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Abstract

Advantages of embedded domain-specific languages (EDSLs) are that
one does not have to implement a separate type system nor an abstraction
mechanism, since these are directly borrowed from the host language.
Straightforward implementations of embedded domain-specific languages
map the semantics of the embedded language onto a function in the host
language. The semantic mappings are usually compositional, i.e. they
directly follow the syntax of the embedded language.

One of the questions which arises is whether conventional compilation
techniques, such as global analysis and resulting transformations, can be
applied in the context of EDSLs. The approach we take is that, instead of
mapping the embedded language directly onto a function, we first build
a representation of the abstract syntax tree of the embedded program
fragment. This syntax tree is subsequently analyzed and transformed, and
finally mapped onto a function representing its denotational semantics. In
this way we achieve an online compilation of the embedded language.

We show how to use typed abstract syntax to represent fragments
of embedded programs containing variables and binding structures while
preserving the idea that the type system of the host language is used to
emulate the type system of the embedded language.

The tricky issue is how to keep mutually recursive structures well-typed
while being transformed. For this we develop an arrow-like library which
assists in implementing such analyses and transformations and show its
usefulness in describing left-recursion removal of an embedded grammar
expressed with parser combinators using the Left-Corner Transform.
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1 Introduction

The use of combinator libraries for embedding a domain-specific language is
common practice in Haskell programming. With such a library a programmer
can use a domain-specific notation, and at the same time benefit from all the
features, such as the type system and abstraction mechanisms, of the general
purpose host language. The tight integration of the domain-specific language
with the host language has great benefits: there is no need to extend the compiler
or use ad hoc external tools which map the specific notation onto the host
language.

One of the best known examples of embedded domain-specific languages
is combinator parsing (Wadler 1985; Fokker 1995; Hutton and Meijer 1998;
Swierstra and Duponcheel 1996; Leijen 2001; Swierstra 2001). The combinators
provide an elegant way to define parsers in a notation that closely resembles
BNF. For frequently occurring patterns (such as the EBNF extensions of BNF),
a programmer can easily create more complex combinators out of simpler ones.
The fact that parsers are just values makes it possible to compute new parsers
during program execution (Baars et al. 2004), whereas lazy evaluation allows
us to only construct that part of a very large grammar that is needed for the
input at hand, something which is impossible to achieve with off-line generation
techniques.

One of the essential aspects of combinator-based domain-specific embedded
languages is that they share their type system with the host language. As a
consequence, parsers are typed values, usually of some type Parser a, in which
the Parser describes the basic parsing structure, and the parameter a is the
type of the value that is returned by a parser as a witness of a successful parse.

Although such a combinator-based approach for implementing domain-specific
languages looks very convincing at first sight, many problems show up when one
starts to use this technique in practice. Just as conventional compilers may ana-
lyze programs extensively and may transform them based on the results of such



analyses, one also wants to use such techniques for combinator-based embed-
ded languages. Why not generate a bottom-up parser on the fly or optimize a
database query?

Unfortunately, such analyses and transformations are usually not possible,
because the value being constructed by the combinators is a (possibly higher
order) function (as in denotational semantics), and hence the internal structure
can be neither inspected nor transformed. The approach we take is to have
the combinators build a data structure which corresponds to its typed abstract
syntax tree following from the grammar of the embedded language. This rep-
resentation may be analyzed, transformed, and only later be mapped onto its
semantics. The main complication we now face is that we have to do this in a
typed setting. In contrast, conventional parser generators basically work on an
untyped representation of a grammar, containing pieces of text which describe
functions to be called when a reduction is made; whether such calls are type
correct only becomes clear when we compile the generated program. We have to
make sure that the code which assembles the parser from its various partial de-
scriptions, exported from different modules, is type correct. Once the program
performing the transformation is running no type checking can take place.

The problem becomes even harder when the embedded language not only
borrows the type system and the abstractions provided by the host language,
but also its declarative structure. Now we have to deal with several abstract
syntax trees containing references to each other and with binding structures.
We thus have to represent graph like structures, instead of trees.

In their work on typed meta-programming (Pasalic and Linger 2004), Pasilic
and Linger, using the the encoding of equality types in Haskell (Baars and
Swierstra 2002), show how to represent typed abstract syntax trees containing
typed references to values. A group of mutually recursive bindings is represented
by a nested cartesian product of terms, in which the variables are represented by
typed pointers into this enviroment. A similar approach was developed slightly
earlier by Xi and Chen, using a dependently typed version of ML, in their work
on typeful program transformations (Chen and Xi 2003). The key ingredient
for both is the encoding of environments and references pointing into these
environments in host language terms. This encoding ensures that references
always refer to existing values with the right types. In all approaches, references
are basically indices into an environment, for the sake of demonstration encoded
as Peano numbers.

In an earlier paper (Baars and Swierstra 2004), we extended Pasalic and
Linger’s encoding of typed abstract syntax to develop a typed implementation
of on-line left-recursion removal from grammars described by parser combina-
tors, using the textbook algorithm which unfortunately causes an exponential
worst-case increase of grammar size. A grammar is represented as an environ-
ment containing productions for each nonterminal. These productions in turn
contain references (nonterminals) to the production rules in the grammar. We
also presented a way to alleviate the burden of encoding nonterminals (i.e. ref-
erences) as Peano numbers, so one can use a notation similar to that of parsing
combinators when writing the grammars. In this algorithm, a fized number of



new nonterminals were introduced for “repetitions of zero or more occurrences”
for the tails of the left-recursive alternatives. Hence we managed to avoid the dy-
namic introduction of new nonterminals by adding a special Many-constructor
for repetitions to the term data type representing parsers, thus representing
the possibly needed nonterminals beforehand. Thus we avoided the problem of
dynamically extending the grammar with new nonterminals as need arises.

The main contribution of this paper is the development of an arrow-style
library that handles introductions of new bindings, and thus can be used to
implement a variety of typed program transformations. The use of this library is
not limited to grammar transformations and can be used for many other typeful
transformations in which new definitions are introduced. Such as common-
subexpression elimination, and query optimization.

As a “real-world” use of the library we develop a left-recursion removal
algorithm based on the Left-Corner (LC) transform. The type of the resulting
transformation is:

leftcorner :: Grammar a — Grammar a

where a is the type associated with the start symbol of the grammar. This type
is obvious and simple. Internally, however, we make heavy use of universally
and existentially quantified types in combination with Generalized Algebraic
Data Types (GADT). This paper therefore can also be seen as a non-trivial
exercise using these type system extensions. Throughout the paper, we use
GHC (GHC) syntax for these extensions to Haskell. The code in this paper can
be found at: http://www.cs.uu.nl/wiki/Center/TTTAS, and was produced
by running 1hs2TeX on the source of this paper. The code is accepted by the
Glasgow Haskell Compiler (GHC).

In (Viera et al. 2008) it is shown how the LC-transform itself can be used to
derive an efficient version for the Haskell function read, by converting an expo-
nential time algorithm into a linear one. The paper also shows how to use the
library which is developed here for left-factoring, another efficiency-improving
grammar transformation. The use of the techniques developed here are essen-
tial since it is only at runtime that all the information comes together. Work
traditionally done by an off-line parser generator has been moved to program
execution time, and thus grammars have become first-class typed objects, which
are analysed, constructed and transformed at runtime.

