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Abstract. This paper discusses a module-based vision for designing BDI-based multi-agent program-
ming languages. The introduced concept of module is generic and facilitates the implementation of
different agent concepts such as roles and agent profiles, or to adopt common programming techniques
such as encapsulation and information hiding. This vision is applied to 2APL, which is an existing
BDI-based agent programming language. Specific programming constructs are added to 2APL to al-
low the implementation of modules. The syntax and the operational semantics of these programming
constructs are provided. Some informal properties of the programming constructs are discussed and it
is briefly explained how these modules can be used to implement roles, agent profiles, or simply for
encapsulation of task and information hiding.

1 Introduction

Modularity is an essential principle in structured programming in general and in agent programming in
particular. This paper focuses on the modularity principle applied in BDI-based agent programming lan-
guages. There have been many proposals for supporting modules in BDI-based programming languages[2,
1, 5, 4]. In these proposals, modularization is considered as a mechanism to structure an individual agent’s
program in separate modules, each encapsulating cognitive components such as beliefs, goals, events, and
plans that together can be used to handle specific situations. However, the way the modules are used in
these approaches are different.

For example, in Jack[2] and Jadex[1], modules (which are also called capabilities) are employed for
information hiding and reusability by encapsulating cognitive components that implement a specific ca-
pability/functionality of the agent. In these approaches, the encapsulated components are used during an
agent’s execution when an event should be created or when a plan should be generated to handle an event.
It should be noted that Jadex extends the notion of capability by provide an import/export mechanism
to connect different capabilities. In other approaches[4, 5], modules are used to realize a specific policy
or mechanism in order to control nondeterminism in agent execution. In [4], modules are used to disam-
biguate the application and execution of plans by being considered as the ‘focus of execution’. However, in
[5] a module is associated with a specific goal indicating which and how planning rules should be applied
to achieve that specific goal.

In these approaches, decisions such as when and how modules should be used during an agent’s ex-
ecution is controlled by the agent’s execution strategy, usually implemented in the agent’s interpreter. An
agent programmer can control the use of modules during an agent’s execution either in terms of the func-
tionality of those components or through conditions assigned to the modules. For example, in Jack[2] and
Jadex[1] the interpreter searches the modules in order to determine how an event can be processes. In [4,
5], belief or goal conditions are assigned to modules such that an agent’s interpreter uses the modules when
the respective conditions hold.

In this paper, we introduce an alternative notion of modules that, besides the aforementioned function-
alities, provides an agent programmer with more control over determining how and when modules should
be used. This is done by considering a module as an encapsulation of cognitive components. We propose
a set of generic programming constructs that can be used by an agent programmer to perform a variety of
operations on modules. Moreover, the proposed notion of module can be used to implement agent concepts



such as agent role and agent profile. In fact, in our approach a module can be used as a mechanism to spec-
ify a role that can be enacted by an agent during its execution. We also explain how the proposed notion of
modules can be used to implement agents that can represent and reason about other agents.

In order to illustrate our approach we explain in the next section an extension of the agent program-
ming language 2APL with modules. The syntax and operational semantics of the module-based 2APL are
presented and sections 3 and 4, respectively. In section 5, we discuss how the proposed notion of modules
can be used to implement agent roles and agent profiles. Finally, in section 6, we conclude the paper and
indicate some future research directions.

2 Extending 2APL with Modules

A 2APL multi-agent program is specified in terms of a set of 2APL modules each having a unique name.
Initially, a subset of these modules is identified as the specification of individual agents that constitute the
implemented multi-agent system. The execution of a 2APL multi-agent program is therefore the instan-
tiation and execution of these modules. A 2APL module can be used by another 2APL module, e.g., a
module can be used by an agent. There are several operations that a module can perform on another one.
These operations can be implemented by means of 2APL programming constructs designed to operate on
modules.

One of these operations is to create/instantiate a module specification from the multi-agent program.
One module specification can be created/instantiated more than once by one or more modules. In such
a case, the creating module will assign a unique name to the module instantiation. One module can thus
create several instantiations of one and the same module. Also, two modules can create two instantiations
of one and the same module specification. A creating module becomes the owner of the created module.
The creating module is the only module that can operate on the created module instance until the created
module is released.

In addition, 2APL allows one and the same module instantiation to be used by two different modules.
For this purpose, a special type of module, called singleton module, is introduced. While the ownership of
a singleton module can be changed through create and release operations performed by different modules,
the state of the singleton module is invariant with respect to these operations, i.e., the state of a singleton
module is maintained after one module release it and another one owns it again.

The owner of a module can execute the module in two different ways. First, a module can execute
another one and wait until the execution of the module is halted. A condition should then be given to
indicate when the execution of a module must halt. This condition is evaluated by the overall multi-agent
system interpreter and based on the internals of the executed module. Second, a 2APL module can execute
another one in parallel. The executed module can be halted either by means of a condition evaluated on
the internals of the executed module (by the overall multi-agent system interpreter) or explicitly by means
of a stop action performed by the owner of the module. The execute operations can be used to implement
’focus of execution’ and goal processing as discussed in [4] and [5], respectively.

Besides executing a module, the internals of a module can be accessed by its owner module. In par-
ticular, a module can test and update the beliefs and goals of a module that it owns. In order to control
the access to the internals of a module, two types of modules are introduced: public and private. A private
2APL module can only be executed by its owner and does not allow access to its internals. In contrast to
private modules, the internals of a public module are accessible to its owner module. These operations can
be used to implement capabilities as discussed in [2, 1].

