
Libraries for Generic Programming
in Haskell

Johan Jeuring

Sean Leather

José Pedro Magalhães

Alexey Rodriguez Yakushev

Technical Report UU-CS-2008-025

June 2009

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Libraries for Generic Programming in Haskell

Johan Jeuring, Sean Leather, José Pedro Magalhães, and
Alexey Rodriguez Yakushev

Universiteit Utrecht, The Netherlands

Abstract. These lecture notes introduce libraries for datatype-generic pro-
gramming in Haskell. We introduce three characteristic generic program-
ming libraries: lightweight implementation of generics and dynamics, ex-
tensible and modular generics for the masses, and scrap your boilerplate.
We show how to use them to use and write generic programs. In the case
studies for the different libraries we introduce generic components of a
medium-sized application which assists a student in solving mathemati-
cal exercises.

1 Introduction

In the development of software, structuring data plays an important role. Many
programming methods and software development tools center around creating
a datatype (or XML schema, UML model, class, grammar, etc.). Once the struc-
ture of the data has been designed, a software developer adds functionality to
the datatypes. There is always some functionality that is specific for a datatype,
and part of the reason why the datatype has been designed in the first place.
Other functionality is similar or even the same on many datatypes, following
common programming patterns. Examples of such patterns are:

– in a possibly large value of a complicated datatype (for example for rep-
resenting the structure of a company), applying a given action at all oc-
currences of a particular constructor (e.g., adding or updating zip codes at
all occurrences of street addresses) while leaving the rest of the value un-
changed;

– serializing a value of a datatype, or comparing two values of a datatype for
equality, functionality that depends only on the structure of the datatype;

– adapting data access functions after a datatype has changed, something that
often involves modifying large amounts of existing code.

Generic programming addresses these high-level programming patterns. We also
use the term datatype-generic programming [Gibbons, 2007] to distinguish the
field from Java generics, Ada generic packages, generic programming in C++
STL, etc. Using generic programming, we can easily implement traversals in
which a user is only interested in a small part of a possibly large value, func-
tions which are naturally defined by induction on the structure of datatypes,

and functions that automatically adapt to a changing datatype. Larger exam-
ples of generic programming include XML tools, testing frameworks, debug-
gers, and data conversion tools.

Often an instance of a datatype-generic program on a particular datatype
is obtained by implementing the instance by hand, a boring and error-prone
task, which reduces programmers’ productivity. Some programming languages
provide standard implementations of basic datatype-generic programs such as
equality of two values and printing a value. In this case, the programs are inte-
grated into the language, and cannot be extended or adapted. So, how can we
define datatype-generic programs ourselves?

More than a decade ago the first programming languages appeared that
supported the definition of datatype-generic programs. Using these program-
ming languages it is possible to define a generic program, which can then be
used on a particular datatype without further work. Although these languages
allow us to define our own generic programs, they have never grown out of the
research prototype phase, and most cannot be used anymore.

The rich type system of Haskell allows us to write a number of datatype-
generic programs in the language itself. The power of classes, constructor clas-
ses, functional dependencies, generalized algebraic datatypes, and other ad-
vanced language constructs of Haskell is impressive, and since 2001 we have
seen at least 10 proposals for generic programming libraries in Haskell using
one or more of these advanced constructs. Using a library instead of a separate
programming language for generic programming has many advantages. The
main advantages are that a user does not need a separate compiler for generic
programs and that generic programs can be used out of the box. Furthermore, a
library is much easier to ship, support, and maintain than a programming lan-
guage, which makes the risk of using generic programs smaller. A library might
be accompanied by tools that depend on non-standard language extensions, for
example for generating embedding-projection pairs, but the core is Haskell. The
loss of expressiveness compared with a generic programming language such as
Generic Haskell is limited.

These lecture notes introduce generic programming in Haskell using generic
programming libraries. We introduce several characteristic generic program-
ming libraries, and we show how to write generic programs using these li-
braries. Furthermore, in the case studies for the different libraries we introduce
generic components of a medium-sized application which assists a student in
solving mathematical exercises. We have included several exercises in these lec-
ture notes. The answers to these exercises can be found in Appendix A.

These notes are organised as follows. Section 2 puts generic programming
into context. It introduces a number of variations on the theme of generics as
well as demonstrates how each may be used in Haskell. Section 3 starts our
focus on datatype-generic programming by discussing the world of datatypes
supported by Haskell and common extensions. In Section 4, we introduce li-
braries for generic programming and briefly discuss the criteria we used to
select the libraries covered in the following three sections. Section 5 starts the

2

discussion of libraries with Lightweight Implementation of Generics and Dy-
namics (LIGD); however, we leave out the dynamics since we focus on gene-
rics in these lecture notes. Section 6 continues with a look at Extensible and
Modular Generics for the Masses (EMGM), a library using the same view as
LIGD but implemented with a different mechanism. Section 7 examines Scrap
Your Boilerplate (SYB), a library implemented with combinators and quite dif-
ferent from LIGD and EMGM. After describing each library individually, we
provide an abridged comparison of them in Section 8. In Section 9, we take a
detour from the discussion of established libraries to explore how type-indexed
datatypes can be implemented using type families. In Section 10 we conclude
with some suggested reading and some thoughts about the future of generic
programming libraries.

2 Generic programming in context (and in Haskell)

Generic programming has developed as a technique for increasing the amount
and scale of reuse in code while still preserving type safety. The term “generic”
is highly overloaded in computer science; however, broadly speaking, most
uses involve some sort of parametrisation. A generic program abstracts over
the differences in separate but similar programs. In order to arrive at specific
programs, one instantiates the parameter in various ways. It is the type of the
parameter that distinguishes each variant of generic programming.

Gibbons [2007] lists seven categories of generic programming. In this sec-
tion, we revisit these with an additional twist: we look at how each may be
implemented in Haskell.

Each of the following sections is titled according to the type of the parameter
of the generic abstraction. In each, we provide a description of that particular
form of generics along with an example of how to apply the technique.

2.1 Value

The most basic form of generic programming is to parametrise a computation
by values. The idea goes by various names in programming languages (proce-
dure, subroutine, function, etc.), and it is a fundamental element in mathema-
tics. While a function is not often considered under the definition of “generic,”
it is perfectly reasonable to model other forms of genericity as functions. The
generalization is given by the function g(x) in which a generic component g is
parametrised by some entity x. Instantiation of the generic component is then
analogous to application of a function.

Functions come naturally in Haskell. For example, here is function that takes
two boolean values as arguments and determines their basic equality.

eqBool :: Bool→ Bool→ Bool

eqBool x y = (not x ∧ not y) ∨ (x ∧ y)

3

We take this opportunity to introduce a few themes used in these lecture
notes. We use a stylized form of Haskell that is not necessarily what one would
type into a file. Here, we add a subscript, which can simply be typed, and use
the symbols (∧) and (∨), which translate directly to the standard operators
(&&) and (||).

As much as possible, we attempt to use the same functions for our examples,
so that the similarities or differences are more evident. Equality is one such
running example used throughout the text.

2.2 Function

If a function is a first-class citizen in a programming language, parametrisation
of one function by another function is exactly the same as parametrisation by
value. However, we explicitly mention this category because it enables abstrac-
tion over control flow. The full power of function parameters can be seen in the
higher-order functions of languages such as Haskell and ML.

Suppose we have functions defining the logical conjunction and disjunction
of boolean values.

and :: List Bool→ Bool

and Nil = True
and (Cons p ps) = p ∧ and ps

or :: List Bool→ Bool

or Nil = False
or (Cons p ps) = p ∨ or ps

These two functions exhibit the same recursive pattern. To abstract from this
pattern, we abstract over the differences between and and or using a higher-
order function. The pattern that is extracted is known in the Haskell standard
library as foldr (“fold from the right”).

foldr :: (a→ b→ b)→ b→ List a→ b

foldr f n Nil = n
foldr f n (Cons x xs) = f x (foldr f n xs)

The foldr captures the essence of the recursion in the and and or by accepting pa-
rameters for the Cons and Nil cases. We can then redefine and and or in simpler
terms using foldr.

and = foldr (∧) True
or = foldr (∨) False

4

2.3 Type

Commonly known as polymorphism, genericity by type refers to both type ab-
stractions (types parametrised by other types) and polymorphic functions (func-
tions with polymorphic types).

Haskell1 has excellent support for parametrised datatypes and polymorphic
functions. The canonical example of the former is List:

data List a = Nil | Cons a (List a)

List a is a datatype parametrised by some type a. It is one of a class of datatypes
often called “container” types because they provide structure for storing ele-
ments of some arbitrary type.

A typical polymorphic function is length:

length :: List a→ Int

length Nil = 0
length (Cons x xs) = 1 + length xs

The function length can be applied to a value of type List a, and it will return
the number of a elements.

An important point to note about parametrised datatypes and polymorphic
functions is that they have no knowledge of the parameter. We later discuss
other forms of genericity that support increased amounts of information about
the parameter.

2.4 Interface

A generic program may abstract over a given set of requirements. In this case, a
specific program can only be instantiated by parameters that conform to these
requirements, and the generic program remains unaware of any unspecified
aspects. Gibbons calls the set of required operations the “structure” of the para-
meter; however, we think this may easily be confused with generics by the
shape of a datatype (in Section 2.7). Instead, we use interface as the set of re-
quirements needed for instantiation.

Haskell supports a form of interface using type classes and constraints on
functions [Wadler and Blott, 1989], which we illustrate with equality. Equality
is not restricted to a single type, and in fact, many different datatypes support
equality. But unlike the polymorphic length, equality on lists for example re-
quires inspection of the elements. The code below defines the class of types
that support equality (()) and inequality ((6)).

class Eq a where
(), (6) :: a→ a→ Bool

1 Specifically, Haskell supports parametric polymorphism. There are other flavors of poly-
morphism such as subtype polymorphism that we elide.

5

a b = not (a 6 b)
a 6 b = not (a b)

This type class definition includes the types of the interface operations and
some (optional) default implementations. For a datatype such as List a to sup-
port the operations in the class Eq, we create an instance of it.

instance (Eq a)⇒ Eq (List a) where
Nil Nil = True
(Cons x xs) (Cons y ys) = x y ∧ xs ys

= False

Notice that our instance for List a requires an instance for a. This is indicated by
the context (Eq a)⇒.

Methods in type classes and functions that use these methods require a con-
text as well. Consider the observable type of the equality method.

() :: (Eq a)⇒ a→ a→ Bool

This function specifies that the type parameter a must be an instance of the Eq
class. In other words, the type substituted for a must implement the interface
specified by Eq. This approach is called ad-hoc polymorphism. Relatedly, since
each recursive call in the definition of the function () may have a different
type, we also describe the function as having polymorphic recursion.

2.5 Property

Gibbons expands the concept of generic programming to include the specifi-
cations of programs. These properties are “generic” in the sense that they may
hold for multiple implementations. Properties may be informally or formally
defined, and depending on the language or tool support, they may be encoded
into a program, used as part of the testing process, or simply appear as text.

A simple example of a property can be found by looking at the methods of
the Eq type class defined in Section 2.4: a programmer with a classical view on
logic would expect that x y≡ not (x 6 y). This property should hold for all
instances of Eq to ensure that an instance only needs to define one or the other.
However, Haskell’s type system provides no guarantee of this. The functions
() and (6) are provided as separate methods to allow for the definition of
either (for simplicity) or both (for optimization), and the compiler cannot ver-
ify the above relationship. This informal specification relies on programmers
implementing the instances of Eq such that the property holds.

There are other examples of properties, such as the well-known monad
laws [Wadler, 1990], but many of them cannot be implemented directly in Has-
kell. It is possible, however, to look at a property as an extension of an interface
from Section 2.4 if we allow for evaluation in the interface. This can be done in a
language with a more expressive type system such as Coq [Bertot and Castéran,
2004] or Agda [Norell, 2007].

6

2.6 Program Representation

There are numerous techniques in which one program is parametrised by the
representation of another program (or its own). This area includes:

– Code generation, such as the generation of parsers and lexical analysers.
Happy [Marlow and Gill, 1997] and Alex [Dornan et al., 2003] are Haskell
programs for parser generation and lexical analysis, respectively.

– Reflection or the ability of a program to observe and modify its own struc-
ture and behavior. Reflection has been popularized by programming lan-
guages that support some dynamic type checking such as Java [Forman and
Danforth, 1999], but some attempts have also been made in Haskell [Lämmel
and Peyton Jones, 2004].

– Templates in C++ [Alexandrescu, 2001] and multi-stage programming [Taha,
1999] are other techniques.

Gibbons labels these ideas as genericity by stage; however, some techniques
such as reflection do not immediately lend themselves to being staged. We think
this category of is better described as metaprogramming or generic programming
in which the parameter is the representation of some program.

Partly inspired by C++ templates and the multi-stage programming lan-
guage MetaML [Sheard, 1999], Template Haskell provides a metaprogramming
extension to Haskell 98 [Sheard and Peyton Jones, 2002].

We introduce the concept with an example of writing selection functions for
tuples of different arities. The standard library provides fst :: (a, b) → a and
snd :: (a, b)→ b since pairs are the most common form of tuples, but for triples,
quadruples, etc., we need to write a new function each time. In other words, we
want to automatically generate functions such as these:

fst3 = λ(x, ,) → x
snd4 = λ(, x, ,)→ x

Using Template Haskell, we can write:

fst3 = $ (sel 1 3)
snd4 = $ (sel 2 4)

This demonstrates the use of the “splice” syntax, $(...), to evaluate the enclosed
expression at compile time. Each call to $(sel i n) is expanded to a function
that selects the i-th component of a n-tuple. Consider the following implemen-
tation2:

sel :: Int→ Int→ ExpQ

sel i n = lamE [pat] body

2 The code for sel is derived from the original example [Sheard and Peyton Jones, 2002]
with modifications to simplify it and to conform to the Language.Haskell.TH library
included with GHC 6.8.2.

