing a naive Bayesian classifier, the contribution of each
feature variable to the area under the curve is studied in view of the entire data set. The
uncorrected AUC values reported in Table 3 therefore are thevalues used upon construct-
ing the model. While the classifier’s area under the curve keeps increasing upon including
a fourth and even further feature variables when the full data set is considered, the values
that have been corrected for the effects of overfitting, alsoreported in Table 3, reveal a
decrease in the expected area under the curve on unseen data.These observations support
the conclusion that for our small data set selecting four or more feature variables would
result in a naive Bayesian classifier that is overfitted to thedata.

When comparing the performance characteristics of the various constructed naive
Bayesian classifiers, especially the corrected values for the area under the curve and the
sensitivity suggest that the best classifier is the one that includes three feature variables.
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Upon comparing the characteristics of this model with thoseof the first-order logistic re-
gression model constructed from the data, we find that the differences between their area
under curve and their sensitivity are not significant; the specificity of the naive Bayesian
classifier, however, again is significantly larger than thatof the regression model (using a
Studentt distribution with a significance level ofα = 0.10).

Table 3: Characteristics of the naive Bayesian network classifiers with different numbers
of variables.

# variables AUC (corrected) sensitivity(corrected) specificity(corrected)

0 0.50 (0.50) 1.00 (1.00) 0 (0)
1 0.69 (0.53) 0.93 (0.80) 0.31 (0.22)
2 0.76 (0.63) 0.93 (0.78) 0.45 (0.35)
3 0.80 (0.65) 0.90 (0.80) 0.55 (0.46)
4 0.85 (0.58) 0.95 (0.66) 0.58 (0.50)
5 0.86 (0.56) 0.93 (0.65) 0.63 (0.51)
8 0.89 (0.56) 0.95 (0.57) 0.67 (0.52)

To conclude, we would like to illustrate the inappropriateness of using classification
accuracy for measuring performance for our domain of application. We constructed an
additional naive Bayesian network classifier from our data set with a maximum of four
feature variables; for this classifier we used accuracy for the optimisation criterion. The
corrected area under the curve of the classifier is 0.54. With the winner-takes-all rule, the
corrected sensitivity is 0.13; the corrected specificity equals 0.84. This classifier would
not exhibit medically acceptable performance, as a consequence of its low sensitivity.

6 Concluding observations

While for many problems in medicine classification models are being developed, Bayesian
network classifiers do not seem to have become as widely accepted within the medical
community as logistic regression models. To promote Bayesian network classifiers as al-
ternatives to logistic regression, it is important that comparison between the two can be
done in terms familiar to the medical community. In the medical domain, concepts of clin-
ical relevance are used, such as the area under the curve and sensitivity and specificity.
We have argued that for Bayesian network classifiers to become more widely accepted
within the medical community, they should be better alignedwith their medical contexts
by using these concepts of clinical relevance. In addition,we will have to demonstrate that
Bayesian network classifiers are acceptable or better alternatives in terms of performance,
ease of construction and ease of interpretation.

Given an infinite data set and optimising accuracy, a naive Bayesian classifier cannot
outperform a logistic regression model. Comparing a previously constructed regression
model with a naive Bayesian network classifier for the problem of selecting patients for
single embryo transfer in reproductive medicine, we found that even for a small data set
the naive Bayesian classifier can be outperformed by far by the logistic regression model,
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that is, if the former is constructed using classification accuracy as a performance mea-
sure. We have argued, however, that the metric of classification accuracy may not be
appropriate for measuring performance of classification models in the medical domain.
Serious problems are associated with using the metric for non-uniform distributions over
the class variable and for unequal cost distributions over the different types of misclassi-
fication, which may give rise to classification models of unacceptable medical behaviour.
We have shown that concepts of clinical relevance can be readily taken into account upon
constructing naive Bayesian classifiers from data. For our relatively small data set in re-
productive medicine, we have shown that by doing so, naive Bayesian classifiers can result
that exhibit at least comparable behaviour to logistic regression models. The promising
results from aligning the simplest type of Bayesian networkclassifier to its medical con-
text, have made our medical experts enthusiastic.
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