This paper is organized as follows. In Section 2, summarizing earlier work
(Pasalic and Linger 2004; Baars and Swierstra 2002, 2004), we discuss the en-
coding of typed abstract syntax trees, references and environments. These are
the objects for our transformations. In Section 3, we develop the library that
maintains a changing typed environment. It ensures that all typed references
(references that “know” the type of the values they refer to) remain consistent
whenever a new definition is added to the environment. in Section 4.1.1, we
show a large case study: the implementation of the LC-transform. Finally, in
Section 5, we present our conclusions.



2 Typed References and Environments

We start by shortly repeating the ideas behind typed meta-programming, in
which we represent programs explicitly, so they can be manipulated. We want
to do this in such a way that we keep the nice properties that typed programming
languages have. Specifically, the fact that the presentation is type correct can
be seen as a proof that the represented expression is type correct.

As an example consider the abstract syntax (formulated as a GADT) of a
simple expression language:

data Frp a where

IntVal  ::Int — Fxp Int
BoolVal :: Bool — Fxp Bool
Add = Brp Int — Exp Int — FExp Int
LessThan :: Exp Int — Ezp Int — Fxp Bool
If :: Bzp Bool — Fxp a — Fxp a — Ezp a

where the expression
if3+1<4thenbelsel+2
is represented by:

expr :: Bxp Int

expr = If (LessThan (Add (IntVal 3) (IntVal 1)) (IntVal 4))
(IntVal 5)
(Add (IntVal 1) (IntVal 2))

The value of the represented expression has type Int, which is reflected in the
type of expr:: Expr Int. Note that the the ill-typed expression 3 < True cannot
be represented!

The question which arises now is how to represent variables and binding
structures. We extend our simple expression language with a constructor Var,
where a variable is represented by a reference of type Ref a env, an index
pointing to a value of type a in an environment of type env. In the next
section, we will go into detail on the type Ref.

The type Fxpr takes an extra type parameter env, which stands for the type
of the environment in which the expression is to be evaluated, and to elements
of which thus the variables encoded in the term may refer:

data Fxpr a env where

Var : Ref a env — Fxpr a env
IntVal 2 Int — Fxpr Int env
BoolVal :: Bool — Fxpr Bool env
Add 2 Fxpr Int env  — Expr Int env — Fxpr Int env

LessThan :: Expr Int env — Fxpr Int env — Ezpr Bool env
If :: Expr Bool env — Expr a env
— Fxpr a env  — Ezpr a env



An evaluator eval for our simple expression language takes as arguments the
abstract syntax tree of an expression, and an environment which provides values
for the variables in the expression, and returns the value of the expression. The
function lookup will be discussed later, and here only its type matters.

lookup :: Ref a env — env — a

eval :: Fxpr a env — env — a

eval (Var r) e = lookup r e

eval (IntVal i) _ =1

eval (BoolVal b) _=b

eval (Add zy) e=eval x e+ eval y e

2.1 Type equality

Pasalic and Linger (Pasalic and Linger 2004) introduce an encoding of typed
references that can be used for meta-programming. This encoding relies on
the equality type (Baars and Swierstra 2002; Weirich 2000; Cheney and Hinze
2003). A (non-diverging) value of type Fqual a b is a witness of the proof
that the types a and b are equal. This witness takes the form of a conversion
function, which turns out to always be the identity function.

The addition of GADTs (Peyton Jones et al. 2006) to GHC makes program-
ming with the Equal data type a lot easier, because all the fiddling with proofs
is implicitly done by the compiler. Furthermore, the performance increases,
since the construction of the proofs is no longer done at run-time. The compiler
“knows” that all proofs of type equality are witnessed by values like id, id id,
id (id id), id id id etc, and can thus omit them safely from the generated code:
they have no other observable effect than taking time to execute.

In this section, we introduce previous work as part of our library (Baars and
Swierstra 2004)). The only difference is that here we use GADTs to encode
the type Equal. Furthermore, we show that by distinguishing between the
types used in an environment and the types defined in an environment, we can
manipulate both sets in relative isolation. Only when we are finished with our
manipulation do we require them to be the same. The encoding of type equality
is trivial when using GADTs:

data Fqual:: * — % — x where Fq:: Equal a a

The type Fqual has just one constructor Fq :: Equal a a. If a pattern match on
a value of type Equal a b succeeds (i.e., a non- L value Eq is available), then the
type checker is thus informed that the types a and b were known to be the same
at the place the Fq was produced. The equality relation is reflexive, symmetric
and transitive, and these properties are easily encoded:

reflex = Equal a a
reflex = Fq



symm 2 Fqual a b — FEqual b a

symm Eq = Eq

trans 2 Fqual a b — FEqual b ¢ — Fqual a c
trans Eq Eq = Eq

If we know that two types a and b are equal, then we can safely cast an a value
into a b value:

cast :: Equal a b — a — b
cast Eq = id

2.2 Typed References

In their paper on typed meta-programming, Pasalic and Linger introduced the
following GADT for representing typed indices which are labelled with the type
of value to which they refer and the type of environment (a nested cartesian
product) in which this value lives.

data Ref a env where
Zero :: Ref a (a, env’)
Suc :: Ref a env’ — Ref a (z, env’)

In the case of a Suc we are not interested in the first element, so this constructor
is polymorphic in the type z.

Two references can be compared for equality using the function match. If
they refer to the same element in the environment this function returns the
value Just Eq, thus expressing the fact that the types of the referred values are
the same too:

match :: Ref a env — Ref b env — Maybe (Equal a b)

match Zero  Zero = Just Fq
match (Suc x) (Suc y) = match z y
match _ _ = Nothing

The lookup function, the type of which we have seen before, uses its reference
parameter as an index in the environment parameter. Whenever we decrease
the index, we take the snd part of the tuple, until the index reaches Zero. The
types guarantee that the lookup succeeds:

lookup :: Ref a env — env — a
lookup Zero  (a,_) = a
lookup (Suc r) (=, €) = lookup r e

The function update takes an additional function as argument, which is used to
update the value the reference addresses. The other values in the environment
are left unchanged:



update :: (a — a) — Ref a env — env — env
update f Zero  (a,e) = (f a,e)
update f (Suc r) (z,e) = (z, update f T €)

For the sake of presentation, we have taken a simple type to represent environ-
ments, but more complicated structures like binary trees are also possible in
case efficiency becomes a problem. Here, it would only add complexity to the
presentation.

As an example, consider the ezample environment:

type EzampleEnv = (Int, (Char, (String, ())))
example :: ExampleEnv

example = (1,(’a’, ("b",())))

ref , :: Ref Char ExampleEnv
ref , = Suc Zero

ref one it Ref Int ExampleEnv
ref gne = Zero

Using our extended data type we can also encode expressions which contain
variables such as if b then 3 else a, using an environment that starts with an
Int and a Bool:

ref, = Var Zero

ref = Var (Suc Zero)

testexpr :: Ezpr Int (Int, (Bool, env))
testexpr = If ref, (IntVal 3) ref,
testenv :: (Int, (Bool,()))

testenv = (11, (False, ()))

test : Int

test = eval testexpr testenv

The expression lookup ref , example yields the character 'a’, and lookup ref ,,,. example
yields the integer 1. Notice that the type of the reference determines the type

of the result! Application of update (45) ref,,. to the example environment
updates it to (6,(’a’,("b",()))). This clearly shows that the ref, and ref,
address values of different types in the same environment.