3 Syntax

This section presents the complete syntax of the 2APL programming constructs. As the syntax of 2APL
programming language without modules are presented elsewhere[3], we here highlight and discuss only
the module-related programming constructs. 2APL is a multi-agent programming language that provides
programming constructs to implement both multi-agent as well as individual agent issues. The multi-agent
issues are implemented by means of a specification language. Using this language, one can specify which
agents should be created to participate in the multi-agent system and to which external environments each



module has access. The syntax of this specification language is presented in Figure 1 using the EBNF
notation. In the following, we use 〈ident〉 to denote a string and 〈int〉 to denote an integer.

〈MAS Prog〉 ::= ”Modules :” 〈module〉+
”Agents :” (〈agentname〉 ”:” 〈moduleIdent〉 [〈int〉])+

〈module〉 := 〈moduleIdent〉”.2apl” [〈environments〉]
〈agentname〉 := 〈ident〉
〈moduleIdent〉 := 〈ident〉
〈environments〉 := ”@”〈ident〉+

Fig. 1. The EBNF syntax of 2APL multi-agent systems.

A correct 2APL multi-agent program should specify which modules can be instantiated during the ex-
ecution of the multi-agent program. This is specified by a list of modules that is listed by the keyword
Modules. From the set of specified modules, some will initially be instantiated as individual agents. The
list of agents that initially constitute the multi-agent system is listed by the keyword Agents. In the speci-
fication of each agent, 〈agentname〉 is the name of the individual agent to be created, 〈module〉 is the name
of the module specification that implements the agent when it is instantiated, and 〈int〉 is the number of
agents that should to be created. When the number of agents is n > 1, then n identical agents are created.
The names of these agents are 〈agentname〉 extended with a unique number. Finally, 〈environments〉 is
the list of environment names to which the module(s) have access. Note that this programming language
allows one to create a multi-agent system consisting of different numbers of different agents each having
access to one or more environments.

Suppose we need to program a multi-agent system with a manager and a system administrator. The
manager, let’s call him Richard, at some point would like the system administrator to add a new user to the
central computer system. The system administrator then starts the user creation module to actually do the
update in the database. This multi-agent system can be implemented by the following 2APL program.

Modules:

manager.2apl @clientdatabase

admin.2apl

userCreator.2apl @userdatabase

Agents:

richard: manager.2apl

administrator: admin.2apl

In this program, an agent named Richard is instantiated with the manager module specification and the
administrator agent is instantiated based on the admin module specification. Furthermore the manager mod-
ule has access to the clientdatabase and the userCreator has access to the userdatabase. The administrator
does not have access to any environments on its own.

A 2APL module (that is also used to implement individual agents) is implemented by means of another
specification language. The EBNF syntax of this specification language is illustrated in Figure 2. The gray
parts of the syntax are not related to modules and is already presented in [3]. In this specification, we use
〈atom〉 to denote a Prolog-like atomic formula starting with lowercase letter, 〈Atom〉 to denote a Prolog-like
atomic formula starting with a capital letter, 〈ground atom〉 to denote a ground atom and 〈Var〉 to denote
a string starting with a capital letter.

Although explaining the complete set of 2APL programming constructs for individual agents is not the
focus of this paper, we give a brief and general idea of the basic constructs. 2APL provides programming
constructs to implement an individual agent in terms of beliefs, goals, and actions. An agent’s beliefs
represent information the agent believes about itself and its surrounding environments, including other
agents. An agent’s goals represents a situation the agent wants to realize. The programming language
provides different types of actions such as belief update actions (to modify beliefs), belief and goal test



actions (to query beliefs and goals), actions to adopt and drop goals, to send messages to other agents,
and to perform actions in external environments. Besides these programming constructs, 2APL provides
constructs to implement three types of rules. The planning goal rules (PG-rules) can be used to generate
plans based on the agent’s goals. The procedure call rules (PC-rules) can be used to generate plans for the
received internal and external events. Finally, the plan repair rules (PR-rules) can be used to repair a plan
whose execution has failed.

In this paper, we only explain 2APL programming constructs that are related to modules. The first con-
struct related to modules is the use of keywords public/private and singleton. A module characterized
as public allows its owner to execute it and access its internals, while a module characterized as private only
allows itself to be executed by its owner. Note that modules for initial agents can be either public or private
as their owner (i.e., the multi-agent system interpreter) can only execute them.

The create(mod-name, mod-ident) action can be used to instantiate the module specification with
the name mod-name. The name that is assigned to the created instantiation of the module is given by the
second argument mod-ident. The owner of a module instantiation can use this name to perform further
operations on it. A module instantiation m can be released by means of the release(m) action. If the
module is not a singleton, then its instantiation will be removed/lost. However, if the module is a singleton,
then its instantiation will be maintained in the multi-agent system such that it can be used by another module
using the create action. It is important to note that a singleton module can only have one instantiation at
a time such that it can always be accessed by means of the module name mod-name. It is also important
to note that the subsequent creation of a singleton module by another module, which may be assigned a
different name, will refer to the same instantiation of the module as when it was released by its last owner.

When a public or private module m is created/instantiated, it can be executed by its owner through
the action m.execute(〈test〉) or m.executeasync(〈test〉?). The execution of a module instantiation by
means of execute action starts the 2APL deliberation process based on the internals of the module in-
stantiation. The execution of the owning module halts until the execution of the owned module halts and
a return event is received from the owned module. In order to notify a module that it should stop its exe-
cution,1 the test condition (i.e., the argument of the execute action) is evaluated by the overall multi-agent
system interpreter and a stop event stop! is sent to the module. The module that receives a stop event
may start a cleaning operation and send a return event back when it is ready. We thus introduce an action
return that can be executed by an owned module as the last action after which the execution of this mod-
ule is halted. The execution of this action broadcasts an event return! that can be received by the overall
multi-agent system interpreter after which the owning module execution is started and notified about the
return event from the owned module. After the reception of this event, the owning module’s deliberation
process is continued, after which it may decide to release the owned module.