7

where pat = tupP (map varP vars)
body = varE (vars !! (i− 1))
vars = [mkName ("a"++ show j) | j← [1 . . n]]

Function sel creates an abstract syntax recipe of the form λ(a1, a2, ..., ai, ..., an)→
ai with a lambda expression (lamE), a tuple pattern (tupP), variable patterns
(varP), and a variable expression (varE).

Template Haskell is type-safe, and a well-typed program will not “go wrong”
at run-time [Milner, 1978]. Initially, splice code is type-checked before compi-
lation, and then the entire program is also type-checked after splice insertion.
Compiling the example above may fail for reasons such as the function sel not
type-checking or the generated code for $(sel i n) not type-checking.

Template Haskell has been explored for other uses in generic programming.
Most notably, it is possible to prototype datatype-generic extensions to Haskell
with Template Haskell [Norell and Jansson, 2004b].

2.7 Shape

Genericity by shape is, in fact, the focus of these notes. The shape parameter
refers to the shape or structure of data. Broadly speaking, if all data has a com-
mon underlying set of structural elements, we can write functions that work
with those elements. Thus, such functions abstract over any values that can be
described by the same shape.

We return again to the example of equality. So far, we have seen two diffe-
rent implementations, one for Bool and one for List, while in fact equality can be
defined once generically for many datatypes. In Haskell this generic definition
is used when a datatype is annotated with deriving Eq, but to give you a taste
of how this might work in a library, let us look at the shape of some types.

Intuitively, we can visualize the structural elements by reviewing the syntax
for the declaration of the List datatype.

data List a = Nil | Cons a (List a)

First, a List value is either a Nil or a Cons. This choice between constructors is
called a sum and denoted by the + symbol in our visualization. Second, each
constructor is applied to zero or more arguments. The Nil constructor takes no
parameters and has the special designator of unit represented by 1. Cons, on
the other hand, is applied to two arguments. We use a product, indicated by the
symbol×, in this case. The representation for List as a whole appears as follows:

type List◦ a = 1 + (a× List a)

We have now stripped the datatype definition to some basic syntactic elements.
Not only can these elements describe the simple List datatype, they also support
more complex examples:

data Map k a = Tip | Bin Int k a (Map k a) (Map k a)

8

type Map◦ k a = 1 + (Int× (k× (a× (Map k a×Map k a))))

The Map datatype from the standard libraries introduces a few new aspects
of our syntax. Namely, we can reference other types by name (Int), and if a
constructor has more than two arguments (Bin), it is represented using a right-
associative, nested, product. Furthermore, we reuse the type Map itself in the
representation for Map.

The sum of products view described above can be used to inductively define
functions. We describe the specifics of this for each library in more detail, but
for a taste of this process, we define a function in Generic Haskell [Löh, 2004],
a language that extends Haskell with syntactic support for datatype-generic
programming. Here is equality defined as a generic function:

eq{|a :: ?|} :: (eq{|a|})⇒ a→ a→ Bool

eq{|Int|} x y = eqInt x y
eq{|Char|} c d = eqChar c d
eq{|Unit|} Unit Unit = True
eq{|a + b|} (Inl x) (Inl y) = eq{|a|} x y
eq{|a + b|} (Inr x) (Inr y) = eq{|b|} x y
eq{|a + b|} = False
eq{|a× b|} (x1 × y1) (x2 × y2) = eq{|a|} x1 x2 ∧ eq{|b|} y1 y2

Notice how eq{|a :: ?|} uses pattern matching on the same structural elements
introduced above, which are now types enclosed in {||}, to perform case ana-
lysis. Looking at each case, we see that the type parameter (e.g. a× b) enables
the expansion of the value-level structure of the arguments (e.g. x1 × y1), thus
permitting us to write a separate test of equality specific to each element (e.g.
eq{|a|} x1 x2 ∧ eq{|b|} y1 y2). We explore these ideas further in the discussion
on the libraries LIGD (Section 5) and EMGM (Section 6). For more information
on defining generic functions in Generic Haskell, see Löh [2004] and Hinze and
Jeuring [2003a,b]. Also note that Generic Haskell is not the only language ex-
tension to datatype-generic programming. A comparison of approaches can be
found in Hinze et al. [2007].

There are a number of generic views other than the sum of products. For
example, we may regard a datatype as a fixed point, allowing us to make all
recursion in the datatype explicit. Another example is the spine view that we
describe in relation to the SYB library (Section 7). For a more in-depth study of
generic views, refer to [Holdermans et al., 2006].

In this section, we introduced a variety of techniques that fall under the
heading of generic programming; however, this is assuredly not a complete
list. For example, research into types that are parametrised by values, often
called dependent types, may be also considered “generic.” Instead of a tho-
rough description, however, this background should make clear where these
lecture notes fit in the broader context of generic programming.

In the next section, we provide more background on the fundamental com-
ponent of datatype-generic programming: the datatype.

9

3 The world of Haskell datatypes

Datatypes play a central role in programming in Haskell. Solving a problem of-
ten consists of designing a datatype, and defining functionality on that datatype.
Haskell offers a powerful construct for defining datatypes: data. Haskell also
offers two other constructs: type to introduce type synonyms and newtype, a
restricted version of data.

Datatypes come in many variations: we have finite, regular, nested, and
many more kinds of datatypes. This section introduces many of these varia-
tions of datatypes by example, and is an updated version of a similar section
in Hinze and Jeuring [2003b]. Not all datatypes are pure Haskell 98, some re-
quire extensions to Haskell. Many of these extensions are supported by most
Haskell compilers, some only by GHC. On the way, we explain kinds and show
how they are used to classify types. For most of the datatypes we introduce, we
define an equality function. As we will see, the definitions of equality on the
different datatypes follow a similar pattern. This pattern will also be used to
define generic programs for equality in later sections covering LIGD (Section 5)
and EMGM (Section 6).

3.1 Monomorphic datatypes

We start our journey through datatypes with lists containing values of a partic-
ular type. Consider the datatype of lists of booleans:

data ListB = NilB | ConsB Bool ListB

We define a new datatype, called ListB, which has two kinds of values: an
empty list (represented by the constructor NilB), or a list consisting of a boolean
value in front of another ListB. This datatype is the same as Haskell’s prede-
fined list datatype containing booleans, with [] and (:) as constructors. Since
the datatype ListB does not take any type parameters, it has base kind ?. Other
examples of datatypes of kind ? are Int, Char, etc.

Here is the equality function on this datatype:

eqListB :: ListB → ListB → Bool

eqListB NilB NilB = True
eqListB (ConsB b1 l1) (ConsB b2 l2) = eqBool b1 b2 ∧ eqListB l1 l2
eqListB = False

Two empty lists are equal, and two nonempty lists are equal if their head ele-
ments are the same (which we check using equality on Bool) and their tails are
equal. An empty list and a nonempty list are unequal.

3.2 Parametric polymorphic datatypes

We abstract from the datatype of booleans in the type ListB to obtain parametric
polymorphic lists.

10

data List a = Nil | Cons a (List a)

Compared with ListB, the List a datatype has a different structure: the kind of
List is ?→ ?. Kinds classify types, just as types classify values. A kind can either
be ? (base kind) or κ → ν, where κ and ν are kinds. In Haskell, only the base
kind is inhabited, which means there are only values of types of kind ?. Since
List takes a base type as argument, it has the functional kind ? → ?. The type
variable a must be a base type since it appears as a value (as first argument to
the Cons constructor). In this way, a type of functional kind (such as List) can be
fully-applied to create a type of base kind (such as List Int).

Equality on List is almost the same as equality on ListB.

eqList :: (a→ a→ Bool)→ List a→ List a→ Bool

eqList eqa Nil Nil = True
eqList eqa (Cons x1 l1) (Cons x2 l2) = eqa x1 x2 ∧ eqList eqa l1 l2
eqList = False

The only difference with equality on ListB is that we need to have some means
of determining equality on the elements of the list, so we need an additional
equality function of type (a→ a→ Bool) as parameter3.

3.3 Families and mutually recursive datatypes

A family of datatypes is a set of datatypes that may use each other. We can
define a simplified representation of a system of linear equations using a non-
recursive family of datatypes. A system of linear equations is a list of equations,
each consisting of a pair linear expressions. For example, here is a system of
three equations.

x− y = 1
x + y + z = 7

2 x + 3 y + z = 5

For simplicity, we assume linear expressions are values of a datatype for arith-
metic expressions, Expr a. An arithmetic expression abstracts over the type of
constants, typically an instance of the Num class, and is a variable, a literal, or
the addition, subtraction, multiplication, or division of two arithmetic expres-
sions.

type LinearSystem = List LinearExpr

data LinearExpr = Equation (Expr Int) (Expr Int)
infixl 6 ×,÷

3 Using Haskell’s type classes, this would correspond to replacing the type of the first
argument in the type of eqList by an Eq a ⇒ constraint. The class constraint is later
transformed by the compiler into an additional argument of type (a → a → Bool) to
the function.

11

infixl 5 +,−
data Expr a = Var String

| Lit a
| Expr a + Expr a
| Expr a− Expr a
| Expr a× Expr a
| Expr a÷ Expr a

The equality function eqExpr for LinearSystem is straightforward and omitted.
Datatypes in Haskell may also be mutually recursive, as can be seen in the

following example. A forest is either empty or a tree followed by a forest, and
a tree is either empty or a node of a forest:

data Tree a = Empty | Node a (Forest a)
data Forest a = Nil | Cons (Tree a) (Forest a)

Defining the equality function for these datatypes amounts to defining the equal-
ity function for each datatype separately. The result is a set of mutually recur-
sive functions:

eqTree :: (a→ a→ Bool)→ Tree a→ Tree a→ Bool

eqTree eqa Empty Empty = True
eqTree eqa (Node a1 f1) (Node a2 f2) = eqa a1 a2 ∧ eqForest eqa f1 f2
eqTree = False

eqForest :: (a→ a→ Bool)→ Forest a→ Forest a→ Bool

eqForest eqa Nil Nil = True
eqForest eqa (Cons t1 f1) (Cons t2 f2) = eqTree eqa t1 t2 ∧ eqForest eqa f1 f2
eqForest = False

Note that although the type LinearSystem defined previously uses several
other types, it is not mutually recursive: Expr a is at the end of the hierarchy
and is defined only in terms of itself.

3.4 Higher-order kinded datatypes

A datatype uses higher-order kinds if it is parametrized over a variable of func-
tional kind. All the parametric datatypes we’ve seen previously took parame-
ters of kind ?. Consider the following datatype, which represents a subset of
logic expressions.

data Logics = Lit Bool
| Not Logics

| Or Logics Logics

Suppose we now want to use the fact that disjunction is associative. For this, we
can choose to encode sequences of disjunctions by means of a list. We represent
our Logics datatype as:

12

data LogicL = Lit Bool
| Not LogicL
| Or (List LogicL)

We can then abstract from the container type List, which contains the subex-
pressions, by introducing a type argument for it.

data LogicF f = Lit Bool
| Not (LogicF f)
| Or (f (LogicF f))

We have introduced a type variable, and so LogicF does not have kind ? as
LogicL. However, its kind is also not ? → ?, as we have seen previously in, for
instance, the List datatype, because the type argument that LogicF expects is not
a base type, but a “type transformer.” We can see in the Or constructor that f is
applied to an argument. The kind of LogicF is thus: (?→ ?)→ ?. This datatype
is a higher-order kinded datatype.

To better understand abstraction over container types, consider the follow-
ing type:

type Logic′L = LogicF List

Modulo undefined values, Logic′L is isomorphic to LogicL. The type argument
of LogicF describes which “container” will be used for the elements of the Or
case.

Defining equality for the Logic′L datatype is simple:

eqLogic′L
:: Logic′L → Logic′L → Bool

eqLogic′L
(Lit x1) (Lit x2) = eqBool x1 x2

eqLogic′L
(Not x1) (Not x2) = eqLogic′L

x1 x2

eqLogic′L
(Or l1) (Or l2) =

length l1 length l2 ∧ and (zipWith eqLogic′L
l1 l2)

eqLogic′L
= False

Note that we use the zipWith :: (a→ b→ c)→ List a→ List b→ List c function,
because we know the container is the list type.

The LogicF type requires a somewhat more complicated equality function.

eqLogicF :: ((LogicF f → LogicF f → Bool)→
f (LogicF f)→ f (LogicF f)→ Bool)→

LogicF f → LogicF f → Bool

eqLogicF eqf (Lit x1) (Lit x2) = eqBool x1 x2
eqLogicF eqf (Not x1) (Not x2) = eqLogicF eqf x1 x2
eqLogicF eqf (Or x1) (Or x2) = eqf (eqLogicF eqf) x1 x2
eqLogicF = False

13

The complexity comes from the need for a higher-order function that itself
contains a higher-order function. The function eqf provides equality on the ab-
stracted container type f, and it needs an equality for its element type LogicF f.