Some may complain that this Peano representation is extremely cumbersome
and error prone. In (Baars and Swierstra 2004), we have shown how, by using
some extra combinators, this problem can be overcome. Furthermore the type
system also helps us avoid accidental mistakes. Also, note that building the
internal representation is the work of the combinator library and not so much
of the user of the embedded language.

2.3 Mutually recursive terms

The question which arises now is how to represent a collection of possibly mu-
tually recursive definitions, each consisting of an identifier being defined and a
right-hand side expression containing such identifiers.



The idea is to store the right-hand side expressions in a heterogeneous list,
and represent the identifiers by indices in this list. This is very similar to
the environments described above, with the main difference that the actual
environment now contains typed terms instead of typed values. The type a in a
reference of type Ref a... is the same as the type parameter a in the type of the
term Expr a env it addresses. But what to choose now for the env-parameter in
the references occurring in the terms? Because these references point to other
terms in the collection of definitions, the type env should be the type of the
nested tuple itself, giving rise to an infinite type for the nested tuple, which is
not allowed in Haskell.

Our solution is found in splitting the second type parameter in two param-
eters: one indicating the environment addressed by the references occurring in
the terms and one environment which is being constructed by the sequence of
terms. The type Env t use def represents a sequence of instantiations of type
Va . t a use, where all the instances of a are stored in the type parameter def;
thus the type def contains the type parameters a of the terms of type ¢ a use
occurring in the Env t use def. The type use on the other hand contains the
types that may be referenced from within terms of type ¢ a use.

data Env t use def where
Empty :: Env t use ()
Cons ::t a use — Env t use def’ — Env t use (a, def’)

When the types def and use coincide we can be sure that the references in the
terms do not point to values outside the environment and to terms representing
the right type. Splitting this single type into two type parameters, which we
only require in the end to be equal, makes it possible to both add new terms to
the environment which are not yet taken into account by the existing refs and
to use references which refer to terms which still have to be added. Only after
we are done with manipulating and extending the environment do we require
them to be the same! The fact that a sequence of mutually recursive terms is
closed and well-typed is thus encoded in the type system of the host language.
So the mutually recursive declarations:

(y,2) =(B+2z,y)
can be encoded as:

type FinalEnv t usedef = Env t usedef usedef
x  u Expr Int (Int, (Int,()))

z = Var Zero
y Ezpr Int (Int, (Int,()))
y = Var (Suc Zero)

rhss :: FinalEnv Expr (Int, (Int,()))
rhss = Cons (Add (IntVal 5) z) (Cons y Empty)

where we note that the z and y here are Haskell values referring to the right-
hand side terms of their definitions in the Env.



The lookup and update operations are defined in a similar way as before:

lookupEnv :: Ref a env — Envtsenv—tas
lookupEnv Zero  (Consp _) = p
lookupEnv (Suc r) (Cons _ ps) = lookupEnv r ps

updateEnv ::(t as —tas) — Ref aenv— Envtsenv— Envtsenv
updateEnv f Zero  (Cons ta rs) = Cons (f ta) rs
updateEnv f (Suc r) (Cons z rs) = Cons (updateEnv f r rs)

The chosen representation now has an efficiency problem, to be fixed in the
next section: whenever we extend the environment with a new Cons all existing
references occurring in terms already stored in the environment have to be
incremented by applying an extra Suc constructor to them, since the values to
which they refer have an index that is one higher in the new environment.

3 Transformation Library

In this section we develop a type Trafo representing typed transformation steps
on a heterogeneous collection and an Arrow-like library of combinators for com-
posing such transformations. Each Trafo takes input and produces output and
can be composed in the same way as Arrows. Additionally, meta-data about
the transformation process can be maintained too. Such meta-data could for
example be a symbol table, debugging information, reference counts, etc.

In developing the type Trafo we use a Haskell-like type synonym syntax
augmented with the symbols V and 3 to denote universally and existentially
quantified types. We first develop the type Trafo to tackle the problem of
maintaining a heterogeneous collection of definitions, and subsequently extend
it with Arrow-style inputs, outputs, and meta-data. Finally we encode the the
Trafo using data types, as accepted by GHC.

We model a collection of embedded-language definitions as a value of type
Env, and make these definitions the subject of transformations that may in-
duce new definitions, as in the case of common-subexpression removal, where
a subexpression gets named. At the end of the transformation process each
reference in this EFnv must be a reference into the final set of definitions. In this
case, we call the environment closed. One way to ensure that our environment
is always closed is to adjust all the references in all the terms whenever a new
definition is added to the environment. This is cumbersome and inefficient, and
is better done once, i.e., when we know how many Sucs to add to each reference
to make it address the right element in the final structure.

We only require an environment to be closed after all transformations have
been applied and all new definitions have been added. The final type must
be of the form Env t s s (or FinalEnv t s) for some type s. References into
this environment s are coined final references. If all the transformation steps
only add terms of type (Ja . t a s) to the environment, then they contain
only final references, and we do not need to adjust the references after each

10
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Figure 1:

transformation step. However, this seems to be impossible. How can we make
the transformation steps half way through the transformation process construct
terms of the type (3a . ¢t a s)? Remember that s is the type of the final
environment and is only known after all transformation steps have completed?
For creating such final references we need to know how many new definitions
will be added to the front of the environment by all future transformation steps.

Lazy evaluation comes to the rescue. We solve this problem by passing
knowledge about the “future” backwards through the computation. In our case
information about the number of definitions added by future steps is encoded
in a Ref-transformer, that prepends as many Suc-nodes to a reference as there
are new definitions to come. The type of such Ref-transformers is':

newtype T e s = T{unT ::Vz . Ref t ¢ — Ref = s}

Figure 1 depicts the idea described above. The environment is constructed
from left to right. Each step takes as input the environment constructed thus
far and yields an updated environment as result. On the left, the computation
starts with an environment of some type FEnv t s envl. Each step may extend
the environment with some new definitions, making the type of the environment
change at every step. The final result of all steps has to be an environment of
type FinalEnv t s. Ref-transformers are passed on and modified from right to
left. This transformer effectively tells every step how deep down the environment
constructed thus far is located in the final environment.

The environment yielded by the last step is the place where the use and
the def types have to coincide. Therefore the identity transformer is used as
the initial value for the “pass-back” chain. Every step updates the transformer
according to the number of definition it adds to the environment, before passing
it on to preceding transformation steps.

3.1 The Trafo data type

We now develop the type Trafo to implement the idea described above. Every
step has two incoming and two outgoing arrows, one of each type at each side.
This means our Trafo-type is a function taking two arguments and returning
two results. We want our Trafo-type to be polymorphic in the type of the terms
(t) stored in the environment. As a first attempt, we take:

type Trafo t = T env2 s — Env t s envl — (T envl s, Env t s env2)

INote that the keyword forall is presented by the logical symbol V

11



the role of the different elements is as follows:

Env t s envl is the environment which has been constructed up to where the
current transformation starts, and corresponds to the incoming arrow at
the top left. The envi parameter describes which elements have thus far
been added to the environment.