The execution of a module instantiation by means of the executeasync action is identical to execute,
except that the owner does not have to wait until the execution of the module halts. In fact, the owner
continues with its own execution in parallel with the execution of the owned module instantiation. The
execution of the module instantiation can be halted by providing a test expression as argument of the
executeasync action, or by the owning module performing the stop action on the module instantiation.
Like the execute action, the test will be evaluated at the multi-agent system level and based on the internals
of the module instantiation. The stop action performed by the owning module will send event stop! to
the owned module.

The owner of a public module instance can access and update the internals of the module instance. In
particular, a module can test whether certain beliefs and goals are entailed by the beliefs and goals of a
public owned module instance m through action m.B(ϕ) & G(ψ). Also, the beliefs of a module instance m
can be updated by means of m.updateBB(ϕ) action. A goal can be added to the goals of a module instance
m by means of m.adopta(ϕ) and m.adoptz(ϕ) actions. Finally, the goals of a module instance m can
be dropped by means of m.dropgoal(ϕ), m.dropsubgoals(ϕ) and m.dropsupergoals(ϕ) actions.
As explained in [3], these actions can be used to drop from an agent’s goal base, respectively, all goals
identical to ϕ, all goals that are a logical subgoal of ϕ, and all goals that have ϕ as a logical subgoal.

Given our previous example, the actual code implementing the administrator may include a plan ex-
pression of the following form:

1 The owning module cannot do this because its execution is halted.



〈2APL Prog〉 ::= (”private” | ”public”) ”singleton”?
(”Include:” 〈ident〉

| ”BeliefUpdates:” 〈BelU pS pec〉
| ”Beliefs:” 〈belie f 〉
| ”Goals:” 〈goals〉
| ”Plans:” 〈plans〉
| ”PG-rules:” 〈pgrules〉
| ”PC-rules:” 〈pcrules〉
| ”PR-rules:” 〈prrules〉)*

〈BelU pS pec〉 ::= ( ”{”〈belquery〉 ”}” 〈belie f update〉 ”{”〈literals〉”}” )+
〈belie f 〉 ::= ( 〈ground atom〉 ”.” | 〈atom〉 ”: −” 〈literals〉”.” )+
〈goals〉 ::= 〈goal〉 (”,” 〈goal〉)*
〈goal〉 ::= 〈ground atom〉 (”and” 〈ground atom〉)*
〈baction〉 ::= ”skip” | 〈belie f update〉 | 〈sendaction〉 | 〈externalaction〉

| 〈abstractaction〉 | 〈test〉 | 〈adoptgoal〉 | 〈dropgoal〉
| 〈createaction〉 | 〈releaseaction〉 | 〈return〉 | 〈moduleaction〉

〈createaction〉 ::= ”create(” 〈ident〉 ”,” 〈ident〉 ”)”
〈releaseaction〉 ::= ”release(” 〈ident〉 ”)”
〈return〉 ::= ”return”
〈moduleaction〉 ::= 〈ident〉 ”.” 〈maction〉
〈maction〉 ::= ”execute(” 〈test〉 ”)” | ”executeasync(” 〈test〉? ”)”

| ”stop” | 〈test〉 | 〈adoptgoal〉 | 〈dropgoal〉 | 〈updBB〉
〈updBB〉 ::= ”updateBB(” 〈literals〉 ”)”
〈plans〉 ::= 〈plan〉 (”,” 〈plan〉)*
〈plan〉 ::= 〈baction〉 | 〈sequenceplan〉 | 〈i f plan〉 | 〈whileplan〉 | 〈atomicplan〉

| 〈mi f plan〉 | 〈mwhileplan〉
〈belie f update〉 ::= 〈Atom〉
〈sendaction〉 ::= ”send(” 〈iv〉 ”,” 〈iv〉 ”,” 〈atom〉 ”)”

| ”send(” 〈iv〉 ”,” 〈iv〉 ”,” 〈iv〉 ”,” 〈iv〉 ”,” 〈atom〉 ”)”
〈externalaction〉 ::= ”@” 〈iv〉”(” 〈atom〉 ”,” 〈Var〉 ”)”
〈abstractaction〉 ::= 〈atom〉
〈test〉 ::= ”B(” 〈belquery〉 ”)” | ”G(” 〈goalquery〉 ”)” | 〈test〉 ”&” 〈test〉
〈adoptgoal〉 ::= ”adopta(” 〈goalvar〉 ”)” | ”adoptz(” 〈goalvar〉 ”)”
〈dropgoal〉 ::= ”dropgoal(” 〈goalvar〉 ”)” | ”dropsubgoals(” 〈goalvar〉 ”)”

| ”dropsupergoals(” 〈goalvar〉 ”)”
〈sequenceplan〉 ::= 〈plan〉 ”;” 〈plan〉
〈i f plan〉 ::= ”if” 〈test〉 ”then” 〈scopeplan〉 (”else” 〈scopeplan〉)?
〈whileplan〉 ::= ”while” 〈test〉 ”do” 〈scopeplan〉
〈atomicplan〉 ::= ”[” 〈plan〉 ”]”
〈scopeplan〉 ::= ”{” 〈plan〉 ”}”
〈pgrules〉 ::= 〈pgrule〉+
〈pgrule〉 ::= 〈goalquery〉? ”< −” 〈belquery〉 ”|” 〈plan〉
〈pcrules〉 ::= 〈pcrule〉+
〈pcrule〉 ::= 〈atom〉 ”< −” 〈belquery〉 ”|” 〈plan〉
〈prrules〉 ::= 〈prrule〉+
〈prrule〉 ::= 〈planvar〉 ”< −” 〈belquery〉 ”|” 〈planvar〉
〈goalvar〉 ::= 〈atom〉(”and”〈atom〉)*
〈planvar〉 ::= 〈plan〉 | 〈Var〉 | ”if” 〈test〉 ”then” 〈scopeplanvar〉 (”else” 〈scopeplanvar〉)?