We can specialize this to equality on LogicF List as follows:

eqLogicF,List :: LogicF List→ LogicF List→ Bool

eqLogicF,List = eqLogicF (λf l1 l2 → and (zipWith f l1 l2))

3.5 Nested datatypes

A regular data type is a possibly recursive, parametrised type whose recursive
occurrences do not involve a change of type parameters. All the datatypes we
have introduced so far are regular. However, it is also possible to define so-
called nested datatypes [Bird and Meertens, 1998], in which recursive occur-
rences of the datatype may have other type arguments than the datatype being
defined. Perfectly balanced binary trees are an example of such a datatype.

data Perfect a = Leaf a | Node (Perfect (a, a))

Any value of this datatype is a full binary tree in which all leaves are at the
same depth. This is attained by using the pair constructor in the recursive call
for the Node constructor. An example of such tree is:

perfect = Node (Node (Node (Leaf (((1, 2), (3, 4)), ((5, 6), (7, 8))))))

Here is the equality function on Perfect:

eqPerfect :: (a→ a→ Bool)→ Perfect a→ Perfect a→ Bool

eqPerfect eqa (Leaf x1) (Leaf x2) = eqa x1 x2
eqPerfect eqa (Node x1) (Node x2) = eqPerfect (eqPair eqa) x1 x2
eqPerfect = False

eqPair :: (a→ a→ Bool)→ (a, a)→ (a, a)→ Bool
eqPair eqa (x1, x2) (y1, y2) = eqa x1 x2 ∧ eqa y1 y2

This definition is again very similar to the equality on datatypes we have in-
troduced before. In our case, the container type is the pair of two values of the
same type, so in the Node case we use equality on this type (eqPair).

3.6 Existentially quantified datatypes

Many of the datatypes we have seen take arguments, and in the type of the con-
structors of these datatypes, those type arguments are universally quantified.
For example, the constructor Cons of the datatype List a has type a → List a →
List a for all types a. However, we can also use existential types, which “hide”

14

a type variable that only occurs under a constructor. Consider the following
example:

data Dynamic = ∀a . Dyn (Rep a) a

The type Dynamic encapsulates a type a and its representation, a value of type
Rep a. We will encounter the datatype Rep a later in these lecture notes (Section
5), where it is used to convert between datatypes and their run-time represen-
tations. Despite the use of the ∀ symbol, the type variable a is said to be exis-
tentially quantified because it is only available inside the constructor—Dynamic
has kind ?. Existential datatypes are typically used to encapsulate some type
with its corresponding actions: in the above example, the only thing we can
do with a Dynamic is to inspect its representation. Other important applica-
tions of existentially quantified datatypes include the implementation of ab-
stract datatypes, which encapsulate a type together with a set of operations.
Existential datatypes are not part of the Haskell 98 standard, but they are a
fairly common extension.

Since an existentially quantified datatype may hide the type of some of its
components, the definition of equality may be problematic. If we cannot in-
spect a component, we cannot compare it. Conversely, we can only compare
two values of an existentially quantified datatype if the operations provided by
the constructor allow us to compare them. For example, if the only operation
provided by the constructor is a string representation of the value, we can only
compare the string representation of two values, but not the values themselves.
Therefore equality can only be defined as the equality of the visible components
of the existentially quantified datatype.

3.7 Generalized algebraic datatypes

Another powerful extension to the Haskell 98 standard are generalized alge-
braic datatypes (GADTs). A GADT is a datatype in which different constructors
may have related but different result types. Consider the following example,
where we combine the datatypes Logics and Expr shown before in a datatype
for statements:

data Stat a where
Val :: Expr Int → Stat (Expr Int)
Term :: Logics → Stat Logics

If :: Stat Logics → Stat a → Stat a→ Stat a
Write :: Stat a → Stat ()
Seq :: Stat a → Stat b→ Stat b

The new aspect here is the ability to give each constructor a different result type
of the form Stat x. This has the advantage that we can describe the type of the
different constructors more precisely. For example, the type of the If constructor
now says that the first argument of the If returns a logic statement, and the

15

statements returned in the “then” and “else” branches may be of any type, as
long as they have the same type.

Defining equality of two statements is still a matter of repeating similar
code:

eqStat :: Stat a→ Stat b→ Bool

eqStat (Val x1) (Val x2) = eqExpr () x1 x2
eqStat (Term x1) (Term x2) = eqLogic x1 x2
eqStat (If x1 x2 x3) (If x′1 x′2 x′3) = eqStat x1 x′1 ∧ eqStat x2 x′2 ∧ eqStat x3 x′3
eqStat (Write x1) (Write x2) = eqStat x1 x2
eqStat (Seq x1 x2) (Seq x′1 x′2) = eqStat x1 x′1 ∧ eqStat x2 x′2
eqStat = False

We have shown many varieties of datatypes and the example of the equality
function, which offers functionality needed on many datatypes. We have seen
that we can define the equality functions ourselves, but the code quickly be-
comes repetitive and tedious. Furthermore, if a datatype changes, the definition
of the equality function has to change accordingly. This is not only inefficient
and time-consuming but also error-prone. The generic programming libraries
introduced in the rest of these lecture notes will solve this problem.

4 Libraries for generic programming

Recently, an extensive comparison of generic programming libraries has been
performed [Rodriguez et al., 2008b, Rodriguez, 2009]. In these notes we will
discuss three of those libraries: a Lightweight Implementation of Generics and
Dynamics, Extensible and Modular Generics for the Masses, and Scrap Your
Boilerplate. We focus on these three libraries for a number of reasons. First, we
think these libraries are representative examples: one library explicitly passes
a type representation as argument to a generic function, another relies on the
type class mechanism, and the third is traversal- and combinator-based. Fur-
thermore, all three have been used for a number of generic functions, and are
relatively easy to use for parts of the lab exercise given in these notes. Finally, all
three of them can express many generic functions; the Uniplate library [Mitchell
and Runciman, 2007] is also representative and easy to use, but Scrap Your Boil-
erplate is more powerful.

The example libraries show different ways to implement the essential in-
gredients of generic programming libraries. Support for generic programming
consists of three essential ingredients [Hinze and Löh, 2009]: a run-time type
representation, a generic view on data, and support for overloading.

A type-indexed function (TIF) is a function that is defined on every type of a
family of types. We say that the types in this family index the TIF, and we call
the type family a universe. The run-time representation of types determines the
universe on which we can pattern match in a type-indexed function. The larger
this universe, the more types the function can be applied to.

16

A type-indexed function only works on the universe on which it is defined.
If a new datatype is defined, the type-indexed function cannot be used on this
new datatype. There are two ways to make it work on the new datatype. A
non-generic extension of the universe of a TIF requires a type-specific, ad-hoc
case for the new datatype. A generic extension (or a generic view) of a universe
of a TIF requires to express the new datatype in terms of the universe of the TIF
so that the TIF can be used on the new datatype without a type-specific case. A
TIF combined with a generic extension is called a generic function.

An overloaded function is a function that analyses types to exhibit type-
specific behavior. Type-indexed and generic functions are special cases of over-
loaded functions. Many generic functions even have type-specific behavior:
lists are printed in a non-generic way by the generic pretty-printer defined by
deriving Show in Haskell.

In the next sections we will see how to encode these basic ingredients in
the three libraries we introduce. For each library, we present its run-time type
representation, the generic view on data and how overloading is achieved.

Each of the libraries encodes the basic ingredients in a particular way. How-
ever, an encoding of a generic view on datatypes is largely orthogonal to an
encoding of overloading, and we can achieve variants of the libraries described
in the following sections by combining the basic ingredients differently [Hinze
and Löh, 2009].

5 Lightweight Implementation of Generics and Dynamics

In this section, we discuss our first library for datatype-generic programming
in Haskell. The library, Lightweight Implementation of Generics and Dynam-
ics [Cheney and Hinze, 2002] or LIGD, serves as a good introduction to many
of the concepts necessary for generic programming in a library. For example, it
uses a simple encoding of the structural elements for the sum-of-products view
that we saw in Section 2.7. Also, LIGD can represent many of the datatypes de-
scribed in Section 3 with the exceptions being existentially quantified types and
generalized algebraic datatypes (GADTs). Cheney and Hinze [2002] demon-
strate a method for storing dynamically typed values (such as the one in Sec-
tion 3.6); however, here we focus only on the generic representation. Lastly, we
have updated the representation previously presented to use a GADT for type
safety. As a side effect, it provides a good example of the material in Section 3.7.

To initiate our discussion of LIGD in Section 5.1, we first introduce an exam-
ple function, in this case equality, to give a taste of how the library works. Then,
Section 5.2 delves into the most basic representation used for LIGD. Next in Sec-
tion 5.3, we show the important component necessary to support translating
between the representation and Haskell datatypes. In Section 5.4, we describe
how to implement a function differently for a certain type using overloading.
Finally, Section 5.5 describes a number of useful generic functions (and how the
library supports them), and Section 5.6 describes a particular case study using
an exercise assistant.

17

5.1 An example function

The equality function in LIGD takes three arguments: the two values for com-
parison and a representation of the type of these values.

eq :: Rep a→ a→ a→ Bool

The function eq is defined by pattern matching on the type representation type
Rep, which contains constructors for type representations, such as RInt, RChar,
etc. It is defined in the following subsection.

eq (RInt) i j = eqInt i j
eq (RChar) c d = eqChar c d
eq (RUnit) Unit Unit = True
eq (RSum ra rb) (L a1) (L a2) = eq ra a1 a2
eq (RSum ra rb) (R b1) (R b2) = eq rb b1 b2
eq (RSum ra rb) = False
eq (RProd ra rb) (a1 :×: b1) (a2 :×: b2) = eq ra a1 a2 ∧ eq rb b1 b2

Notice the similarities to the Generic Haskell function defined in Section 2.7.
We have unit, sum, and product types, and the function is indexed by a rep-
resentation of them, in this case the GADT Rep. By pattern matching on the
constructors of Rep, the type checker is informed of the types of the remaining
arguments, thus allowing us to pattern match on the structural elements.

Let us look at eq on a case-by-case basis. First, we have the primitive types Int
and Char. These are not represented generically; rather, their values are stored,
and we depend on the primitive functions eqInt and eqChar. Next, we have the
collection of generic structural elements: unit, sum, and product. Two Unit val-
ues are always equal (ignoring undefined values). A sum presents two alterna-
tives, L and R. If the structure is the same, then we recursively check equality
of the contents; otherwise, the alternatives cannot be equal. In the last case, a
product is only equal to another product if their components are both equal.

5.2 Run-time type representation

The eq function is a type-indexed function with a run-time type representation
as its first argument—it need not appear in that position, but that is standard
practice. The representation utilizes a few key types for structure.

data Unit = Unit
data a :+: b = L a | R b
data a :×: b = a :×: b

infixr 5 :+:
infixr 6 :×:

These three types represent the values of the unit, sum, and product, and each
is isomorphic to a standard Haskell datatype: Unit to (), (:+:) to Either, and

18

(:×:) to (,). We use new datatypes so as to easily distinguish the world of type
representations and world of types we want to represent.

The GADT Rep uses the above datatypes to represent the structure of types.

data Rep t where
RInt :: Rep Int
RChar :: Rep Char
RUnit :: Rep Unit
RSum :: Rep a→ Rep b→ Rep (a :+: b)
RProd :: Rep a→ Rep b→ Rep (a :×: b)

The constructors in Rep define the universe of LIGD: the structural elements
together with basic types. Of course, there are other basic types such as Float
and Double, but their use is similar, and we ignore them for brevity.

Cheney and Hinze [2002] developed the original LIGD before GADTs had
been introduced into GHC. They instead used an existentially quantified data-
type. Using a GADT has the advantage that case analysis on types can be imple-
mented by pattern matching, a familiar construct to functional programmers.

5.3 Going generic: universe extension

If we define a datatype, how can we use our type-indexed function on this
new datatype? In LIGD (and many other generic programming libraries), the
introduction of a new datatype does not require redefinition or extension of all
existing generic functions. We merely need to describe the new datatype to the
library, and all existing and future generic functions will be able to handle it.

In order to add arbitrary datatypes to the LIGD universe, we extend Rep
with the RType constructor.

data Rep t where
. . .
RType :: EP d r→ Rep r→ Rep d

The type r provides the structure representation for some datatype d. This indi-
cates that r is isomorphic to d, and the isomorphism is witnessed by an embed-
ding-projection pair.

data EP d r = EP{ from :: (d→ r), to :: (r→ d)}

The type EP is a pair of functions for converting d values to r values and back.
An EP value should preserve the properties (as described in Section 2.5) that
from . to≡ id and to . from≡ id.

As mentioned in Section 2.7, we can represent constructors by nested sums
and fields by nested products. To give an example, the isomorphic representa-
tion type for List a is:

type RList a = Unit :+: a :×: List a

19

The functions for the embedding-projection are:

fromList :: List a→ RList a

fromList Nil = L Unit
fromList (Cons a as) = R (a :×: as)

toList :: RList a→ List a

toList (L Unit) = Nil
toList (R (a :×: as)) = Cons a as

The components of the pair are not embedded in the universe. The reason for
this is that LIGD does not model recursion explicitly. This is sometimes called
a shallow representation. In LIGD, a structure representation type is expressed in
terms of the basic type representation types Int, Char, Unit, (:+:), and (:×:), and it
may refer back to the type that is represented, argument types, and other types
that have been represented. As a consequence, it is easy to represent mutually
recursive datatypes as introduced in Section 3.3. Some generic programming
libraries, such as PolyLib [Norell and Jansson, 2004a], use a deep representation
of datatypes, in which the arguments of the structure representation types are
embedded in the universe as well. This makes it easier to define some generic
functions, but much harder to embed families of datatypes and mutually recur-
sive datatypes. However, the very recent generic programming library multi-
rec [Rodriguez et al., 2009] shows how to overcome this limitation.