T env2 s is the incoming arrow at the bottom right. It maps references into an
enviroment labelled with env2 into references into the final environment
s.

Env t s env2 is the newly constructed environment, in which env2 will usually
be an extension of envl.

T envl s corresponding to the bottom left arrow coming out of a Trafo, is the
updated T env2 s. It can be constructed by this transformation since it
knows how many elements were added to the environment.

This type definition is incomplete, the variables envl, env2, and s are still
unbound. We do not want these variables to appear on the left-hand side of the
type definition, as this would expose the internal complexity of the library to
the user, so we have to add universal or existential quantification.

The type envl is the type of the environment constructed thus-far. A step
should not make any assumptions about this environment, hence the type vari-
able envl is universally quantified. The type env2 is the type of the result of
a transformation step. This type depends on the number of new definitions
introduced by the step. As this can be an arbitrary number, the type env2 is
fully determined by the transformation and the incoming envl. Because env2
depends on env! by extending it, this quantifier has to be within the scope of
envl: once envl! is fixed the transformation fixes env2. Finally, the type vari-
able s represents the type of the final result. This type is only known when we
are done with all transformation steps, and hence computations in a Trafo can-
not make any assumptions about it, and thus it must be universally quantified.
All this leads to the following definition for the type Trafo:

type Trafo t = Venvl . Jenv2 . Vs .
T env2 s — Env t s envl — (T envl s, Env t s env2)

In the next step, we extend the type Trafo with Arrow-style input and
output. This allows us to pass values from one transformation Trafo to the
next. The types of the input and output are also labeled with the type of the
final environment, because we want to be able to communicate typed references
and terms between transformation steps. So we add two arguments (a and b)
to the type Trafo, which stand for the types of the input and output:

type Trafot a b =
Venvl . denv2 . Vs .as— T env2 s — Env t s envl
— (bs, T envl s,Env ts env2)

12



Finally we may want to maintain meta-information about the environment, such
as which elements have been added already. This information may be used to
determine what kind of new elements have to be added to the environment and
hence has to live outside the type which is existentially quantified by env2.
Thus, we introduce an extra argument m that stands for the type of the
meta-data. A Trafo takes the meta-data on the current environment envi as
input and yields meta-data for the (possibly extended) environment env2.

type Trafo mt a b=
Venvl . m envl — Jenv2 .
(m env2,¥s . as— T env2 s — Envtsenvl —
(bs, T envl s, Env t s env2)
)

Since the meta-information should not depend on the type of the final environ-
ment s the value of type m env2 is kept outside the scope of the s. Furthermore
the incoming meta-data of type m envl is outside the scope of the existential
quantifier for env2. This allows us to use the meta-data to decide for example
whether a new definition must be added to the environment or not. Placing
this meta-information inside the existential quantifier makes this impossible.

We now have come to a problematic point: the type above is not Haskell,
nor is it accepted by the GHC due to the use of existential quantifiers in type
definitions. Instead, an existential type can only be introduced by using the
keyword V on the left side of a constructor in a data-declaration. Thus, we have
to resort to an encoding of the above type as:

data Trafo mt a b= Trafo (Venvl . m envl — TrafoE m t a b envl)
data TrafoE m t a b envl =
Venv2 . TrafoE (m env2)
(Vs.as— Tenv2s— Envtsenwl —
(bs, T envl s ,Env t s env2)
)

Now that we have developed the final version of our Trafo data type, we can
define the combinators to construct and compose transformation steps.

3.2 newSRef and runTrafo

The most important operation is creating new references. This is implemented
by newSRef, which takes a typed term as input, stores it in the environment
and yields a reference pointing to this value. The type of newSRef is:

newSRef :: Trafo Unit t (t a) (Ref a)
data Unit s = Unit

No meta-information on the environment is recorded by newSRef; therefore
we use the type Unit for the meta-data. If meta-information is required, one

13



must define an application-specific version of newSRef, which we will do in our
example application. The type variable ¢ stands for the type of the terms. We
want the input to newSRef to be of type ¢ a s, where s stands for the as-yet-
unknown type of the final environment. The result of a newSRef is a reference
of type Ref a s, which points to the newly inserted, a labelled, term in the
final environment. It may be worth reminding the reader at this point that
Trafo Unit t (t a) (Ref a) resembles an arrow from ¢ a to Ref a. Note that we
cannot use normal Arrows because, here, type arguments have kind ( * — x ).

newSRef = Trafo
(A — TrafoE Unit
(Ma (T tr) env — (tr Zero, T (tr . Suc)
, Cons ta env

)
)

The incoming meta-information is ignored and Unit is returned as meta-data.
The function in TrafoE is more interesting: it takes as arguments the term
to be inserted ta ::t a s, the current environment env :: Env t s e, and a
reference transformer (T ¢r) :: T e s, which transforms references into the
current environment into references into the final environment. The result is
a tuple containing the new environment, which has type Env ¢ s (a,e), and
a reference of type Ref s a. The term (ta) becomes the first element of the
new environment, hence the reference pointing to this term is Zero. However,
more terms may be added in the future, therefore the reference transformer
(tr) is applied, which basically prepends to Zero as many Suc-nodes as there
are future additions to the environment under construction. Finally, we record
the fact that one new element was added to the environment by adding an
extra Suc-node to the reference transformer ¢r, which we pass on to the our
predecessors.

Of course we want to “run” our Trafo-computations. This is the task of the
function runTrafo:

runTrafo :: Trafo mt a b — m () — (Vs . a s) — Result m t b

The function runTrafo takes as arguments the Trafos we want to run, meta-
information for the empty environment, and an input value. The last argument
needs to be polymorphic in s, since we cannot make any assumptions about
the type of the final environment. The result of runTrafo is the output value
(b s), together with the final environment (Env (¢ s) s) and meta-data (m s).
Because s could be anything we have to hide it using existential quantification,
and thus introduce the data definition Result.

data Result m t b =Vs . Result (m s) (b s) (FinalEnv t s)

The function runTrafo now reads:
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runTrafo (Trafo st) m a
= case st m of TrafoE m' f —let (b,_,e) =f a (T id) Empty
in Result m’ b e

Consider the type of the function f which is the second component of the
TrafoE-constructor:

fuV¥s. as—Tenws— Ewts()—
(bs, T() s, Envtsenv)

where a, t, and b are the input, term, and output types from the type signature
of runTrafo, and env stands for the existential type of the resulting environment.
The resulting environment is the final environment; therefore, the reference
transformer that converts between references for the result environment and
the final environment, is chosen to be the identity transformer (7T id), hence
instantiating the polymorphic s to env for the call to f!

3.3 Arrow-style combinators

Unfortunately the data type Trafo is not really an Arrow, because the type
variables a and b are of kind * — * instead of * ; keep in mind that they
are parameterised by the final environment s. To implement the Arrow-like
interface one needs to implement at least arr, >>>, and first. The types of the
real Arrow-combinators are almost identical to the ones we define here. The
only difference is that all input and output parameters are lifted.