| ”while” 〈test〉 ”do” 〈scopeplanvar〉 | 〈planvar〉 ”;” 〈planvar〉
〈mi f plan〉 ::= ”if” 〈ident〉”.”〈test〉 ”then” 〈scopeplan〉 (”else” 〈scopeplan〉)?
〈mwhileplan〉 ::= ”while” 〈ident〉”.”〈test〉 ”do” 〈scopeplan〉
〈scopeplanvar〉 ::= ”{” 〈planvar〉 ”}”
〈literals〉 ::= 〈literal〉 (”,” 〈literal〉)*
〈literal〉 ::= 〈atom〉 | ”not” 〈atom〉
〈ground literal〉 ::= 〈ground atom〉 | ”not” 〈ground atom〉
〈belquery〉 ::= ”true” | 〈belquery〉 ”and” 〈belquery〉 | 〈belquery〉 ”or” 〈belquery〉

| ”(” 〈belquery〉 ”)” | 〈literal〉
〈goalquery〉 ::= ”true” | 〈goalquery〉 ”and” 〈goalquery〉 | 〈goalquery〉 ”or” 〈goalquery〉

| ”(” 〈goalquery〉 ”)” | 〈atom〉
〈iv〉 ::= 〈ident〉 | 〈Var〉

Fig. 2. The EBNF syntax of 2APL extended with modules.



{

create(userCreator, u);

u.updateBB(user(dave, hopkins));

u.adopta(registered(dave));

u.execute( B(registered(dave)) );

release(u)

}

Here we see that an instantiation of the userCreator is made and named u. The beliefbase of this module
instantiation is then updated with some information of the new user to be registered. Next a goal is added
to have the user registered in the database after which the instantiation is executed. The stop condition is
set to B(registered(dave)). This should be entailed by the belief base of the module instantiation when
the goal is reached, i.e. when the user information is written to the database. The module definition of the
userCreator could be specified as follows:

public

BeliefUpdates:

{ true } AddUser(FirstName) { registered(FirstName) }

PG-Rules:

registered(FirstName) <- user(FirstName, LastName) |

{

@userdatabase(adduser(FirstName, LastName));

AddUser(FirstName)

}

PC-Rules:

event(stop) <- true | return

The module is declared public so that we can add information to the beliefbase and the goalbase.
We also have a PG-rule that implements the functionality of the module in a very basic way. It executes
an action on the “userdatabase” environment (assuming that this will succeed) and then sets the belief
that makes the goal reached. Because this is also the stopping condition specified by the administrator
agent, a stop event will be sent to this module. The PC-rule can then be applied to perform the action
return through which the execution control is returned to the administrator agent. This then releases the
instantiation of the userCreator. The actual user data is stored in the user database persistently.

We could have chosen to make the userCreator a singleton. The instantiation that is created when
create(userCreator, u) is executed for the first time, would then not be deleted by executing release(u).
Instead the singleton module will persist in the multi agent configuration. The next time a create action is
executed for this module, this very same instance is used. This could impose the problem that the admin-
istrator agent does not know beforehand what the state of the module is. For instance, when a user fact is
already present in the beliefbase of the module, executing the example could result in the addition of two
users in the database.

4 Semantics

The semantics of 2APL is defined in terms of a transition system, which consists of a set of transition
rules for deriving transitions. A transition specifies a single computation/execution step by indicating how
one configuration can be transformed into another. In this paper, we first present the multi-agent system
configuration, which consists of the configurations of individual agents and the state of the external shared
environments. Then, we present transition rules from which possible execution steps (i.e. transitions) for
multi-agent systems can be derived. Here, we do neither present the configuration nor the transitions rules



for individual agents. Elsewhere[3] we have presented the semantics of 2APL without modules. In this sec-
tion, we focus on the semantics of 2APL programming constructs that are designed to implement modules.
As the execution of these programming constructs affect mainly the multi-agent system configuration, we
do not present the individual agent configuration and their transition rules. The only effect of the module
related programming constructs at the individual agent level is that they are removed from the agent’s plan
base upon execution. It is important to note that individual agent transitions are used as conditions of the
multi-agent system transition rules.

4.1 2APL Multi-Agent System Configuration

The configuration of a multi-agent systems is defined in terms of the configuration of modules (agents) and
the state of their shared external environments. The configuration of a module includes (1) an instance of the
module (beliefs, goals, plans, events, and reasoning rules) with a unique name, (2) the name of the (parent)
module that has created the module instance, (3) the identifier of the module specification (the module
instance is an instantiation of this specification2), (4) a flag indicating if the module instance is executing,
and (5) the stopping condition for the module instance. Finally, the state of a shared environment is a set of
facts that hold in that environment.

Definition 1 (multi-agent system configuration). Let (Ai, p, r, e, ϕ) be a module configuration, where Ai

is a module instance with the unique name i, p is the name of the owner of the module instance, r is an
identifier referring to the module specification, e is the execution flag, and ϕ is the execution stop condition.
LetA be a set of module configurations and χ be a set of external shared environments each of which is a
consistent set of atoms 〈atom〉. The configuration of a 2APL multi-agents system is defined as 〈A, χ〉.