To extend the universe to lists, we write a type representation using RType:

rList :: Rep a→ Rep (List a)
rList ra = RType (EP fromList toList)

(RSum RUnit (RProd ra (rList ra)))

Given the definition of equality in Section 5.1, we can now extend it to sup-
port all representable types.

eq :: Rep a→ a→ a → Bool
. . .
eq (RType ep ra) t1 t2 = eq ra (from ep t1) (from ep t2)

This case takes arguments t1 and t2 of some type a, transforms them to their
structure representation using the embedding-projection pair ep, and applies
equality to the new values with the representation ra. Adding this line to the
definition of eq turns it from a type-indexed function into a generic function.

Note that there are two ways to extend the LIGD universe to a type T. A
non-generic extension involves adding a type-specific, ad-hoc constructor to
Rep while a generic-extension requires a structure representation for T but no
additional function cases. For example, support for Int is non-generic, and sup-
port for List is generic. The ability for generic extension is the feature that dis-
tinguishes generic functions from type-indexed functions.

Exercise 1. Give the representation of the datatypes Tree and Forest (defined in
Section 3.3) for LIGD. �

20

5.4 Support for overloading

Now that we have seen a very basic generic function, we will explore a few
other concepts of generic programming in LIGD. A “show” function—serving
the same purpose as the standard show function after deriving Show—illustrates
how a library deals with constructor names and how it deals with ad-hoc cases
for particular datatypes. First, we look at constructor names.

The type representation as developed so far does not contain any informa-
tion about constructors, and hence we cannot define a useful generic show func-
tion using this representation. To solve this, we add an extra constructor to the
structure representation type.

data Rep t where
. . .
RCon :: String→ Rep a→ Rep a

To use this extra constructor, we modify the representation of the datatype List
to include the names of the constructors:

rList :: Rep a→ Rep (List a)
rList ra = RType (EP fromList toList)

(RSum (RCon "Nil" RUnit)
(RCon "Cons" (RProd ra (rList ra))))

Here is a simple definition for a generic show function:

show :: Rep t→ t→ String
show RInt t = show t
show RChar t = show t
show RUnit t = ""
show (RSum ra rb) (L a) = show ra a
show (RSum ra rb) (R b) = show rb b
show (RProd ra rb) (a :×: b) = show ra a ++ " "++ show rb b
show (RType ep ra) t = show ra (from ep t)
show (RCon s RUnit) t = s
show (RCon s ra) t = "("++ s ++ " "++ show ra t ++ ")"

As an example of how show works, given an input of (Cons 1 (Cons 2 Nil)), it
outputs "(Cons 1 (Cons 2 Nil))". This definition works well generically, but
the output for lists seems rather verbose. Suppose we want the list to appear in
the comma-delimited fashion of the built-in Haskell lists, e.g. "[1,2]". We can
do that with an ad-hoc case for List.

For each type for which we want a generic function to behave in a non-
generic way, we extend Rep with a new constructor. For lists, we add RList:

data Rep t where
. . .
RList :: Rep a→ Rep (List a)

21

Now we add the following lines to the generic show function to obtain type-
specific behavior for the type List a.

show (RList ra) as = showList (show ra) True as

This case uses the following useful higher-order function:

showList :: (a→ String)→ Bool→ List a→ String
showList showa = go

where go False Nil = "]"
go True Nil = "[]"
go False (Cons a as) = ’,’ : rest a as
go True (Cons a as) = ’[’ : rest a as
rest a as = showa a ++ go False as

Now, show (RList RInt) (Cons 1 (Cons 2 Nil)) will print a nicely reduced list
format. Note that the resulting generic function does not implement all details
of deriving Show, but it does provide the core functionality.

We adapted the type representation Rep to obtain type-specific behavior in
the gshow function. In general, it is undesirable to change a library in order to
obtain special behavior for a single generic function on a particular datatype.
Unfortunately, this is unavoidable in LIGD: for any generic function that needs
special behavior on a particular datatype, we have to extend the type repre-
sentation with that datatype. This means that users may decide to construct
their own variant of the LIGD library, thus making both the library and the
generic functions written using it less portable and reusable. Löh and Hinze
[2006] show how to add open datatypes to Haskell. A datatype is open if it can be
extended in a different module. In a language with open datatypes, the above
problem with LIGD disappears.

5.5 Generic functions in LIGD

This section introduces some more generic functions in LIGD, in particular
some functions for which we need different type representations. We start with
a simple example of a generic program.

Empty

We can generate an “empty” value for any datatype representable by LIGD.
For example, the empty value of Int is 0, and the empty value of List is Nil. The
empty function encodes these choices.

empty :: Rep a→ a

empty RInt = 0
empty RChar = ’\NUL’
empty RUnit = Unit

22

empty (RSum ra rb) = L (empty ra)
empty (RProd ra rb) = empty ra :×: empty rb
empty (RType ep ra) = to ep (empty ra)
empty (RCon s ra) = empty ra

Note that some of these choices are somewhat arbitrary. We might have used
minBound for Int or R for sums.

An interesting aspect of this function is that it has a generic value as an out-
put instead of an input. Up to now, we have only seen generic consumer func-
tions or functions that accept generic arguments. A producer function constructs
a generic value.

Exercise 2. Another generic function that constructs values of a datatype is
the function enum :: Rep a → [a], which generates all values of a type. Many
datatypes have infinitely many values, so it is important that function enum
enumerates values fairly. Implement enum in LIGD. If needed, refer to Sec-
tion 6.8 for help. �

Flatten

We previously introduced container datatypes in Sections 2.3 and 3.4. A useful
function on a container datatype is a “flatten” function, which takes a value of
the datatype and returns a list containing all values that it contains. For exam-
ple, on the datatype Tree a, a flatten function would have type Tree a→ [a]. We
explain how to define this generic function in LIGD.

To implement flatten, we have to solve a number of problems. The first prob-
lem is describing its type. An incorrect attempt would be the following:

flatten :: Rep f → f a→ [a] -- WRONG!

where f abstracts over types of kind ? → ?. Since Rep expects arguments of
kind ?, this gives a kind error. Replacing Rep f by Rep (f a) would solve the
kinding problem, but introduce another: how do we split the representation
of a container datatype into a representation for f and a representation for a?
Type application is implicit in the type representation Rep (f a). We solve this
problem by creating a new structure representation type:

data Rep1 g a where
RInt1 :: Rep1 g Int
RChar1 :: Rep1 g Char
RUnit1 :: Rep1 g Unit
RSum1 :: Rep1 g a→ Rep1 g b→ Rep1 g (a :+: b)
RProd1 :: Rep1 g a→ Rep1 g b→ Rep1 g (a :×: b)
RType1 :: EP d r→ Rep1 g r→ Rep1 g d
RCon1 :: String→ Rep1 g a→ Rep1 g a
RVar1 :: g a→ Rep1 g a

23

This datatype is very similar to Rep, but there are two important differences.
The first is that Rep1 is now parametrised over two types: a generic function
signature g of kind ? → ? and a generic type a of kind ?. The second change
is the addition of the RVar1 constructor. The combination of the signature, rep-
resented by a newtype, and the constructor RVar1 will be used to define the
functionality at occurrences of the type argument in constructors.

Our initial challenge for defining flatten is to choose a signature (for g above).
In general, it should be the most general signature possible, and in our case, we
note that our function takes one generic value and produces a list of non-generic
elements. Thus, we know the following: it is a function with one argument,
that argument is generic, and the return value is a polymorphic list. From this
information, we decide on the following newtype as our signature:

newtype Flatten b a = Flatten{selFlatten :: a→ [b]}

It is important to notice that the order of the type parameters is significant.
Flatten will be used as a type of kind ? → ?, so the last parameter (a) serves as
the generic argument type while the first parameter (b) is simply polymorphic.

Once we have our signature, we can define a type-indexed function (with a
type synonym to improve the readability and reduce the visual complexity of
types).

type RFlatten b a = Rep1 (Flatten b) a

appFlatten :: RFlatten b a→ a→ [b]
appFlatten RInt1 i = []
appFlatten RChar1 c = []
appFlatten RUnit1 Unit = []
appFlatten (RSum1 ra rb) (L a) = appFlatten ra a
appFlatten (RSum1 ra rb) (R b) = appFlatten rb b
appFlatten (RProd1 ra rb) (a :×: b) = appFlatten ra a ++ appFlatten rb b
appFlatten (RType1 ep ra) x = appFlatten ra (from ep x)
appFlatten (RCon1 ra) x = appFlatten ra x
appFlatten (RVar1 f) x = selFlatten f x

The function appFlatten is not the final result, but it encompasses all of the struc-
tural induction on the representation. The primitive types and unit are not im-
portant to the structure of the container, so we return empty lists for them. In
the sum case, we simply recurse to the appropriate alternative. For products,
we append the second list of elements to the first list. In the RType case, we con-
vert a Haskell datatype to its representation before recursing. Perhaps the most
interesting case is RVar1.

The RVar1 constructor tells us where to apply the function wrapped by our
newtype signature. Thus, we select the function with the record destructor
selFlatten and apply it to the value. Since we have not yet defined that signa-
ture function, our definition is not yet complete. We can define the signature
function and the final result in one go:

24

flatten :: (RFlatten a a→ RFlatten a (f a))→ f a→ [a]
flatten rep = appFlatten (rep (RVar1 (Flatten (:[]))))

We have added a convenience to the type signature that is perhaps not obvious:
it is specialized to take an argument of f a rather than the more general, single-
variable type that would be inferred. This change allows us to look at the type
and better predict the meaning of the function.

There are a few points worth highlighting in the definition of flatten. First,
the type signature indicates that its first argument is a representation for a
datatype of kind ? → ?. This is evident from the functional type of the ar-
gument. Second, we see a value-level parallel to a type-level operation: the rep
argument, representative of a type constructor, is applied to the RVar1 value,
itself standing in for the argument of a type constructor. Lastly, our signature
function is established by Flatten (:[]), where (:[]) injects an element into a
singleton list. Notice the connection to appFlatten in which we use selFlatten to
apply the signature function in the RVar1 case.

Now, to see how flatten can be used, we create a representation for the List
datatype using Rep1. When comparing with the previous representation for
Rep, the constructor names and the type require trivial changes.

rList,1 :: Rep1 g a→ Rep1 g (List a)
rList,1 ra = RType1 (EP fromList toList)

(RSum1 (RCon1 "Nil" RUnit1)
(RCon1 "Cons" (RProd1 ra (rList,1 ra))))

We use this representation to produce a function specialized for lists:

flattenList :: List a→ [a]
flattenList = flatten rList,1

Of course, this transformation is isomorphic and not extremely useful, but we
can apply the same approach to Tree and Forest for a more productive special-
ization.

Exercise 3. Many generic functions follow the same pattern of the generic flatten
function. Examples include a function that sums all the integers in a value of
a datatype, and a function that takes the logical “or” of all boolean values in a
container. We implement this pattern with crush.

The function crush abstracts over functionality at occurrences of the type
variable. In the definition of flatten, this includes the base case [] and the binary
case ++. The relevant types of crush follow.

newtype Crush b a = Crush{selCrush :: a→ b}

type RCrush b a = Rep1 (Crush b) a

crush :: (RCrush a a→ RCrush b (f a))→ (b→ b→ b)→ b→ f a→ b

25

Define crush. (Attempt to solve it without looking ahead to Section 6 in which
crushr is defined using the EMGM library.)

To test if your function implements the desired behavior, instantiate crush
with the addition operator, 0, and a value of a datatype containing integers to
obtain a generic sum function. �

Generalised map

A well-known function is map :: (a → b) → [a] → [b] function. It takes a
higher-order function and a list as arguments, and applies the function to every
element in the list. We can also defined a generic map function that applied a
function to every element of some container datatype. The map function can be
viewed as the implementation of deriving Functor.

As with the generic flatten, the generic map function needs to know where
the occurrences of the type argument of the datatype appear in a constructor.
This means that we again need to abstract over type constructors. If we use
Rep1 for our representation, the argument function will only return a value of
a type that dependent on a or a constant type. Recall that the constructor RVar1
has type g a → Rep1 g a, and thus the signature function g can only specify
behavior for a single type variable. A true, generic map should be able to change
each element type from a to a possibly completely different type b; so, we need
a signature function with two type variables.

Our generic map will use this new representation datatype.

data Rep2 g a b where
RInt2 :: Rep2 g Int Int
RChar2 :: Rep2 g Char Char
RUnit2 :: Rep2 g Unit Unit
RSum2 :: Rep2 g a b→ Rep2 g c d→ Rep2 g (a :+: c) (b :+: d)
RProd2 :: Rep2 g a b→ Rep2 g c d→ Rep2 g (a :×: c) (b :×: d)
RType2 :: EP a c→ EP b d→ Rep2 g c d→ Rep2 g a b
RCon2 :: String→ Rep2 g a b→ Rep2 g a b
RVar2 :: g a b→ Rep2 g a b

The significant difference with the representation type Rep1 is the addition of
the type variable b in Rep2 g a b and in the signature function g a b argument of
RVar2. As we would expect, a signature function now has the kind ?→ ?→ ?.
One other minor but necessary difference from Rep1 (and Rep) is the second
EP argument to RType. Since we have two generic type parameters, we need an
isomorphism for each.