The arr combinator lifts a function.

arr (Vs .as—bs)— Trafomtabd
arr f = Trafo (Am — TrafoE m (Aa t e — (f a,t,e)))

The >>> combinator composes two Trafos. It is actually a straightforward tran-
scription of the composition depicted in Figure 1. In that figure box 1 refers to
the incoming environment, box 2 to the intermediate and box 3 to the outgoing.

(>>>):: Trafo mt a b — Trafo mt b c— Trafom t ac
(>>>) (Trafo sa) (Trafo sb) =
Trafo (Am1 — case sa m1 of { TrafoE m2 f1 —
case sb m2 of { TrafoE m38 2 —
TrafoE m3 (Aa t3s el — let (b, t1s,e2) = fl a t2s el
(c,t2s,e83) = f2 b 13s €2
in (c,t1s,e3))}})

The function first from the real Arrow-class has the following type:
first :: arrow a b — arrow (a, c) (b, c)
Our version of first works on lifted tuples

newtype Tuple a b s = TP (a s,b s)

15



first :: Trafo m t a b — Trafo m t (Tuple a ¢) (Tuple b ¢)
first (Trafo s)
= Trafo (Am1 — case s m1 of
TrafoE m2 f —
TrafoE m2
(TP (a,¢)) t25 e
let (b,t12,e2) = f a t2s el
n (TP (b,c),t12,e2)

)

For the sake of completeness, we also show the other functions of the Arrow-
interface. The code is just the default definition found in the Arrow-class. The
only difference is in the types.

second :: Trafo m t b ¢ — Trafo m t (Tuple d b) (Tuple d c)
second [ = arr swap >>> first f >>> arr swap
where swap~(TP (z,y)) = TP (y,z)

(xxx) iz Trafom t b c— Trafom t b ¢
—  Trafo m t (Tuple b b") (Tuple ¢ ')
f *xx g = first f >>> second g
(&&&) = Trafomt b c— Trafo mt b — Trafo m t b (Tuple ¢ ')
1 &&& g = arr (Ab — TP (b, b)) >>> (f #** g)

The function loop is used to construct feedback loops. It takes a Trafo that has
an input of type Tuple a = and output of type Tuple b x. The component of
type z is fed back resulting in a Trafo with input a and output b.

loop :: Trafo m t (Tuple a x) (Tuple b x) — Trafo mt a b
loop (Trafo st) =
Trafo
(Am — case st m of
TrafoE m1 fl1 —
TrafoE m1
Mate—
let (TP (b,z),t1,el)=f1 (TP (a,x)) t e
n (b, tl,el)
)
)

The combinator sequenceA sequentially composes a list of Trafos into a Trafo

that yields a list of outputs. Its use is analogous to the sequence combinator for
Monads.

newtype List a s = List [a $]
sequenceA :: [ Trafo m t a b] — Trafo m t a (List b)
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sequenceA [| = arr (const (List []))
sequenceA (x : xs) = (x &&& sequenceA xs) >>>
arr (A(TP (a, List as)) — List (a: as))

Although the combinators above do not define a real Arrow, programming with
them is the same as programming with Arrows. Unfortunately, one cannot use
the special Arrow syntax (Paterson 2001).

4 Left-Corner transform

4.1 Motivation

We now come to second part of this paper in which we show how to use the
library in transforming a grammar with the Left-Corner Transform (LCT) which
removes left-recursion (Johnson 1998). LTC has complexity O(n?) where n is
the number of symbols (terminals as well as nonterminals).

Here we will use the version developed by Robert C. Moore (Moore 2000).
His tests, using several large grammars for natural language processing, show
that the algorithm performs very well in practice. Transformations like the
LCT usually introduce many new nonterminals to the grammar. In our setting,
a transformation must be type preserving and thus ensure that the types of the
environment and the references remain consistent while being modified. Previous
work on typeful program transformations (Chen and Xi 2003; Pasalic and Linger
2004; Baars and Swierstra 2004) does not deal with such an introduction of new
definitions and binders, which complicates matters considerably.

We want to stress once more that our transformation is done at run-time
and not off-line. It is to be used in situations where, while running the program,
several parts of a grammar are coming together, and an efficient parser has to
be constructed on the fly.

We provide three situations where this may be useful. The first one comes
from the definition of the class Read in Haskell. Suppose we have the following
situation:

module A (A_type) where
data A_type = S
| A_type :+: A_type
deriving Read
module B where
import A
data B_type a = S
| a i+ Int
| B_type a :*: Int
deriving Read

type Problematic = B_type A_type

Here we see that the first module exports a derived instance of the parsing func-
tion read, which is used to parameterize the function read generated from the
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deriving clause for the B_type. Unfortunately, since we are exporting functions,
there is no way in which we can discover that the second and the third alter-
native of B_type have possibly long common prefixes giving rise to exponential
parsing times, which we should like to factor out in the parser. Recent work
by Viera et al.(Viera et al. 2008) uses the techniques developed in this paper
do just that. They export the description of the type A_type and subsequently
analyze the composite structure, then transform it using the LCT, and finish
by factoring out common prefixes (a kind of common subexpression removal for
grammars). Subsequently, an efficient parser is generated at run-time. There is
no way we can do so with any of the existing off-line parser generators, other
than by exporting the joined description into a file, calling an external program
to generate code, calling the GHC on this code, and dynamically linking this
code in.

All combinator-based parsers rely on an underlying top-down parsing tech-
nique (be careful, we did not say parsers generated off-line from combinator-
based grammar descriptions), and hence cannot handle left-recursive grammars.
Even worse is the fact that it is not detected whether the underlying grammar
is left-recursive, other than by getting into an endless loop at runtime or get-
ting an error message from the runtime system such as a stack overflow. Fur-
thermore the underlying backtracking mechanism can make parsers very slow,
especially if a nonterminal has alternatives with a common prefix. A naive user,
i.e. one who thinks that he is really writing grammars instead of parsers and
directly transcribes his grammar into combinator-based code, is likely to be dis-
appointed about the behavior of the parsers thus constructed. Making effective
use of parser combinators requires the user to first apply transformations like
left-factorization and left-recursion removal to the grammar. Of course, one can
apply the transformations by hand; unfortunately, the resulting parsers look
very involved and are hard to maintain. Changing the associated semantic ac-
tions is only for the brave-hearted, and we have seen many situations where
the result cannot be described as anything but a mess. So the question arises
whether we can get the benefits that are usually associated with real parser gen-
erators — that base their actions on a global grammar analysis — while keeping
the things we like so much about combinator parsers such as their type system
and the abstraction mechanisms they provide.

4.1.1 Algorithm: The Leftcorner-Transform

In this subsection we introduce the Left-Corner Transform (LCT) (Johnson
1998) as a set of rewrite rules and subsequently give an untyped implementation
in Haskell98. We assume that our grammar has already been transformed (again
using our library) such that only the start symbol may derive e.

We say that a symbol X is a direct left-corner of a nonterminal A if there
exists a production for A with X as the left-most symbol on the right-hand
side. We define the left-corner relation as the transitive closure of the direct
left-corner relation. Note that a nonterminal being left-recursive is equivalent
to being a left-corner of itself.
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The LCT is defined as the exhaustive application of three surprisingly simple
grammar transformation rules. We use lower-case letters to denote terminal
symbols, low-order upper-case letters (A, B, etc.) to denote nonterminals from
the grammar and high-order upper-case letters (X, Y, Z) to denote symbols
that can either be terminals or nonterminals. Greek symbols denote sequences
of terminals and nonterminals.