The initial configuration of a multi-agent system consists of the initial configuration of its individual
agents and the initial state of the shared external environments as specified in the multi-agent program. The
initial configuration of each individual agent is determined by the 2APL module that is assigned to the agent
in the multi-agent program. The initial state of the shared external environment is set by the programmer,
e.g., the programmer may initially place gold or trash at certain positions in a blockworld environment. In
particular, for each individual agent implemented as (i : m@env1 . . . envk,N) in the multi-agent program,
N agent instantiations (Ai1 , mas,m, t,⊥) , . . . , (AiN , mas,m, t,⊥) are created and added to the set of module
instantiationsA. Also, all environments env j from the multi-agent system program are collected in the set
χ. Thus, modules created when the multi-agent program is started must have mas as parent, t as execution
flag, and ⊥ as stopping condition.

The execution of a 2APL multi-agent program modifies its initial configuration by means of transitions
that are derivable from the transition rules presented in the following subsection. In fact, each transition
rule indicates which execution step (i.e., transition) is possible from a given configuration. It should be
noted that for a given configuration there may be several transition rules applicable. An interpreter is a
deterministic choice of applying transition rules in a certain order. Before we present the transition rule, we
will define the following auxiliary functions.
childrenA(i) = { (A j, k, r, e, ϕ) ∈ A | k = i },
descendants(i) = children(i) ∪ { d ∈ descendants( j) | (A j, k, r, e, ϕ) ∈ children(i) },
active descendants(i) = { (A j, k, r, e, ϕ) ∈ descendants(i) | e = t },
saved descendants(i) = { (Ar, , r, f,⊥) | (A j, k, r, e, ϕ) ∈ descendants(i), singleton(r) },
saved singleton(Ai, r) =


{(Ar, , r, f,⊥)} if singleton(r)
∅ otherwise.

In the above functions, singleton(r) is valid if and only if the module r is a singleton module. Also,
the underscore sign is used to indicate that the instantiation of a singleton module is not owned by any
module.

2 Note that there may be several instances of a module specification in a multi-agent system.



4.2 Transition Rules for Module Actions

In the following, we provide the transition rules for deriving a multi-agent system transition based on the

execution of a module related action by one of the involved module instantiations. We will use Ai
α!−→ A′i

to indicate that the module instantiation Ai can make a transition to module instantiation A′i by performing
action α and broadcasting event α!. When α? is used, instead of α!, the agent performs α and receives the
event α?. We also write Ai |= ϕ to indicate that the test formula ϕ holds in the module instance Ai. Without
defining the entailment relation formally, we note that a test formula holds in a module instance if it holds
in the beliefs and goals of the module instance.

The first transition indicates the effect of the create(r, n) action performed by the module Ai, where
r is the identifier of a non-singleton module specification and n is the name that will be associated to
the created module instance. The module instance Ai.n that should be created is assumed to be a non-
singleton module (i.e., ¬singleton(r)). This transition rule indicates that a non-singleton module instance
can be created by another module instance if the creating module is in the execution mode (the execution
flag equals t and Ai 6|= ϕ) and there is no module instance with the same name already created by the
same module (¬∃r′′, e, ϕ′ : (Ai.n, i, r′′, e, ϕ′) ∈ A). The result is that the set of modules A is modified and
extended. In particular, the creating module instance is modified as it has performed the create action and
the newly created module instance is added to the multi-agent system configuration. Note that the newly
created module is not in execution mode and its execution stopping condition is set to ⊥.

(Ai, p, r′, t, ϕ) ∈ A & Ai 6|= ϕ & Ai
create(r,n)!−→ A′i & ¬singleton(r) &

¬∃r′′, e, ϕ′ : (Ai.n, i, r′′, e, ϕ′) ∈ A
〈A, χ〉 −→ 〈A′, χ〉

whereA′ = (A \ {(Ai, p, r′, t, ϕ)}) ∪ {(A′i , p, r′, t, ϕ), (Ai.n, i, r, f,⊥)}.
It should be noted that a module is only allowed to create another module twice (or more) if the module

to be created is not singleton and different names are used to identify it. This will result in two different
instantiations of the module, each with its own name and state.

The next transition rule is to specify the creation of a singleton module. As noted, a singleton module
can be instantiated only once and its state will be maintained once it is created. An attempt to create an
instance of a singleton module specification r is only successful if either there is no instance of r in the
multi-agent system configuration or there exists one instance of r which is not owned by any another mod-
ule (¬∃k , , n′, e, ϕ′ : (An′ , k, r, e, ϕ′) ∈ A). Note that a singleton module instance that is not owned by any
other module has underscore as the name of its parent module. The effect of creating a singleton module
can be determined by distinguishing two cases. If there exists already an instance of the singleton module
specification r that is not owned by any module, then the creating module will become the owner of the
existing module instance. No additional module instance is created in the multi-agent system configuration.
However, if there is no instantiation of the singleton module specification r in the configuration, then the
module instance is created and added to the multi-agent system configuration (as it was the case with the
creation of non-singleton modules).

(Ai, p, r′, t, ϕ) ∈ A & Ai 6|= ϕ & Ai
create(r,n)!−→ A′i & singleton(r) &

¬∃k , , n′, e, ϕ′ : (An′ , k, r, e, ϕ′) ∈ A
〈A, χ〉 −→ 〈A′, χ〉

where

A′ =



(A \ {(Ai, p, r′, t, ϕ), (Ar, , r, f,⊥)})
∪ {(A′i , p, r′, t, ϕ), (Ai.n, i, r, f,⊥)} if (Ar, , r, f,⊥) ∈ A

(A \ {(Ai, p, r′, t, ϕ)}) ∪ {(A′i , p, r′, t, ϕ), (Ai.n, i, r, f,⊥)} otherwise.
It should be noted that a module is not allowed to create a new module with the same name as a module

it has under control already. This would otherwise result in a name clash in the controlling module.
A module Ai that owns another module named n (∃r′ : (Ai.n, i, r′, f,⊥) ∈ A) can release it, provided this

owned module is not currently in an executing state (i.e. its execution flag is f) and the same for all modules



owned by Ai.n etc. (active descendants(i.n) = ∅). It can do this by performing the action release(n). If
the released module is non-singleton, it will simply be removed from the set of module configurations A.
If a module releases a singleton module, the released module is kept in the set of module configurations
with an underscore owner and with the module specification identifier as its module instance name (i.e. its
configuration becomes (Ar′ , , r′, f,⊥)). Of course, the same holds for all modules owned by Ai.n that are
singleton.