We begin defining the generic function map with the signature function type
as we did with flatten. Analyzing the problem we want to solve, we know that
map requires a generic input value and a generic output value. There are no
polymorphic or known types involved. So, our signature function is as follows:

newtype Map a b = Map{selMap :: a→ b}

26

Unlike the flatten example, the position of the parameters is not as important.
The type-indexed function appears as so:

type RMap a b = Rep2 Map a b

appMap :: RMap a b→ a→ b

appMap RInt2 i = i
appMap RChar2 c = c
appMap RUnit2 Unit = Unit
appMap (RSum2 ra rb) (L a) = L (appMap ra a)
appMap (RSum2 ra rb) (R b) = R (appMap rb b)
appMap (RProd2 ra rb) (a :×: b) = appMap ra a :×: appMap rb b
appMap (RType2 ep1 ep2 ra) x = (to ep2 . appMap ra . from ep1) x
appMap (RCon2 ra) x = appMap ra x
appMap (RVar2 f) x = selMap f x

Its definition is no real surprise. Since we only apply a change to elements of
the container, we only use the signature function selMap f in the RVar2 case. In
every other case, we preserve the same structure on the right as on the left. It is
also interesting to note the RType2 case in which we translate from a datatype to
its structure representation, apply the recursion, and translate the result back to
the datatype.

The final part of the definition is quite similar to that of flatten.

map :: (RMap a b→ RMap (f a) (f b))→ (a→ b)→ f a→ f b

map rep f = appMap (rep (RVar2 (Map f)))

A major point of difference here is that the signature function f is an argument.
The representation of lists using this new representation type changes in

insignificant ways: a second embedding-projection pair and naming updates.

rList,2 ra = RType2 (EP fromList toList)
(EP fromList toList)
(RSum2 (RCon2 "Nil" RUnit2)

(RCon2 "Cons" (RProd2 ra (rList,2 ra))))

Using rList,2, we can define map on lists as follows:

mapList :: (a→ b)→ List a→ List b

mapList = map rList,2

Since each of the last two generic functions introduced required a new structure
representation type, one might wonder if this happens for many generic func-
tions. As far as we have found, the useful extensions stop with three generic
type parameters. We could use the datatype Rep3 for all generic functions, but
that would introduce many type variables that are never used. We prefer to use
the representation type most suitable to the generic function at hand.

27

Exercise 4. Define the generalised version of function zipWith :: (a→ b→ c)→
[a] → [b] → [c] in LIGD. You may need to adapt the structure representation
type for this purpose. �

5.6 Case study: exercise assistants

In this section, we describe using the LIGD library to define a generic function
for a particular case study, an exercise assistant. An exercise assistant supports
interactively solving exercises in a certain domain. For example, at the Open
University NL and Utrecht University, we are developing exercise assistants
for several domains: systems of linear equations [Passier and Jeuring, 2006],
disjunctive normal form (DNF) of a logical expression [Lodder et al., 2006], and
several kinds of exercises with linear algebra. A screenshot of the assistant that
supports calculating a DNF of a logical expression is shown in Figure 1.

Fig. 1. The Exercise Assistant

The exercise assistants for the different domains are very similar. They need
operations such as equality, rewriting, exercise generation, term traversal, selec-
tion, and serialization. Each program can be viewed as an instance of a generic
exercise assistant. For each generic programming library we discuss in these
lecture notes, we also present a case study implementing functionality for an
exercise assistant. In this subsection, we show how to implement a generic func-
tion for determining the difference between two terms.

We have used equality to introduce many concepts in these notes; however,
we often want to know whether or not two values differ, and by how much or

28

where. For example, in the exercise assistant a user can submit a step towards a
solution of an exercise. We want to compare the submitted expression against
expressions obtained by applying rewrite rules to the previous expression. If
none match, we want to find a correctly rewritten expression that is closest in
some sense to the expression submitted by the student.

The function similar determines a measure of equality between two values.
Given two values, the function counts the number of constructors and basic
values that are equal. The function traverses its arguments top-down: as soon as
it encounters unequal constructors, it does not traverse deeper into the children.

similar :: Rep a→ a→ a→ Int

similar RInt i j = if i j then 1 else 0
similar RChar c d = if c d then 1 else 0
similar RUnit = 1
similar (RSum ra rb) (L a) (L b) = similar ra a b
similar (RSum ra rb) (R a) (R b) = similar rb a b
similar (RSum ra rA) = 0
similar (RProd ra rb) (a1 :×: b1) (a2 :×: b2) = similar ra a1 a2 + similar rb b1 b2
similar (RType ep ra) a b = similar ra (from ep a) (from ep b)
similar (RCon s ra) a b = 1 + similar ra a b

Given a definition of a generic function size that returns the size of a value
by counting all basic values and constructors, we can define the function diff
by:

diff :: Rep a→ a→ a→ Int
diff rep x y = size rep x− similar rep x y

The difference here is reported as the size of the first value minus the similarity
of the two. The function diff provides a rough estimate. A generic minimum
edit distance function [Lempsink et al., 2009] would provide a higher-precision
difference.

In this section, we discussed an implementation of datatype-generic pro-
gramming in the Lightweight Implementation of Generics and Dynamics li-
brary. In the next section, we discuss a library that is similar in representation
to LIGD but uses type classes instead of GADTs.

6 Extensible and Modular Generics for the Masses

The library “Generics for the Masses” was first introduced by Hinze [2004],
and a variant, “Extensible and Modular Generics for the Masses,” was later
presented by Oliveira et al. [2006]. In this section, we describe latter, EMGM,
with a slight twist to ease the extensibility requirements (details in Section 6.6).

Our approach follows much like that of Section 5. We again use equality to
introduce generic functions (Section 6.1). We also explain the general mechanics
(Section 6.2), the component necessary for extending the universe (Section 6.3),

29

and the support for overloading (Section 6.4). Where EMGM differs from LIGD
is the capability for generic functions to be extended with datatype-specific
functionality while preserving the modularity of the function definition. We
first describe the published approach to solving this problem (Section 6.5) and
then introduce our solution to reducing the burden of extensibility (Section 6.6).
Next, we define several different generic functions using EMGM (Section 6.7).
As with LIGD, these require changes to the representation. Finally, we imple-
ment a value generator for the exercise assistant case study (Section 6.8).

6.1 An example function

Defining a generic function in the EMGM library involves several steps. First,
we declare the type signature of a function in a newtype declaration.

newtype Eq a = Eq{selEq :: a→ a→ Bool}

The newtype Eq serves a similar purpose to the signature function of LIGD
first mentioned when describing the function flatten in Section 5.5. Unlike LIGD,
however, every generic function in EMGM requires its own newtype.

Next, we define the cases of our generic function.

selEqint i j = i j
selEqchar c d = c d
selEq1 Unit Unit = True
selEq+ ra rb (L a1) (L a2) = selEq ra a1 a2
selEq+ ra rb (R b1) (R b2) = selEq rb b1 b2
selEq+ = False
selEq× ra rb (a1 :×: b1) (a2 :×: b2) = selEq ra a1 a2 ∧ selEq rb b1 b2

We can read this in the same fashion as a type-indexed function in LIGD. In-
deed, there is a high degree of similarity. However, instead of a single function
that uses pattern matching on a type representation, we have many functions,
each corresponding to a primitive or structural type. Another major difference
with LIGD is that the type representation parameters (e.g. for RSum, RProd, etc.)
are explicit and not embedded in the Rep datatype. Specifically, each function
takes the appropriate number of representations according to the arity of the
structural element. For example, selEq1 has no representation arguments, and
selEq+ and selEq× each have two.

These functions are only part of the story, of course. Notice that selEq+ and
selEq× each call the function selEq. We need to tie the recursive knot, so that
selEq will select the appropriate case. We do this by creating an instance decla-
ration of a type class Generic for Eq:

instance Generic Eq where
rint = Eq selEqint
rchar = Eq selEqchar

30

runit = Eq selEq1

rsum ra rb = Eq (selEq+ ra rb)
rprod ra rb = Eq (selEq× ra rb)

The type class has member functions corresponding to primitive and structure
types. Each method defines the instance of the type-indexed function for the
associated type. The above collection of functions are now used in values of Eq.
The EMGM approach uses method overriding instead of the pattern matching
used by LIGD, but it still provides an effective case analysis on types. Another
difference between the two libraries is that LIGD uses explicit recursion while
EMGM’s recursion is implicitly implemented by the instance in a fold-like man-
ner.

We now have all of the necessary parts to use the type-indexed function
selEq.4

selEq (rprod rchar rint) (’Q’ :×: 42) (’Q’ :×: 42) True

On the other hand, we should not need to provide an explicit representation
every time. Instead, we introduce a convenient wrapper that determines which
type representation we need.

eq :: (Rep a)⇒ a→ a→ Bool
eq = selEq rep

The type class Rep is an interface (Section 2.4) to all known type representations,
and its method rep statically resolves to a value of the appropriate representa-
tion. This mechanism allows us to write a simpler call: eq (’Q’ :×: 42) (’Q’ :×:
42). Note that we might have defined such a class for LIGD (as was done by
Cheney and Hinze [2002]); however, that would have only been a convenience.
In EMGM, it becomes a necessity for extensibility (Section 6.5).

6.2 Run-time type representation

In contrast with LIGD’s GADT, EMGM makes extensive use of type classes
for its run-time type representation. The primary classes are Generic and Rep,
though others may be used to extend the basic concepts of EMGM as we will
see later (Section 6.7).

The type class Generic serves as the interface for a generic function.

class Generic g where
rint :: g Int
rchar :: g Char
runit :: g Unit
rsum :: g a→ g b→ g (a :+: b)
rprod :: g a→ g b→ g (a :×: b)

4 We use the notation a b to mean that, in GHCi, expression a evaluates to b.

31

infixr 5 ‘rsum‘
infixr 6 ‘rprod‘

The class is parametrised by the type constructor g that serves as the type-
indexed function’s signature function.

Each method of the class represents a case of the type-indexed function.
The function supports the same universe of types as LIGD (e.g. Unit, :+:, :×:,
and primitive types). Also like LIGD, the structural induction is implemented
through recursive calls, but unlike LIGD, these are polymorphically recursive
(see Section 2.4). Thus, in our previous example, each call to selEq may have a
different type.

The type-indexed function as we have defined it to this point is a destructor
for the type g. As such, it requires an value of g, the type representation. In
order to alleviate this requirement, we use another type class:

class Rep a where
rep :: (Generic g)⇒ g a

This allows us to replace any value of the type g a with rep. This simple but pow-
erful concept uses the type system to dispatch the necessary representation.
Representation instances are built inductively using the methods of Generic:

instance Rep Int where
rep = rint

instance Rep Char where
rep = rchar

instance Rep Unit where
rep = runit

instance (Rep a, Rep b)⇒ Rep (a :+: b) where
rep = rsum rep rep

instance (Rep a, Rep b)⇒ Rep (a :×: b) where
rep = rprod rep rep

As simple as these instances of Rep are, they handle an important duty. In the
function eq, we use rep to instantiate the structure of the arguments. For exam-
ple, it instantiates rprod rchar rint given the argument ’Q’ :×: (42 :: Int). Now,
we may apply eq with the same ease of use as with any ad-hoc polymorphic
function, even though it is actually datatype-generic.

6.3 Going generic: universe extension

Much like in LIGD, we need to extend our universe to include any new datatypes
that we create. We extend our type-indexed functions with a case to support ar-
bitrary datatypes.

class Generic g where
. . .
rtype :: EP b a→ g a→ g b

32

The rtype function reuses the embedding-projection pair datatype EP mentioned
earlier to witness the isomorphism between the structure representation and
the datatype. Note the similarity with the RType constructor from LIGD (Sec-
tion 5.3).

To demonstrate the use of rtype, we will once again show how the List
datatype may be represented in a value. As mentioned before, we use the same
structure types as LIGD, so we can make use of the same pair of functions,
fromList and toList, in the embedding projection for lists. Using this pair and an
encoding of the list structure at the value level, we define a representation of
lists:

rList :: (Generic g)⇒ g a→ g (List a)
rList ra = rtype (EP fromList toList) (runit ‘rsum‘ ra ‘rprod‘ rList ra)

It is now straightforward to apply a generic function to a list. To make it con-
venient, we create a new instance of Rep for List a with the constraint that the
contained type a must also be representable:

instance (Rep a)⇒ Rep (List a) where
rep = rList rep

At last, we can transform our type-indexed equality function into a true
generic function. For this, we need to add another case for arbitrary datatypes.

selEqtype ep ra a1 a2 = selEq ra (from ep a1) (from ep a2)

instance Generic Eq where
. . .
rtype ep ra = Eq (selEqtype ep ra)

The function selEqtype accepts any datatype for which an embedding-projection
pair has been defined. It is very similar to the RType case in the LIGD version
of equality. The Generic instance definition for rtype completes the requirements
necessary for eq to be a generic function.

Exercise 5. Now that you have seen how to define rList, you should be able to
define the representation for most other datatypes. Give representations and
embedding-projection pairs for LogicL and LogicF from Section 3.4. You may
need to do the same for other datatypes in the process. Test your results using
eq as defined above. �

6.4 Support for overloading

In this section, we demonstrate how the EMGM library supports constructor
names and ad-hoc cases. As with LIGD in Section 5.4, we illustrate this support
using a generic show function and lists and strings.