For each nonterminal A of the original grammar, the algorithm applies the
following rules for building a set of new productions for A, and productions for
new nonterminals A_X for those X's which show up as a left-corner of A:

1. For each production A — X ( of the original grammar, add A_X — (3 to
the transformed grammar, and add X to the left-corners of A.

2. For each newly found left-corner X of A:

a If X is a terminal symbol b, add A — b A_b to the transformed
grammar.

b If X is a nonterminal B then, for each original production B — Y (3
add the production A_Y — 3 A_B to the transformed grammar and
add Y to the left-corners of A.

Here a new nonterminal like A_B represents that part of an A after a B has
been recognized. As an example, consider the grammar:

C—aC|D
D—-Cb]|c

Applying rule 1 on the productions of C' gives us two new production rules and
two newly discovered left-corners:

C.a —C leftcorners = [a, D]
C.D—ce¢

Applying rule 2a on a yields:

C—aC.ua leftcorners = [, D)

Applying rule 2b on D yields:

C.C—bC.D leftcorners = [, B, C, c]
C.c — C_D

Applying rule 2b on A yields two new productions, but no new left-corners:

C.a —CC.C leftcorners = [&, L, €, c]
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And applying rule 2a on ¢ gives us:

C—cC.c leftcorners = [&,D, €, €]

Now that all left-corners of C' have been processed, we are done for C'. For
the nonterminal D, the process is repeated, yielding the following new produc-
tions: Applying these rules gives:

D.C—b --rule 1

D.c —e¢ --rule 1

D.a — CB.C -rule2b, C
D.D—D.C -- rule 2b, C
D —c¢D.c -rule2a,c
D —aD.a - rule?2a,a
D.C—bD.D -rule2b, D
D.c — DD -- rule 2b, D

Note that, by construction, this new grammar is not left-recursive, but we may
still want to group alternatives belonging to the same nonterminal together and
perform left-factorization.

4.2 Untyped LC-Transformation

Before presenting our typed LC-transformation, we first develop an untyped
implementation: We start with a representation for our grammars:

type Grammar = Map NT [Prod]

type NT = String

type Prod = [Symbol ]

type Symbol = String
isNonterminal = isUpper . head
isTerminal = isLower . head

A Grammar is a mapping from nonterminal names to their corresponding pro-
ductions. All productions for the same nonterminal are grouped together. A
production (Prod) is a sequence of symbols (Symbol). Our example grammar is
encoded as:

grammar = Map.fromList [("C",[["a","C"],["D"]])

, ("D",[["C“,"b"],[“C"H)]
During the transformation process, we maintain (using the State-monad from
Control. Monad.State) the new grammar under construction. For each non-

terminal, we traverse the left-corner graph, as induced by the productions, in
depth-first order and store a list of encountered left-corner symbols.

type Step_State = (Grammar, [ Symbol])
type Trafo a = State Step_State a
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put :: Step_State — Trafo ()

get i Trafo Step_State

modify :: (Step_State — Step_State) — Trafo ()
runState :: Trafo a — Step_State — (a, Step_State)

We start with presenting the function leftcorner which takes a grammar and
returns a transformed grammar. The actual work is delegated to the function
rules] which yields a value of type Trafo. The state is initialized with an empty
grammar and an empty list of discovered left-corners. The final state contains
the newly constructed grammar which is returned as result:

leftcorner :: Grammar — Grammar
leftcorner g = fst . snd . runState (rulesl g g) $ (Map.empty,[])

For each (represented by mapM _) nonterminal (A) the function rules! visits
(represented by mapM) its productions, each visit resulting in new productions
by rules rule2a and rule2b, which are added to the transformed grammar by
the function insert. The productions resulting from rule2a are returned (ps)
and together (concat) become the new productions for the original nontermi-
nal A. The list of discovered left-corners is reset when starting with the next
nonterminal:

rules! :: Grammar — Grammar — Trafo ()
rulesl gram nts = mapM _ onent (Map.toList nts)
where onent (a, prods) =
do ps — mapM (rulel gram a) prods
modify (A(g,—) — (Map.insert a (concat ps) g,[]))

We continue by defining three functions that correspond to the rules in the
transformation. The function rule2b generates new productions for the nonter-
minals of the original grammar, and rule! and rule2b generate productions for
nonterminals of the form A_X:

rulel :: Grammar — NT — Prod — Trafo [ Prod]
rulel grammar a (z : beta) = insert grammar a © beta

rule2a :: NT — Symbol — Prod
rule2a a-b b = [b, a_b]

rule2b :: Grammar — NT — NT — Prod — Trafo [ Prod]
rule2b grammar a a-b (y : beta) = insert grammar a y (beta + [a-b])

The function insert adds a new production for a nonterminal A_X to the gram-
mar. If we have met A_X before its entry is extended, otherwise an entry for
A_X is added and we apply rule2 in order to find further left-corner symbols.

insert :: Grammar — NT — Symbol — Prod
— Trafo [ Prod]
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insert grammar a T p =
doletazx=aH"_"Hz
(gram, lcs) «— get
if z € lcs then do put (Map.adjust (p:) a_x gram, lcs)
return ||
else do put (Map.insert a_x [p] gram, x : lcs)
rule2 grammar a x

In rule2, new productions resulting from applications of rule2b are directly
inserted into the transformed grammar, whereas the productions resulting from
rule2a are collected and returned as the result of the 7Trafo-monad. When
the newly found left-corner symbol is a terminal, rule2a is applied, and the
resulting new production rule is simply returned. In case it is a nonterminal, its
corresponding productions are looked up in the original grammar and rule2b is
applied to each of these productions.

rule2 :: Grammar — NT — Symbol — Trafo [ Prod]
rule2 grammar a b
| isTerminal b = return [rule2a a_b b]
| otherwise = do let Just prods = Map.lookup b grammar
rs «— mapM (rule2b grammar a a_b) prods
return (concat rs)
where a. b =a H "_"+ b

Note that the functions rule2 and insert are mutually recursive. They apply
the rules 2a and 2b until all left-corner symbols are discovered. The structure
of the typed implementation we present in section 4.4 closely resembles that of
the untyped solution above. Before we can develop the typed solution we need
a representation for typed grammars.