(Ai, p, r, t, ϕ) ∈ A & Ai 6|= ϕ & Ai
release(n)!−→ A′i & ∃r′ : (Ai.n, i, r′, f,⊥) ∈ A &

active descendants(i.n) = ∅
〈A, χ〉 −→ 〈A′, χ〉

whereA′ = (A \ {(Ai, p, r, t, ϕ), (Ai.n, i, r′, f,⊥)} \ descendants(i.n))
∪ {(A′i , p, r, t, ϕ)} ∪ saved singleton(Ai.n, r′) ∪ saved descendants(i.n).

It should be noted that a non-singleton module is always created privately for the creating agent. There-
fore, such a module will not retain its state when it is released and created again (only a singleton module
can be used for this purpose). Also, the creating agent is the only one that can release and thereby delete
the module. On the other hand, when creating a singleton module, the creating agent acquires a lock on
the created module until it releases it. This may seem counterintuitive given the notion of ‘singleton’ in an
object-oriented programming language, where access to the same instance is provided to more than one
object. However we feel that, in order to allow the module to keep itself in a consistent state, this is an
acceptable tradeoff.

A module that owns another module can execute it, meaning that the owned module’s execution flag is
set to t so that it can perform actions by itself. In doing so, the owning module’s execution flag is set to f.
In effect, control is ‘handed over’ from the owner module to the owned module. As part of the execute

action, a stopping condition ϕ is provided with which the owner module can specify when it wants control
returned, i.e., as soon as the owned module satisfies the stopping condition (Ai.n |= ϕ; a transition rule for
this case is provided later on).

(Ai, p, r, t, ϕ′) ∈ A & Ai 6|= ϕ′ & Ai
n.execute(ϕ)!−→ A′i & ∃r′ : (Ai.n, i, r′, f,⊥) ∈ A &

active descendants(i.n) = ∅
〈A, χ〉 −→ 〈A′, χ〉

whereA′ = (A \ {(Ai, p, r, t, ϕ′), (Ai.n, i, r′, f,⊥)}) ∪ {(A′i , p, r, f, ϕ′), (Ai.n, i, r′, t, ϕ)}.
Alternatively, a module can execute another module that it owns asynchronously using the executeasync

action. This action works just as execute above, the only difference being that the execution flag of the
owning module remains at t. In effect, both modules will be running simultaneously from that point on.
The transition rule below is therefore almost equal to the one above.

(Ai, p, r, t, ϕ′) ∈ A & Ai 6|= ϕ′ & Ai
n.executeasync(ϕ)!−→ A′i & ∃r′ : (Ai.n, i, r′, f,⊥) ∈ A &

active descendants(i.n) = ∅
〈A, χ〉 −→ 〈A′, χ〉

whereA′ = (A \ {(Ai, p, r, t, ϕ′), (Ai.n, i, r′, f,⊥)}) ∪ {(A′i , p, r, t, ϕ′), (Ai.n, i, r′, t, ϕ)}.
It should be noted that executing a module twice (or more) is not allowed. If a module is running, either

by means of execute or executeasync, no other execute statement can be performed on that particular
module, nor can any tests or updates be performed on it.

As soon as the stopping condition of an executing module holds (Ai |= ϕ), it will receive a stop event
from multi-agent level requesting it to stop its execution, possibly after first performing some cleanup

operations. Note that it is assumed that a module is always able to receive a stop event (Ai
stop?−→ A′i). It is

not guaranteed by the system that a module will actually ever stop; it must perform a return action (see
below) itself in order to have its execution flag set to f.



(Ai, p, r, t, ϕ) ∈ A & Ai |= ϕ & Ai
stop?−→ A′i

〈A, χ〉 −→ 〈A′, χ〉
whereA′ = (A \ {(Ai, p, r, t, ϕ)}) ∪ {(A′i , p, r, t, ϕ)}.

A module Ai that owns another module named n (∃r′, e, ϕ′ : (Ai.n, i, r′, e, ϕ′) ∈ A) can request Ai.n to

stop its execution by performing a stop action. The owned module then receives a stop event (Ai.n
stop?−→ A′i.n),

but module Ai.n is allowed to perform cleanup operations before performing a return action (see below).
However, note that although it is assumed the owned module will always successfully receive the stop
event, it is not guaranteed by the system that the owned module will (ever) act on it. So the transition rule
below merely expresses that the owned module is updated with the stop event.

(Ai, p, r, t, ϕ) ∈ A & Ai 6|= ϕ & Ai
n.stop!−→ A′i & ∃r′, e, ϕ′ : (Ai.n, i, r′, e, ϕ′) ∈ A &

Ai.n
stop?−→ A′i.n

〈A, χ〉 −→ 〈A′, χ〉
whereA′ = (A \ {(Ai, p, r, t, ϕ), (Ai.n, i, r′, e, ϕ′)}) ∪ {(A′i , p, r, t, ϕ), (A′i.n, i, r

′, e, ϕ′)}.
A module can return control to its parent module by performing a return action. This will cause

the execution flag of the parent module to be set to t (although it may have been t already, if both were
running asynchronously), while the execution flag of the module itself is set to f. If the module performing
a return action does not have a parent module, it is simply removed from the set of module configurations,
or retained with a blank owner if it is singleton. It is up to the programmer to ensure that a return action
is performed by a module in response to a stop event.