33

For accessing constructor names in the definition of a generic function, we
add another method to our generic function interface.

class Generic g where
. . .
rcon :: String→ g a→ g a

We use rcon to label other structure components with a constructor name5. As
an example of using this method, we modify the list type representation with
constructor names:

rList :: (Generic g)⇒ g a→ g (List a)
rList ra = rtype (EP fromList toList)

(rcon "Nil" runit ‘rsum‘ rcon "Cons" (ra ‘rprod‘ rList ra))

Using the capability to display constructor names, we can write a simplified
generic show function:

newtype Show a = Show{selShow :: a→ String}

selShowint i = show i
selShowchar c = show c
selShow1 Unit = ""

selShow+ ra rb (L a) = selShow ra a
selShow+ ra rb (R b) = selShow rb b
selShow× ra rb (a :×: b) = selShow ra a ++ " "++ selShow rb b
selShowtype ep ra a = selShow ra (from ep a)
selShowcon s ra a = "("++ s ++ " "++ selShow ra a ++ ")"

instance Generic Show where
rint = Show selShowint
rchar = Show selShowchar
runit = Show selShow1

rsum ra rb = Show (selShow+ ra rb)
rprod ra rb = Show (selShow× ra rb)
rtype ep ra = Show (selShowtype ep ra)
rcon s ra = Show (selShowcon s ra)

show :: (Rep a)⇒ a→ String
show = selShow rep

5 The released EMGM library uses ConDescr instead of String. ConDescr contains a more
comprehensive description of a constructor (fixity, arity, etc.). For simplicity’s sake, we
only use the constructor name in our presentation.

34

Applying this function to a list of integers gives us the expected result:

show (Cons 5 (Cons 3 Nil)) "(Cons 5 (Cons 3 (Nil)))"

As mentioned in Section 5.4, we would prefer to see this list as it natively ap-
pears in Haskell: "[5,3]". To this end, just as we added a RList constructor to
the Rep GADT, it is possible to add a method rlist to Generic.

class Generic g where
. . .
rlist :: g a→ g (List a)

It is then straightforward to define a new case for the generic show function,
reusing the showList function from Section 5.4.

instance Generic Show where
. . .

> rlist ra = Show (showList (selShow ra) True)

Our last step is to make these types representable. We replace the previous in-
stance of Rep for List a with one using the rlist method, and we add a new
instance for String.

instance (Rep a)⇒ Rep (List a) where
rep = rlist rep

Now, when applying the example application of show above, we receive the
more concise output.

In order to extend the generic function representation to support ad-hoc
list and string cases, we modified the Generic type class. This approach fails
when the module containing Generic is distributed as a third-party library. Un-
like LIGD, there are solutions for preserving modularity while allowing exten-
sibility.

6.5 Making generic functions extensible

Since modifying the type class Generic should be considered off-limits, we might
consider declaring a hierarchy of classes for extensibility. Generic would then be
the base class for all generic functions. A user of the library would introduce a
subclass for an ad-hoc case on a datatype. To explore this idea, let us revisit the
example of defining a special case for show on lists.

The subclass for list appears as follows:

class (Generic g)⇒ GenericList g where
rlist :: g a→ g (List a)
rlist = rList

This declaration introduces the class GenericList encoding a list representation.
The default value of rlist is the same value that we determined previously, but it

35

can be overridden in an instance declaration. For the ad-hoc case of the generic
show function, we would use an instance with the same implementation as
before:

instance GenericList Show where
rlist ra = Show (showList (selShow ra) True)

We have regained some ground on our previous implementation of an ad-hoc
case, yet we have lost some as well. We can apply our generic function to a
type representation and a value (e.g. (selShow (list rint) (Cons 3 Nil))), and it
will evaluate as expected. However, we can no longer use the same means of
dispatching the appropriate representation with ad-hoc cases. What happens if
we attempt to write the following instance of Rep?

instance (Rep a)⇒ Rep (List a) where
rep = rlist rep

GHC returns with this error:

Could not deduce (GenericList g)
from the context (Rep (List a), Rep a, Generic g)
arising from a use of ‘rlist’ at ...

Possible fix:
add (GenericList g) to the context of
the type signature for ‘rep’ ...

We certainly do not want to follow GHC’s advice. Recall that the method rep
of class Rep has the type (Generic g, Rep a) ⇒ g a. By adding GenericList g to
its context, we would force all generic functions to support both Generic and
GenericList, thereby ruling out any modularity. In order to use Rep as it is cur-
rently defined, we must use a type g that is an instance of Generic; instances of
any subclasses are not valid.

Let us instead abstract over the function signature type g. We subsequently
redefine Rep as a type class with two parameters.

class Rep g a where
rep :: g a

This migrates the parametrisation of the type constructor to the class level and
lifts the restriction of the Generic context. We now re-define the representative
instances.

instance (Generic g)⇒ Rep g Int where
rep = rint

instance (Generic g)⇒ Rep g Char where
rep = rchar

instance (Generic g)⇒ Rep g Unit where

36

rep = runit
instance (Generic g, Rep g a, Rep g b)⇒ Rep g (a :+: b) where

rep = rsum rep rep
instance (Generic g, Rep g a, Rep g b)⇒ Rep g (a :×: b) where

rep = rprod rep rep
instance (GenericList g, Rep g a)⇒ Rep g (List a) where

rep = rlist rep

The organization here is very regular. Every instance handled by a method of
Generic is constrained by Generic in its context. For the ad-hoc list instance, we
use GenericList instead.

Now, we rewrite our generic show function to use the new dispatcher by
specialising the type constructor argument g to Show.

show :: (Rep Show a)⇒ a→ String
show = selShow rep

This approach of using a type-specific class (e.g. GenericList) for extensibility
as described initially by Oliveira et al. [2006] and demonstrated here by us puts
an extra burden on the user. In the next subsection, we explain the problem and
how we rectify it.

6.6 Reducing the burden of extensibility

Without the change for extensibility (i.e. before Section 6.4), a function such as
show in EMGM would automatically work with any type that was an instance
of Rep. When we add Section 6.5, then every generic function must have an
instance of every datatype that it will support. In other words, even if we did
not want to define an ad-hoc case for Show using GenericList as we did earlier,
we must provide at least the following (empty) instance to use show on lists.

instance GenericList Show where

This uses the default method for rlist and overrides nothing.
As developers of a library, we want to strike a balance between ease of use

and flexibility. Since we want to allow for extensibility in EMGM, we cannot
provide these instances for each generic function provided by the library. This
forces the library user to write one for every unique pair of datatype and generic
function that is used, whether or not an ad-hoc case is desired. We can fortu-
nately reduce this burden using an extension to the Haskell language.

Overlapping instances allow more than one instance declaration to match
when resolving the class context of a function, provided that there is a most
specific one. Using overlapping instances, we no longer need a type-specific
class such as GenericList because constraint resolution will choose the list repre-
sentation as long as List a is the most specific instance.

37

To continue with our example of specializing Show for lists, we provide the
changes needed with respect to Section 6.5. The List instance for Rep is the same
except for replacing GenericList with Generic.

instance (Generic g, Rep g a)⇒ Rep g (List a) where
rep = rlist rep

At this point, with overlapping instances enabled, no further work is necessary
for lists to be supported by any generic function that uses the Generic class.
However, since we do want an ad-hoc case, we add an instance for Show:

instance (Rep Show a)⇒ Rep Show (List a) where
rep = Show (showList (selShow rep) True)

Notice that the newtype Show is substituted for the variable g in the first argu-
ment of Rep.

Exercise 6. The standard compare function returns the ordering (less than, equal
to, or greater than) between two instances of some type a.

data Ordering = LT | EQ | GT
compare :: (Ord a)⇒ a→ a→ Ordering

This function can be implemented by hand, but more often, it is generated by
the compiler using deriving Ord. The latter uses the syntactic ordering of con-
structors to determine the relationship. For example, the datatype Ordering de-
rives Ord and its constructors have the relationship LT < EQ < GT.

Implement an extensible, generic compare that behaves like deriving Ord.
It should have a type signature similar to the above, but with a different class
context. �

6.7 Generic functions in EMGM

In this section, we discuss the implementation of various generic functions.
Some require alternative strategies from the approach described so far.

Empty

As we did with LIGD in Section 5.5, we write the generic producer function
empty in EMGM as follows:

newtype Empty a = Empty{selEmpty :: a}

instance Generic Empty where
rint = Empty 0
rchar = Empty ’\NUL’
runit = Empty Unit

38

rsum ra rb = Empty (L (selEmpty ra))
rprod ra rb = Empty (selEmpty ra :×: selEmpty rb)
rtype ep ra = Empty (to ep (selEmpty ra))
rcon s ra = Empty (selEmpty ra)

empty :: (Rep Empty a)⇒ a

empty = selEmpty rep

There are a two noteworthy differences from previous examples. First, since it
is a producer function, empty outputs a generic value. Unlike empty in LIGD,
however, the EMGM version takes no arguments at all. In order to use it, we
need to specify a concrete type. In the case where this is not inferred, we can
give a type annotation.

empty :: Int :+: Char L 0

The second difference lies in the rtype definition, where we use to ep instead of
from ep. This is also characteristic of producer functions.

Crush and flatten

Crush is a fold-like operation over a container datatype [Meertens, 1996]. It is
a very flexible function, and many other useful functions can be implemented
using crush. As mentioned in Exercise 3, it can be used to implement flatten,
which we will also demonstrate.

Our goal is a function with a signature similar to the following for datatypes
of kind ?→ ? (see discussion for flatten in Section 5.5).

crushr :: (a→ b→ b)→ b→ f a→ b

The function crushr takes three arguments: a “combining” operator that joins
a-values with b-values to create new b-values, a “zero” value, and a container f
of a-values. crushr (sometimes called reduce) is a generalization of the standard
Haskell foldr function. In foldr, f is specialized to [].

We split the implementation of crushr into components, and we begin with
the type signature for the combining function.

newtype Crushr b a = Crushr{selCrushr :: a→ b→ b}

This function extracts the container’s element and combines it with a partial
result to produce a final result. The implementation follows6:

crushrint e = e
crushrchar e = e

6 For brevity, we elide most of the Generic instance declaration. It is the same as we have
seen before.

39

crushr1 e = e
crushr+ ra rb (L a) e = selCrushr ra a e
crushr+ ra rb (R b) e = selCrushr rb b e
crushr× ra rb (a :×: b) e = selCrushr ra a (selCrushr rb b e)
crushrtype ep ra a e = selCrushr ra (from ep a) e

crushrcon s ra a e = selCrushr ra a e

instance Generic (Crushr b) where
rint = Crushr crushrint
. . .

Note that selCrushr is only applied to the parametrised structural type cases:
crushr+, crushr×, crushrtype, and crushrcon; it is not applied to the primitive
types. Crush only combines the elements of a polymorphic datatype and does
not act on non-parametrised types.

We have successfully made it this far, but now we run into a problem. The
type for rep is Rep g a⇒ g a, and type a is the representation type and has kind
?. We need a representation for a type of kind ? → ?. To expand rep to support
type constructors, we define similar class in which the method has a parameter.

class FRep g f where
frep :: g a→ g (f a)

The class FRep (representation for functionally kinded types) takes the same
first type argument as Rep, but the second is the type constructor f. Notice that
the type of frep matches the kind of f. This is exactly what we need for types
such as Tree or List. The FRep instance for List is not too unlike the one for Rep:

instance (Generic g)⇒ FRep g List where
frep = rList

Now we can define crushr; however, it is a bit of a puzzle to put the pieces
together. Let’s review what we have to work with.

Crushr :: (a→ b→ b)→ Crushr b a

frep :: (FRep g f)⇒ g a→ g (f a)
selCrushr :: Crushr b a→ a→ b→ b

Applying some analysis of the types (left as an exercise for the reader), we com-
pose these functions to get our result.

selCrushr . frep . Crushr :: (FRep (Crushr b) f)⇒ (a→ b→ b)→ f a→ b→ b

Finally, we rearrange the arguments to get a final definition with a signature
similar to foldr.

40

crushr :: (FRep (Crushr b) f)⇒ (a→ b→ b)→ b→ f a→ b
crushr f z x = selCrushr (frep (Crushr f)) x z

To demonstrate the use of crushr, we define the flattenr function as a spe-
cialization. Recall that flattening involves translating all elements of a structure
into a list. The definition of flattenr requires only the combining operator, (:),
for inserting an element into a list and the zero value, [], for starting a new list.

flattenr :: (FRep (Crushr [a]) f)⇒ f a→ [a]
flattenr = crushr (:) []

Exercise 7. How is the behavior of the EMGM function crushr different from
that of the LIGD function crush? Why might the crushr end with an r? What
difference would you expect from a function called crushl? �

Exercise 8. Define two functions using crushr:

1. showElements takes a container with showable elements and returns a string
with the elements printed in a comma-delimited fashion.

2. sumElements takes a container with numeric elements and returns the nu-
meric sum of all elements.

�

Generalised map

As described in Section 5.5, a generic map function gives us the ability to modify
the elements of any container type. We aim for a function with this type:

map :: (a→ b)→ f a→ f b

Using the same analysis performed to define the signature function for map
in LIGD, we arrive at the same type.

newtype Map a b = Map{selMap :: a→ b}

This means we need to abstract over both type arguments in Map. We have not
yet seen how that is done in EMGM, but the idea is similar to the change in
LIGD’s representation.