4.3 Typed Grammar Representations

A grammar consists of a start symbol, represented as a reference labeled with the
type of the witness value of a complete successful parse, and an Env, containing
for each nonterminal its list of alternative productions. The actual type env is
hidden using existential quantification.

data Grammar a = Venv . Grammar (Ref a env) (Env Prods env env)
newtype Prods a env = PS{unPS :: [Prod a env]}

Since in our LC transform we want to have easy access to the first symbol of
a production, we have chosen a representation which facilitates this. Hence
the types of the elements in a sequential composition have been chosen a bit
different from the usual one (Swierstra and Duponcheel 1996), such that Seq
can be chosen to be right associative. The types have been chosen in such a way
that if we close the right-hand side sequence of symbols with an End f element,
then this f can be a function that accepts the results of the earlier elements as
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argument. In our case, a production is a sequence of symbols, and a symbol is
either a terminal with a String as its witness or a nonterminal (reference).

data Symbol a env where
Nont :: Ref a env — Symbol a env
Term :: String — Symbol String env

data Prod a env where
Seq :: Symbol b env — Prod (b — a) env — Prod a env
End::a — Prod a env

We introduce some extra convenience operators for constructing grammars:

infixr 5 cons’, . * .

cons prods g = Cons (PS prods) g
(.*.) = Seq

We now have the machinery at hand to encode our example grammar in typed
abstract syntax form:

_C = Nont Zero
_D = Nont (Suc Zero)
_a = Term "a"
_b= Term "b"
_c= Term "c"

Assume we want the witness type for nonterminal C to be a String and for
nonterminal D an Int:

type NT_Types = (String, (Int, ()))

grammar :: Grammar String
grammar = Grammar Zero productions
-Cu=aC|D
-D:u=Cb]|ec
productions :: Env Prods NT _Types NT _Types
productions

I
—
S
*

I
Q
*

. End (+)
. End show

S
*

—
Q
*
|
e
*

. . End (\y x — length = + length y)
,_C .x. End (const 1)
| ‘cons* Empty

Before delving into the LC transform itself, we introduce some grammar-related
functions we will need. The function append is used in the LC transform to
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build productions of the form § X_A. Basically, it corresponds to the snoc
operation on lists. We only have to take care that all the types match.

append :: (a — b — ¢) — Prod a env — Symbol b env — Prod ¢ env
append g (End f ) s = Seq s (End (g f))
append g (Seq t ts) s = Seq t (append (Abcd — g (b d) c) ts s)

The function matchSym compares two symbols:

matchSym :: Symbol a env — Symbol b env — Maybe (Equal a b)

matchSym (Nont x) (Nont y) = match z y
matchSym (Term z) (Term y) | x = y = Just Eq
matchSym _ _ = Nothing

The function mapProd systematically changes all the references to nonterminals
occurring in a production:

mapProd :: T envl env2 — Prod a envl — Prod a env2

mapProd t (End z) = FEnd z
mapProd t (Seq (Nont z) r) = Seq (Nont (unT t x)) (mapProd t r)
mapProd t (Seq (Term z) r) = Seq (Term x) (mapProd t r)

4.4 Typed LC-transformation

The Left-Corner transform is applied in turn to each nonterminal (A) of the
original grammar. The algorithm performs a depth first search for left-corner
symbols. For each left-corner X, a new nonterminal A_X is introduced. Addi-
tionally, a new definition for A itself is added to the transformed grammar.

In the untyped implementation, we simply used strings to represent nonter-
minals. In the typed solution, nonterminals are, however, represented as typed
references. The first time a production for a nonterminal A_X is generated,
we must create a new entry for this nonterminal and remember its position.
When the next production for such an A_X is generated, we must add it to
the already generated productions for this A_X. Hence, we maintain a finite
map from discovered left-corner symbols (X)) to references corresponding to the
nonterminals (A_X). This finite map plays the same role as the list of already
discovered left-corner symbols in the untyped implementation:

newtype MapA_X env a env2 =
MapA_X (Vz . Symbol x env — Maybe (Ref (z — a) env2))

The type variable env is the type of the original grammar, and env?2 is the type
of the grammar constructed thus far. The type variable a is the type of the
current nonterminal. A left-corner symbol of type z is mapped to a reference
in the grammar under construction if it exists. The type associated with the
nonterminal A_X is (z — a), i.e., a function that returns the semantics of A,
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when it is passed the semantics of the symbol X .The empty mapping is defined
as:

emptyA_X @ MapA_X env a env2
emptyA_X = MapA_X (const Nothing)

The function initA_X initialises the meta-information with an empty table of
discovered left-corners.

initA_X :: Trafo (MapA_X env a) t ¢ d — Trafo Unit t ¢ d
initA_X (Trafo st) = Trafo (A\_ — case st emptyA_X of
TrafoE _ f — TrafoE Unit f
)

Next, we define the function newNont which is a special version of the function
newSRef and which corresponds to the else-part of the function insert in the
untyped version. It takes a left-corner symbol X as argument and yields a
Trafo that introduces a new nonterminal A_X. The input of the Trafo is the
first production (Prods) for A_X, and the output is the reference to this newly
added nonterminal. Internally, the symbol X is added to the map of discovered
left-corners of A.

newNont :: Yz env t a .
Symbol © env — Trafo (MapA_X env a) Prods
(Prods (x — a)) (Ref (z — a))
newNont =
Trafo (A(MapA_X m :: MapA_X env a env') —
let m2 :: MapA_X env a (x — a, env’)
m2 = MapA_X (As — case matchSym s z of
Just Eq — Just Zero
Nothing — fmap Suc (m s)
)
in TrafoE m2 (Atz (T t) e — (t Zero, T (t . Suc), Cons tzx €))

)

The index at which the new definition for A is stored is usually different from
the index of A in the original grammar. This is a problem as we need to copy
parts (the 8s in the rules) of the original grammar into the new grammar.
The nonterminal references in these parts must be adjusted to the new indices.
To achieve this, we first collect all the new references for the nonterminals of
the original grammar into a finite map, and use this map to compute a Ref-
transformer that is subsequently passed around and used to convert references
from the original grammar to corresponding references in the new grammar.
The type of this finite map is:

newtype Mapping o n = Mapping (Env Ref n o)

The mapping is represented as an Env and contains for each nonterminal of the
old grammar, the corresponding reference in the new grammar. The mapping
can easily be converted into a Ref-transformer:
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map2trans :: Mapping env s — T env s
map2trans (Mapping env) = T (Ar — (lookupEnv r env))

We introduce the type-synonym LCStep which is the type of the transformation
step of the LC-transform for one nonterminal.

type LCStep env a inp out =
Trafo (MapA_X env a) Prods (Tuple (T env) inp) out

The type variable env is the type of the original grammar, and a is the type
of the current nonterminal. The type variables inp and out are the Arrow-
input and output. The meta-data we maintain is a table of type MapA_X in
which we keep a mapping from discovered left-corner symbols to corresponding
nonterminal references. The type of our terms is Prods. As extra input we pass
a Ref-transformer which is used to map references from the original grammar
to corresponding references in the transformed grammar (Tuple (T env)).

Now, all that is left to do is to glue all the pieces defined above together.
We start with the function insert:

insert ::  Venv axz . FEnv Prods env env — Symbol x env
— LCStep env a (Prod (z — a)) (Prods a)
insert grammar © = Trafo (A(MapA_X m) —
case m z of
Nothing — case (second (arr  (Ap — PS [p]) >>> newNont z)) >>>
rule2 grammar z
of Trafo step — step (MapA_X m)
Just 1 — TrafoE

(MapA_X m)
(TP (Lp)) te— (PS ]
t
, updateEnv (A(PS ps) — PS (p: ps))

re

)
)

This function takes the original grammar and a left-corner symbol z as input.
It yields a transformation that takes as input a production for the nonterminal
A_X and stores this production in the transformed grammar. If the symbol z
is new (m z returns Nothing), the production is stored at a new index and the
function rule2 is applied, to continue the depth-first search for left-corners. If
we already know that z is a left-corner of a then we obtain an index 7 to the
previously added to the nonterminal A_X, and add the new production at this
position.