(Ai, p, r, t, ϕ) ∈ A & Ai 6|= ϕ & Ai
return!−→ A′i

〈A, χ〉 −→ 〈A′, χ〉
where

A′ =



(A \ {(Ai, p, r, t, ϕ), (Ap, p′, r′, e, ϕ′)})
∪ {(A′i , p, r, f,⊥), (Ap, p′, r′, t, ϕ′)} if ∃p′, r′, e, ϕ′ : (Ap, p′, r′, e, ϕ′) ∈ A

(A \ {(Ai, p, r, t, ϕ)}) ∪ {(Ar, , r, f,⊥)} if singleton(r)
A \ {(Ai, p, r, t, ϕ)} otherwise.

It should be noted that a module’s execution has to be finished before it can be released. This can be
done either by the stop statement, in case of executeasync, or by waiting for the running module to
reach its stopping condition, in case of execute.

Also, note that singleton modules that are created will never be removed during the lifetime of the
multi-agent system. A singleton module is persistent, i.e., it will keep its internal state. Another agent that
acquires this singleton module will get it in the state it was in when it was released by its last owner. Of
course, in case the singleton module had not been created before, it will be created new.

Next we consider several actions that a module can perform on a module that it owns that do not pertain
to control, but to the state of the owned module. Specifically, a module can query the beliefs and goals of
an owned module, update the beliefs of an owned module, and adopt and drop goals in an owned module.
However, these actions are only allowed on modules that contain the public flag in their specification;
indeed, the internal state of modules specified with the private flag remains inaccessible to any module
that becomes to own it. First we consider the belief and goal queries. These may be combined as usual;
for example, the test bas.B(p(X)) & G(q(Y)) succeeds if p(X) can be derived from bas’s beliefs and
q(Y) from bas’s goals, yielding a substitution for X and Y. Thus a module Ai that owns another module
named n (∃r′ : (Ai.n, i, r′, f,⊥) ∈ A) which is currently inactive (including all of Ai.n’s descendants, i.e.
active descendants(i.n) = ∅) can perform a belief/goal query t(x̄) on Ai.n if the module Ai.n was specified as
being public (public(r′)). If the query succeeds (Ai.n |= t(x̄)τ), it yields a substitution τwhich is concatenated
to A′i’s substitution θ. The following transition rule captures this.



(Ai, p, r, t, ϕ) ∈ A & Ai 6|= ϕ & Ai
n.t(x̄)!−→ A′i & ∃r′ : (Ai.n, i, r′, f,⊥) ∈ A &

active descendants(i.n) = ∅ & public(r′) & Ai.n |= t(x̄)τ
〈A, χ〉 −→ 〈A′, χ〉

whereA′ = (A \ {(Ai, p, r, t, ϕ)}) ∪ {(A′′i , p, r, t, ϕ)},
A′i = 〈i, σ, γ, Π, θ, ξ〉, and A′′i = 〈i, σ, γ, Π, θτ, ξ〉. A detailed explanation and definition of individual agent
configuration 〈i, σ, γ, Π, θ, ξ〉 can be found in [3].

Next we consider belief updates. It is assumed that a formula ϕ can represent a belief update and that
σ ⊕ ϕ yields a belief base which is σ updated with ϕ. Note that if ϕ contains any negated terms, these will
be deleted from σ. Similar to the transition rule for queries above, the owned module on which the belief
update is performed must not be active and must have been specified as public.

(Ai, p, r, t, ϕ′) ∈ A & Ai 6|= ϕ′ & Ai
n.updateBB(ϕ)!−→ A′i & ∃r′ : (Ai.n, i, r′, f,⊥) ∈ A &

active descendants(i.n) = ∅ & public(r′)
〈A, χ〉 −→ 〈A′, χ〉

whereA′ = (A \ {(Ai, p, r, t, ϕ′), (Ai.n, i, r′, f,⊥)}) ∪ {(A′i , p, r, t, ϕ′), (A′i.n, i, r
′, f,⊥)},

Ai.n = 〈i.n, σ, γ, Π, θ, ξ〉, and A′i.n = 〈i.n, σ ⊕ ϕ, γ, Π, θ, ξ〉.
To make an owned module named n adopt a goal formula κ, the action n.adoptgoal(κ) action can be

used; similarly, to make it drop a goal formula κ, the action n.dropgoal(κ) can be used. Both adopting
and dropping of a goal are expressed in the same transition rule below, because they are almost equal. This
transition rule is also mostly analogous to the one for belief updates above.

(Ai, p, r, t, ϕ) ∈ A & Ai 6|= ϕ & Ai
n.adopt/dropgoal(κ)!−→ A′i & ∃r′ : (Ai.n, i, r′, f,⊥) ∈ A &

active descendants(i.n) = ∅ & public(r′)
〈A, χ〉 −→ 〈A′, χ〉

whereA′ = (A \ {(Ai, p, r, t, ϕ), (Ai.n, i, r′, f,⊥)}) ∪ {(A′i , p, r, t, ϕ), (A′i.n, i, r
′, f,⊥)},

Ai.n = 〈i.n, σ, γ, Π, θ, ξ〉, and A′i.n = 〈i.n, σ, γ ⊕/	 κ, Π, θ, ξ〉.
Finally, a general transition rule is needed for all actions α not equal to one of the newly introduced

actions above (i.e. ‘classical’ 2APL actions). Otherwise the transitions of these α would be undefined at
the multi-agent level because of the changes that have been introduced to the module configurations. The
transition rule below expresses that only modules that have t as their execution flag and a non-satisfied
stopping condition ϕ are allowed to execute a ‘classical’ 2APL action α. Note that the execution of α
possibly leads to a change in the environment χ (as expressed by the subscript χ′).