In order to support abstraction over two types, we need a new class for
defining generic functions. One option is to add a type argument to Generic and
reuse that type class for all previous implementations, ignoring the extra vari-
able. Instead, for simplicity, we choose to create Generic2 to distinguish generic
functions with two type arguments.

class Generic2 g where
rint2 :: g Int Int
rchar2 :: g Char Char

41

runit2 :: g Unit Unit
rsum2 :: g a1 a2 → g b1 b2 → g (a1 :+: b1) (a2 :+: b2)
rprod2 :: g a1 a2 → g b1 b2 → g (a1 :×: b1) (a2 :×: b2)
rtype2 :: EP a2 a1 → EP b2 b1 → g a1 b1 → g a2 b2

The major difference from Generic is that the signature function type g now has
kind ?→ ?→ ?. In the case of the primitive types and Unit, this means simply
repeating the type twice. In the case of (:+:) and (:×:), we need to pass two
types around instead of one. The method rtype2, like the constructor RType2
now accepts two embedding-projection pairs.

The implementation of the generic function follows:

mapint i = i
mapchar c = c
map1 Unit = Unit
map+ ra rb (L a) = L (selMap ra a)
map+ ra rb (R b) = R (selMap rb b)
map× ra rb (a :×: b) = selMap ra a :×: selMap rb b
maptype ep1 ep2 ra x = (to ep2 . selMap ra . from ep1) x

instance Generic2 Map where
rint2 = Map mapint
. . .
rtype2 ep1 ep2 ra = Map (maptype ep1 ep2 ra)

The explanation for the implementation follows exactly as the one given for
LIGD’s appMap except for the RVar2 case, which EMGM does not have.

We write the representation for list as:

rList,2 :: (Generic2 g)⇒ g a b→ g (List a) (List b)
rList,2 ra = rtype2 (EP fromList toList) (EP fromList toList)

(runit2 ‘rsum2‘ ra ‘rprod2‘ rList,2 ra)

We can immediately use the list representation to implement the standard map
as mapList:

mapList :: (a→ b)→ List a→ List b
mapList = selMap . rList,2 . Map

Of course, our goal is to generalise this, but we need an appropriate dispatcher
class. FRep will not work because it abstracts over only one type variable. We
need to extend it in the same way we extended Generic to Generic2:

class FRep2 g f where
frep2 :: g a b→ g (f a) (f b)

42

instance (Generic2 g)⇒ FRep2 g List where
frep2 = rList,2

The class FRep2 uses a signature function type g with two argument types. Note,
however, that we still expect functionally kinded datatypes: f has kind ?→ ?.

Finally, we provide our definition of map.

map :: (FRep2 Map f)⇒ (a→ b)→ f a→ f b
map = selMap . frep2 . Map

This definition follows as the expected generalisation of mapList.

Exercise 9. Are there other useful generic functions that make use of Generic2
and/or FRep2? Can you define them? �

Exercise 10. Define a generalisation of the standard function zipWith in EMGM.
The result should have a type signature similar to this:

zipWith :: (a→ b→ c)→ f a→ f b→ f c

What extensions to the library (as defined) are needed? �

6.8 Case study: generating values

The exercise assistant offers the possibility to generate a new exercise for a stu-
dent. This implies that we need a set of exercises for every domain: systems of
linear equations, logical expressions, etc. We can create this set either by hand
for every domain or generically for an arbitrary domain. The former would
likely involve a lot of work, much of which would be duplicated for each do-
main. For the latter, we need to generically generate exercises. This leads us to
defining a generic value generator.

At the simplest, we seek a generic function with this type signature:

gen :: Int→ a

gen takes a (possibly randomly generated) integer and returns a value some-
how representative of that number. Suppose that for small Int arguments (e.g.
greater than 0 but single-digit), gen produces relatively simple values (e.g. with
few sums). Then, as the number increases, the output becomes more and more
complex. This would lead to an output like QuickCheck [Claessen and Hughes,
2000] typically uses for testing. It would also lead to a set of exercises that pro-
gressively get more difficult as they are solved.

One approach to doing this is to enumerate the values of a datatype. We
generate a list of all of the values using the following template of a generic
function:

newtype Enum a = Enum{selEnum :: [a]}
instance Generic Enum where

43

rint = Enum enumint
rchar = Enum enumchar
runit = Enum enum1

rsum ra rb = Enum (enum+ ra rb)
rprod ra rb = Enum (enum× ra rb)
rtype ep ra = Enum (enumtype ep ra)
rcon s ra = Enum (enumcon s ra)

Now, let us fill in each case of the function. Int values can be positive or negative
and cover the range from minBound to maxBound, the exact values of these being
dependent on the implementation. A simple option might be:

enumint = [minBound . . maxBound]

However, that would lead to a (very long) list of negative numbers followed
by another (very long) list of negative numbers. This is an awfully unbalanced
sequence while we would prefer to start with the most “basic” value (equiv-
alent to empty) and progressively get larger. As a result, we alternate positive
and negative numbers.

enumint = [0 . . maxBound] ||| [−1,−2 . . minBound]

By reversing the negative enumeration, we now begin with 0 and grow larger
(in the absolute sense). The interleave operator (|||) is defined as follows:

(|||) :: [a]→ [a]→ [a]
[] ||| ys = ys
(x : xs) ||| ys = x : ys ||| xs

This function is similar to ++ with the exception of the recursive case, in which
xs and ys are swapped. This allows us to interleave the elements of the two lists,
thus balancing the positive and negative sides of the Int enumeration. Note that
(|||) also works if the lists are infinite.

For Char and Unit, the implementations are straightforward.

enumchar = [minBound . . maxBound]
enum1 = [Unit]

For enumchar, we enumerate from the first character ’\NUL’ to the last, and for
enum1, we return a singleton list of the only Unit value.

In sums, we have a problem analogous to that of Int. We want to generate
L-values and R-values, but we want to choose fairly from each side.

enum+ ra rb = [L x | x← selEnum ra] ||| [R y | y← selEnum rb]

By interleaving these lists, we ensure that there is no preference to either alter-
native.

44

We use the Cartesian product for enumerating the pairs of two (possibly
infinite) lists.

enum× ra rb = selEnum ra >< selEnum rb

The definition of >< is left as Exercise 11 for the reader.
The remaining cases for Enum are enumtype and enumcon. The former re-

quires a map to convert a list of generic representations to a list of values. The
latter is the same as for Empty (Section 6.7), because constructor information is
not used here.

enumtype ep ra = map (to ep) (selEnum ra)
enumcon s ra = selEnum ra

The final step for a generic enumeration function is to apply it to a represen-
tation.

enum :: (Rep Enum a)⇒ [a]
enum = selEnum rep

To get to a generic generator, we simply index into the list.

gen :: (Rep Enum a)⇒ Int→ a
gen = (!!) enum

The performance of this function is not be optimal; however, we could fuse the
indexing operator (!!) into the definition of enum for a more efficient (and more
complicated) function.

Exercise 11. Define a function that takes the diagonalization of a list of lists.

diag :: [[a]]→ [a]

diag returns a list of all of elements in the inner lists. It will always return at
least some elements from every inner list, even if that list is infinite.

We can then use diag to define the Cartesian product.

(><) :: [a]→ [b]→ [a :×: b]
xs >< ys = diag [[x :×: y | y← ys] | x← xs]

�

Exercise 12. Design a more efficient generic generator function. �

We have provided an introduction to the Extensible and Modular Generics
for the Masses library in this section. It relies on similar concepts to LIGD, yet
it allows for better extensibility and modularity through the use of type classes.
The next section introduces a well-known library using a representation that is
completely different from both LIGD and EMGM.

45

7 Scrap Your Boilerplate

In this section, we describe the Scrap Your Boilerplate (SYB) approach to generic
programming [Lämmel and Peyton Jones, 2003, 2004]. The original concept be-
hind SYB is that in contrast to the two approaches discussed previously, the
structure of datatypes is not directly exposed to the programmer. Generic func-
tions are built with “primitive” generic combinators, and the combinators in
turn can be generated (in GHC) using Haskell’s deriving mechanism for type
classes. We also mention a variation of SYB in which a structure representation
is given and used to define functions.

7.1 An example function

Recall the Expr datatype from Section 3), and suppose we want to implement
a function that increases the value of each literal by one. Here is a simple but
incorrect solution:

inc :: Expr Int→ Expr Int
inc (Lit x) = Lit (x + 1)

This solution is incorrect because we also have to write the “boilerplate” code
for traversing the entire expression tree, which just leaves the structure intact
and recurses into the arguments. Using SYB, we do not have to do that any-
more: we signal that the other cases are uninteresting by saying:

inc x = x

Now we have the complete definition of function inc: increment the literals and
leave the rest untouched. To ensure that this function is applied everywhere in
the expression we write:

increment :: Data a⇒ a→ a
increment = everywhere (mkT inc)

This is all we need: the increment function increases the value of each literal by
one in any Expr. It even works for LinearExprs, or LinearSystems, with no added
cost.

We now proceed to explore the internals of SYB to better understand the po-
tential of this approach and the mechanisms involved behind a simple generic
function such as increment.

7.2 Run-time type representation

Contrary to the approaches to generic programming discussed earlier, SYB does
not provide the structure of datatypes to the programmer, but instead offers
basic combinators for writing generic programs. At the basis of these combina-
tors is the method typeOf of the type class Typeable. Instances of this class can

46

be automatically derived by the GHC compiler, and implement a unique repre-
sentation of a type, enabling run-time type comparison and type-safe casting.

class Typeable a where
typeOf :: a→ TypeRep

An instance of Typeable only provides a TypeRep (type representation) of itself.
The automatically derived instances of this class by GHC are guaranteed to
provide a unique representation for each type, which is a necessary condition
for the type-safe cast, as we will see later. So, providing an instance is as easy
as adding deriving Typeable at the end of a datatype declaration.

data MyDatatype a = MyConstructor a deriving Typeable

We will not discuss the internal structure of TypeRep, since instances should
not be defined manually. However, the built-in derivation of Typeable makes
SYB somewhat less portable than the previous two libraries we have seen, and
makes it impossible to adapt the type representation.

The Typeable class is the “back-end” of SYB. The Data class can be considered
the “front-end.” It is built on top of the Typeable class, and adds generic folding,
unfolding and reflection capabilities7.

class Typeable d⇒ Data d where
gfoldl :: (∀a b . Data a⇒ c (a→ b)→ a→ c b)

→ (∀g . g→ c g)
→ d
→ c d

gunfold :: (∀b r . Data b⇒ c (b→ r)→ c r)
→ (∀r . r→ c r)
→ Constr
→ c d

toConstr :: d→ Constr

dataTypeOf :: d→ DataType

The combinator gfoldl is named after the function foldl on lists, as it can be
considered a “left-associative fold operation for constructor applications,” with
gunfold being the dualizing unfold. The types of these combinators may be a bit
intimidating, and they are better understood by looking at specific instances.
We will give such instances in the next subsection, since giving an instance
of Data for a datatype is the way generic functions become available on the
datatype.

7 The Data class has many more methods, but they all have default definitions based on
these four basic combinators. They are provided as instance methods so that a pro-
grammer can define more efficient versions, specialized to the datatype in question.

47

7.3 Going generic: universe extension

To use the SYB combinators on a particular datatype we have to supply the
instances of the datatype for the Typeable and the Data class. A programmer
should not define instances of Typeable, but instead rely on the automatically
derived instances by the compiler. For Data, GHC can also automatically derive
instances for a datatype, but we present an instance here to illustrate how SYB
works. For example, the instance of Data on the List datatype is as follows.

instance (Typeable a, Data a)⇒ Data (List a) where
gfoldl k z Nil = z Nil
gfoldl k z (Cons h t) = z Cons ‘k‘ h ‘k‘ t
gunfold k z l = case constrIndex l of

1→ z Nil
2→ k (k (z Cons))

Any instance of the Data class follows the regular pattern of the above instance:
the first argument to gfoldl (k) can be seen as an application combinator, and the
second argument (z) as the base case generator. Function gfoldl differs from the
regular foldl in two ways: it is not recursive, and the base case takes a construc-
tor as argument, instead of a base case for just the Nil. When we apply gfoldl to
function application and the identity function, it becomes the identity function
itself.

gfoldl ($) id x = x

We further illustrate the gfoldl function with another example.

gsize :: Data a⇒ a→ Int

gsize = unBox . gfoldl k (λ → IntBox 1) where
k (IntBox h) t = IntBox (h + gsize t)

newtype IntBox x = IntBox{unBox :: Int}

Function gsize returns the number of constructors that appear in a value of any
datatype that is an instance of Data. For example, if it is applied to a list con-
taining pairs, it will count both the constructors of the datatype List, and of the
datatype for pairs. Given the general type of gfoldl, we have to use a container
type for the result type Int and perform additional boxing and unboxing. The
type parameter x of IntBox is a phantom type: it is not used as a value, but is
necessary for type correctness.

Function gunfold acts as the dual operation of the gfoldl: gfoldl is a generic
consumer, which consumes a datatype value generically to produce some re-
sult, and gunfold is a generic producer, which consumes a datatype value to
produce a datatype value generically. Its definition relies on constrIndex, which
returns the index of the constructor in the datatype of the argument. It is tech-
nically not an unfold, but instead a fold on a different view [Hinze and Löh,
2006].