If in the function rule2 the left-corner is a terminal symbol rule2a is applied
and the new production rule is returned as Arrow-output, and in case it is a
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nonterminal the corresponding productions are looked up in the original gram-
mar, and rule2b is applied to all of them, thus extending the grammar under
construction:

rule2 :: Env Prods env env — Symbol x env
— LCStep env a (Ref (x — a)) (Prods a)
rule2 grammar (Term a) = arr (A(TP (_, a_z)) — PS [rule2a a a_z])
rule2 grammar (Nont b) =
case lookupEnv b grammar of
PS ps — sequenceA (map (rule2b grammar) ps)
>>> arr ( A(List pss) — PS (concatMap unPS pss))

We now define the functions rule2a, and rule2b that implement the correspond-
ing rules of the Left-Corner algorithm. Firstly, rule2a, which does not introduce
a new nonterminal, but simply provides new productions for the nonterminal
(A) under consideration. The implementation of rule 2a is as follows:

rule2a :: String — Ref (String — a) s — Prod a s
rule2a a refA_a = Term a . x . Nont refA_a . x . End ($)

The function rule2b takes the original grammar and a production from the
original grammar as arguments, and yields a transformation that takes as input
a reference for the nonterminal A_B, and constructs a new production which is
subsequently inserted. Note that the reference transformer env2s is applied to
the nonterminal references in beta to map them on the corresponding references
in the new grammar.

rule2b :: Env Prods env env — Prod b env
— LCStep env a (Ref (b — a)) (Prods a)
rule2b grammar (Seq x beta) =
arr (A(TP (env2s,a-b)) — TP (env2s
, append (flip (.))
(mapProd env2s beta)
(Nont a_b)

)

>>>insert grammar

The function rule! is almost identical to rule2, the only difference is that it

deals with direct left-corners and hence does not involve a “parent” nonterminal
A_B.

rulel :: Env Prods env env — Prod a env
— LCStep env a Unit (Prods a)
rulel grammar (Seq x beta) =
arr (A(TP (env2s, Unit)) — TP (env2s, mapProd env2s beta))
>>>insert grammar x
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The function rules! is defined by induction over the original grammar (i.e. it
iterates over the nonterminals) with the second parameter as the induction pa-
rameter. It is polymorphically recursive: the type variable env’ changes during
induction, starting with the type of the original grammar (i.e. env) and ending
with the type of the empty grammar (). The first argument is a copy of the
original grammar which is needed for looking up the productions of the original
nonterminals:

rulesl :: Env Prods env env — Env Prods env env’
— Trafo Unit Prods (T env) (Mapping env’)
rules! productions (Cons ntQ(PS prods) ps) =
( (initA_X ( arr (Atenv_s — TP (tenv_s, Unit))

>>> sequenceA (map (rulel productions) prods)
>>> arr (A(List pss) — PS (concatMap unPS pss))
) >>> newSRef)

&&& rules1 productions ps

>>> arr (A(TP (r,(Mapping e))) — Mapping (Cons r €))
rules] _ Empty = arr (const (Mapping Empty))

The result of rules! is the complete transformation represented as a value of type
Trafo. At the top-level the transformation does not use meta-data, hence the
type Unit. As input the transformation needs a reference transformer to remap
nonterminals of the old grammar to the new grammar. During the transforma-
tion rulesi inserts the new definitions for nonterminals of the original grammar,
and remembers the new locations for these nonterminals in a Mapping. This
Mapping can be converted into the required reference transformer, which must
be fed-back as the Arrow-input.

This feed-back loop is made in the function leftcorner using the loop com-
binator:

leftcorner ::VYa . Grammar a — Grammar a
leftcorner (Grammar start productions) =
let result = runTrafo
(loop
( arr (AM(TP (=, menv_s)) — map2trans menv_s) >>>
(arr (Mtenv_s — unT tenv_s start)
&&& rules1 productions productions
)
)
) Unit {-meta-data -} L {-input -}
in case result of Result _ r gram — Grammar r gram

The resulting transformation is run using L as input; this is perfectly safe
as it does not use the input at all: the result is a new start symbol and the
transformed production rules, which are combined to form the new grammar.
Furthermore, Unit is used as meta-data. The result can now easily be mapped
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onto a parser (see website). Of course, we cannot use the abstract syntax
representation to actually parse, so we define a function compile which maps
a Grammar o onto a real Parser a (Swierstra and Duponcheel 1996). We
compile each of the nonterminals into a parser; nonterminals occurring in the
right-hand side of a production are looked up the resulting environment, which
maps nonterminal references to parsers.

mapEnv :: (Va . fas—gas)— Envfsenv— Envgsenv
mapEnv f Empty = Empty
mapEnv f (Cons v rest) = Cons (f v) (mapEnv f rest)

newtype Const f a s = C{unC :: f a}

compile ::Va . Grammar a — Parser a
compile (Grammar (start :: Ref a env) rules) =
unC' (lookupEnv start result) where
result = mapEnv (A(PS ps) — C (choice [comp p | p — ps])) rules
comp ::Va . Prod a env — Parser a
comp (End ) = succeed x
comp (Seq (Term t) ss) = (flip ($)) <$> token t <*> comp ss
comp (Seq (Nont n) ss) = (flip ($)) <$> unC' (lookupEnv n result)
<*> comp Ss

5 Conclusion

We have shown how to use the Haskell type system and its extensions to perform
a fully typed program transformation. Doing so we have used a wide variety
of type system concepts: placing existentials precisely at the positions where
needed, making things polymorphic where needed, using loop combinators to
feed back the result of the computation into the computation inside the scope
of an existential, using GADTSs to type the environments we construct, scoped
type variables, splitting the type labels of the environment into a use and a def
part and thus temporarily decoupling the types of the occurring references and
the types associated with the terms in the environment being constructed. We
introduced an arrow like style for composing the transformations. Besides this
we make use of lazy evaluation in order to get computed information to the
right places to be used.

We think that studying the algorithm and its approaches to the various sub-
problems is indispensable for anyone who wants to program similar transformation-
based algorithms in a strongly typed setting. Some might wonder why the ap-
proach taken may be necessary at all, and why not resort to off-line techniques,
and they have a point. It is often easier to work in an untyped setting, only to
check the generated result afterwards for type correctness. We claim however
that this is also a form of overkill. Would you really want to call the GHC
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again when linking your program, as would be needed in the case of combining
reads. Furthermore one can see the added complexity as a partial correctness
proof of the transformation, and as we all know proofs of correct lemmas are
superfluous.

We believe that the arrow-based library will turn out to be useful in building
programs that transform typed abstract syntax, and that the pattern we have
followed in this paper will be followed in many more interesting applications to
come.

Finally a remark on efficiency. It may seem that the chosen representation is
expensive and clumsy. In the first place we could of course take a smarter type
than just Peano-numbers for encoding pointers. We think however that these
costs are to be compared with other solutions in an online setting; the costs of
calling external programs like a parser generator and a compiler like the GHC,
and the costs of type inferencing and generating code, and the cost of dynami-
cally linking in this code will in general be much more expensive. Furthermore
they might not even be available in the context where the program is executing.
We have been using our own parser combinators which analyze themselves at
each run of our Haskell compiler, without any measurable overhead.
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