(Ai, p, r, t, ϕ) ∈ A & Ai 6|= ϕ & Ai
α!−→χ′ A′i

〈A, χ〉 −→ 〈A′, χ′〉
whereA′ = (A \ {(Ai, p, r, t, ϕ), }) ∪ {(A′i , p, r, t, ϕ)}.

5 Roles, Profiles and Task Encapsulation

The proposed extension to 2APL is general enough to be useful for the implementation of several agent-
oriented programming topics. These include taking on different roles, making profiles of other agents, and
the general programming technique of task encapsulation. We will provide an example for each of these
topics in the following subsections.

5.1 Roles

The run-time creation of new modules can be used to implement roles, if the newly created module is seen
as a role that can be played by the creating agent. The file that is used to create the new module is then a



specification of the role that can be played. The action create(role, name) can be seen as the activation of
a role, by which the activating agent acquires a lock on the activated role, i.e. it becomes the role’s owner
and gains the exclusive right to manipulate the activated role. If role has been declared as singleton, this
property of locking is important, because other agents may attempt the acquire the role as well. If role is
not singleton, the role is created new and private to the creating agent anyway. Upon releasing a singleton
role, the role is not deleted but retained with a blank owner, so that another agent may activate (using
create(role, name′)) and use it.

An agent that has successfully performed the action create(role, name) is the owner of role and may
enact this role using name.execute(ϕ), where ϕ is a stopping condition, i.e. a composition of belief
and goal queries. The owner agent is then put on hold until the role satisfies the stopping condition, at
which point control is returned to the owner agent. Alternatively, the role may be executed in parallel with
the owner agent using name.executeasync(ϕ), meaning that a new thread is created for role to run in.
Note that supplying as stopping condition ϕ = ⊥ means that the role can only be stopped by executing
name.stop, which of course is only possible if the role was enacted using executeasync.

In principle, it is allowed for a role to activate and enact a new role, and repeat this without (theoretical)
depth limits. However, this is usually not allowed in literature on roles. But it is up to the programmer to
prevent roles from enacting other roles.

5.2 Agent Profiles

An agent can easily create and maintain profiles of other agents by creating non-singleton modules. For ex-
ample, assume agent bas executes the actions create(profile template, chris) and create(profile template,mehdi),
i.e., it uses a single template (specified as being public) to initialize profiles of the (hypothetical) agents
chris and mehdi. These profiles can be updated by bas using e.g. chris.updateBB(ϕ) and mehdi.adoptgoal(κ)
when appropriate. bas can even ‘wonder’ what chris would do in a certain situation by setting up that sit-
uation using belief and goal updates on chris and then performing chris.execute(ϕ) (or executeasync)
with a suitable stopping condition ϕ. The resulting state of chris can be queried afterwards to determine
what chris ‘would have done’.

5.3 Task Encapsulation

Modules can also be used for the common programming techniques of encapsulation and information
hiding. Modules can encapsulate certain tasks, which can be performed by its owning agent if it performs
an execute action on that module. Moreover, a module that has been declared to be private cannot be
modified (e.g. by updateBB) by its owning agent. Such a module can thus hide its internal state and keep it
consistent for its task(s). An important difference between creating a module (in the sense proposed here)
and including a module (in the sense of [3]) is that the contents of an included module are simply added to
the including agent, whereas the contents of a created module are kept in a separate scope. So when using
the create action, there can be no (inadvertent) clashes caused by equal names being used in different files
for beliefs, goals, actions, and rules.

6 Conclusions and Future Work

In this paper we have introduced a mechanism for creating modules in BDI-based agent programming lan-
guages. We have illustrated this mechanism by extending the operational semantics of 2APL with transition
rules for actions that allow modules to be created, executed, queried, modified, and to be released again.
Each module is a first-class agent that is itself allowed to create other modules, and so on, up to a (theoreti-
cally) unlimited depth. Furthermore, by using the public/private and singleton flags in the specification of a
module, the programmer can use these modules for common programming techniques such as data hiding
and singleton access. We have also shown how modules can be used to facilitate the implementation of
notions relevant to agent programming; namely, the implementation of agent roles and agent profiles. We
intend to provide an proof of concept of the proposed extension by implementing the presented operational
semantics in the current 2APL platform.



For future work, there are several extensions to this work on modularization that can make it more
powerful for encapsulation and implementation of roles and agent profiles. Firstly, the execute and
executeasync actions may not be entirely appropriate for the implementation of profile execution, i.e.,
when an agent wonders “what would agent X (of which I have a profile) do in such and such a situation?”.
This is because executing a profile should not have consequences for the environment and other agents,
so a module representing an agent profile should not be allowed to execute external actions or send mes-
sages. To remedy this problem, new actions dryrun and dryrunasync can be introduced which work just
like execute and executeasync, respectively, with the difference that all external actions which a ‘dry-
running’ module attempts to perform are blocked. Of course, care must be taken that any execute(async)
actions performed by a dry-running module are also converted to dryrun(async) actions.

Secondly, the notion of singleton can be generalized by introducing the possibility of specifying a
minimum and maximum amount of instances of a module that can be active at one time. This can be used
for ensuring that, e.g., there must always be three to five agents in the role of security guard.

Thirdly, new actions add and remove can be introduced that accept as arguments a module and a
plan or rule, so that all types of contents of 2APL modules can be modified during runtime. In particular,
by creating an empty module and using add actions, modules can be created from scratch with custom
components available at runtime. However, for this to work, plans and rules will have to be first-class
citizens, which is currently not the case in 2APL.
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