48

The two other methods of class Data which we have not yet mentioned are
toConstr and dataTypeOf . These functions return, as their names suggest, con-
structor and datatype representations of the term they are applied to. We con-
tinue our example of the Data instance for the List datatype.8

toConstr Nil = con1
toConstr (Cons) = con2

dataTypeOf = ty
dataCast1 f = gcast1 f

con1 = mkConstr ty "Empty_List" [] Prefix
con2 = mkConstr ty "Cons_List" [] Prefix
ty = mkDataType "ModuleNameHere.List" [con1, con2]

The functions mkConstr and mkDataType are provided by the SYB library as
means for building Constr and DataType, respectively. mkConstr build a con-
structor representation given the constructor’s datatype representation, name,
list of field labels and fixity. mkDataType builds a datatype representation given
the datatype’s name and list of constructor representations. These two methods
together form the basis of SYB’s type reflection mechanism, allowing the user
to inspect and construct types at runtime. Finally, since the List datatype is not
of kind ?, we have to provide an implementation for the dataCast1 method in
terms of gcast1.9

SYB supports all datatypes for which we can give a Data and Typeable in-
stance. This includes all datatypes of Section 3 except GADTs and existentially
quantified types, for which we cannot define gunfold.

Exercise 13. Write a suitable instance of the Data class for the Expr datatype
from Section 3. �

The basic combinators of SYB are mainly used to define other useful com-
binators. It is mainly these derived combinators that are used by a generic pro-
grammer. Functions like gunfoldl appear very infrequently in generic programs.
In the next subsection we will show many of the derived combinators in SYB.

7.4 Generic functions in SYB

We now proceed to show a few generic functions in the SYB approach. In SYB,
as in many other approaches, it is often useful to first identify the type of the
generic function, before selecting the most appropriate combinators to imple-
ment it.

8 Instead of "ModuleNameHere" one should supply the appropriate module name,
which is used for unambiguous identification of a datatype.

9 Datatypes of kind ? → ? require the definition of dataCast1, and datatypes of kind
? → ? → ? require the definition of dataCast2. For datatypes of kind ?, the default
definition for these methods (const Nothing) is appropriate.

49

Types of SYB combinators
Transformations, queries, and builders are some of the important basic combi-
nators of SYB. We discuss the type of each of these.

A transformation transforms an argument value in some way, and returns a
value of the same type. It has the following type:

type GenericT = ∀a . Data a⇒ a→ a

There is also a monadic variant of transformations, which allows the use of a
helper monad in the transformation.

type GenericM m = ∀a . Data a⇒ a→ m a

A query function processes an input value to collect information, possibly of
another type.

type GenericQ r = ∀a . Data a⇒ a→ r

A builder produces a value of a particular type.

type GenericB = ∀a . Data a⇒ a

A builder that has access to a monad is called a “reader”.

type GenericR m = ∀a . Data a⇒ m a

Note however that the types of both GenericM and GenericR do not require m to
be a monad.

Many functions in the SYB library are suffixed with one of the letters T, M,
Q, B, or R to help identify their usage. Examples are the functions mkT, mkQ,
mkM, extB, extR, extQ, gmapT and gmapQ, some of which are defined in the rest
of this section.

Basic examples
Recall the increment function with which we started Section 7.1. Its definition
uses the higher-order combinators everywhere and mkT. The former is a traversal
pattern for transformations, applying its argument everywhere it can:

everywhere :: GenericT→ GenericT
everywhere f = f . gmapT (everywhere f)

Function gmapT maps a function only to the immediate subterms of an expres-
sion. It is defined using gfoldl as follows:

gmapT :: Data a⇒ (∀b . Data b⇒ b→ b)→ a→ a

gmapT f x = unID (gfoldl k ID x)
where

k (ID c) y = ID (c (f y))
newtype ID x = ID{unID :: x}

50

Exercise 14. Function everywhere traverses a (multiway) tree. Define

everywhere′ :: GenericT→ GenericT

as everywhere but traversing in the opposite direction. �

Function mkT lifts a (usually type-specific) function to a function that can be
applied to a value of any datatype.

mkT :: (Typeable a, Typeable b)⇒ (b→ b)→ a→ a

For example, mkT (sin :: Float → Float), applies function sin if the input value
is of type Float, and the identity function to an input value of any other type.
The combination of the two functions everywhere and mkT allows us to lift a
type-specific function to a generic function and apply it everywhere in a value.

Proceeding from transformations to queries, we define a function that sums
all the integers in an expression.

total :: GenericQ Int
total = everything (+) (0 ‘mkQ‘ lit) where

lit :: Expr Int→ Int
lit (Lit x) = x
lit x = 0

Queries typically use the everything and mkQ combinators. Function everything
applies its second argument everywhere in the argument, and combines results
with its first argument. Function mkQ lifts a type-specific function of type a →
b, together with a default value of type b, to a generic a query function of type
GenericQ b. If the input value is of type a, then the type-specific function is
applied to obtain a b value, otherwise it returns the default value. To sum the
literals in an expression, function total combines subresults using the addition
operator (+), and it keeps occurrences of literals, whereas all other values are
replaced by 0.

Generic maps
Functions such as increment and total are defined in terms of functions everywhere,
everything, and mkT, which in turn are defined in terms of the basic combinators
provided by the Data and Typeable classes. Many generic functions are defined
in terms of combinators of the Data class directly, as in the examples below.
We redefine function gsize defined in Section 7.3 using the combinator gmapQ,
and we define a function glength, which determines the number of children of
a constructor, also in terms of gmapQ.

gsize :: Data a⇒ a→ Int
gsize t = 1 + sum (gmapQ gsize t)
glength :: GenericQ Int
glength = length . gmapQ (const ())

51

The combinator gmapQ is one of the mapping combinators in Data class of the
SYB library.

gmapQ :: (∀a . Data a⇒ a→ u)→ a→ [u]

It is rather different from the regular list map function, in that works on any
datatype that is an instance of Data, and that it only applies its argument func-
tion to the immediate children of the top-level constructor. So for lists, it only
applies the argument function to the head of the list and the tail of the list, but
it does not recurse into the list. This explains why gsize recursively calls itself
in gmapQ, while glength, which only counts immediate children, does not use
recursion.

Exercise 15. Define the function:

gdepth :: GenericQ Int

which computes the depth of a value of any datatype using gmapQ. The depth
of a value is the maximum number of constructors on any path to a leaf in the
value. For example:

gdepth [1, 2] 3
gdepth (Lit 1 + Lit 2 + Var "x") 4

�

Exercise 16. Define the function:

gwidth :: GenericQ Int

which computes the width of a value of any datatype using gmapQ. The width
of a value is the number of elements that appear at a leaf. For example:

gwidth () 1
gwidth (Just 1) 1

gwidth ((1, 2), (1, 2)) 4
gwidth (((1, 2), 2), (1, 2)) 5

�

Equality

Defining the generic equality function is a relatively simple task in the libraries
we have introduced previously. Defining equality in SYB is not that easy. The
reason for this is that the structural representation of datatypes is not exposed
directly—in SYB, generic functions are written using combinators like gfoldl. To
define generic equality we need to generically traverse two values at the same

52

time, and it is not immediately clear how we can do this if gfoldl is our basic
traversal combinator.

To implement equality, we need a generic zip-like function that can be used
to pair together the children of the two argument values. Recall the type of
Haskell’s zipWith function.

zipWith :: (a→ b→ c)→ [a]→ [b]→ [c]

However, we need a generic variant that works not only for lists but for any
datatype. For this purpose, SYB provides the gzipWithQ combinator.

gzipWithQ :: GenericQ (GenericQ c)→ GenericQ (GenericQ [c])

The type of gzipWithQ is rather intricate, but if we unfold the definition of
GenericQ, and omit the occurrences of ∀ and Data, the argument of gzipWithQ
has type a → b → c. It would take too much space to explain the details of
gzipWithQ. Defining equality using gzipWithQ is easy:

geq :: Data a⇒ a→ a→ Bool

geq x y = geq′ x y
where

geq′ :: GenericQ (GenericQ Bool)
geq′ x′ y′ = (toConstr x′ toConstr y′) ∧ and (gzipWithQ geq′ x′ y′)

The outer function eq is used to constrain the type of the function to the type
of equality. Function geq′ has a more general type since it only uses gzipWithQ
(besides some functions on booleans).

7.5 Support for overloading

Suppose we want to implement the generic show function. Here is a first attempt
using the combinators we have introduced in the previous sections.

gshows :: Data a⇒ a→ String

gshows t = "("
++ showConstr (toConstr t)
++ concat (gmapQ ((++) " " . gshows) t)
++
")"

Function showConstr :: Constr → String is the only function we have not yet
introduced. Its behavior is apparent from its type: it returns the string repre-
senting the name of the constructor. Function gshows returns the string repre-
sentation of any input value. However, it does not implement deriving Show
faithfully: it inserts too many parentheses, and, what’s worse, it treats all types
in a uniform way, so both lists and strings are shown using the names of the
constructors Cons and Nil.

53

gshows "abc" "((:) (a) ((:) (b) ((:) (c) ([]))))"

The problem here is that gshows is “too generic”: we want its behavior to be
non-generic for certain datatypes, such as String. To obtain special behavior for
a particular type we use the ext combinators of the SYB library. Since function
gshows has the type of a generic query, we use the extQ combinator:

extQ :: (Typeable a, Typeable b)⇒ (a→ q)→ (b→ q)→ a→ q

This combinator takes an initial generic query and extends it with the type-
specific case given in its second argument. It can be seen as a two-way case
branch: if the input term (the last argument) is of type b, then the second func-
tion is applied. If not, then the first function is applied. Its implementation relies
on type-safe cast:

extQ f g a = maybe (f a) g (cast a)

Function cast relies on the typeOf method of the Typeable class (the type of which
we have introduced in Section 7.2), to guarantee type equality and ultimately
uses unsafeCoerce to perform the cast.

Using extQ, we can now define a better pretty-printer:

gshow :: Data a⇒ a→ String

gshow = (λt→
"("
++ showConstr (toConstr t)
++ concat (gmapQ ((++) " " . gshow) t)
++ ")"

) ‘extQ‘ (show :: String→ String)

Summarizing, the extQ combinator (together with its companions extT, extR,
. . .) is the mechanism for overloading in the SYB approach.

Exercise 17.

1. Check the behavior of function gshow on a value of type Char, and redefine
it to behave just like the standard Haskell show.

2. Check the behavior of gshow on standard Haskell lists, and redefine it to
behave just like the standard Haskell show. Note: since the list datatype has
kind ?→ ?, using extQ will give problems. This problem is solved in SYB by
defining combinators for higher kinds. Have a look at the ext1Q combinator.

3. Check the behavior of gshow on standard Haskell pairs, and redefine it to
behave just like the standard Haskell show. Note: now the datatype has kind
? → ? → ?, but ext2Q is not defined! Fortunately, you can define it your-
self. . .

4. Make the function more efficient by changing its return type to ShowS and
using function composition instead of list concatenation.

�

54

Exercise 18. Define function gread :: (Data a) ⇒ String → [(a, String)]. Decide
for yourself how complete you want your solution to be regarding whitespace,
infix operators, etc. Note: you don’t have to use gunfold directly: fromConstr,
which is itself defined using gunfold, can be used instead. �

7.6 Making generic functions extensible

The SYB library as described above suffers from a serious drawback: after a
generic function is defined, it cannot be extended to have special behavior on
a new datatype. We can, as illustrated in Section 7.5 with function gshow, de-
fine a function with type-specific behavior. But after such function is defined,
defining another function to extend the first one with more type-specific behav-
ior is impossible. Suppose we want to extend the gshow function with special
behavior for a new datatype:

data NewDatatype = One String | Two [Int] deriving (Typeable, Data)
gshow′ :: Data a⇒ a→ String

gshow′ = gshow ‘extQ‘ showNewDatatype where
showNewDatatype :: NewDatatype→ String
showNewDatatype (One s) = "String: "++ s
showNewDatatype (Two l) = "List: "++ gshow l

Now we have:
gshow′ (One "a") "String: a"

as we expected. However:

gshow′ (One "a", One "b") "((,) (One \"a\") (One \"b\"))"

This example illustrates the problem: as soon as gshow′ calls gshow, the type-
specific behavior we just defined is never again taken into account, since gshow
has no knowledge of the existence of gshow′.

To make generic functions in SYB extensible, Lämmel and Peyton Jones
[2005] extended the SYB library, lifting generic functions to Haskell’s type class
system. A generic function like gsize is now defined as follows:

class Size a where
gsize :: a→ Int

The default case is written as an instance of the form:

instance . . .⇒ Size a where . . .

Ad-hoc cases are instances of the form (using lists as an example):

instance Size a⇒ Size [a] where . . .

This requires overlapping instances, since the default case is more general than
any type-specific extension. Fortunately, GHC allows overlapping instances. A

55

problem is that this approach also needs to lift generic combinators like gmapQ
to a type class, which requires abstraction over type classes. Abstraction over
type classes is not supported by GHC. The authors then proceed to describe
how to circumvent this by encoding an abstraction using dictionaries. This re-
quires the programmer to write the boilerplate code of the proxy for the dic-
tionary type. We do not discuss this extension and refer the reader to [Lämmel
and Peyton Jones, 2005] for further information.

7.7 An explicit view for SYB

Unlike in the two approaches we have seen before, the mechanism for run-time
type representation in SYB does not involve an explicit generic view on data.
Scrap Your Boilerplate Reloaded [Hinze et al., 2006] presents an alternative in-
terpretation of SYB by replacing the combinator based approach by a tangible
representation of the structure of values. The Spine datatype is used to encode
the structure of datatypes.

data Spine :: ?→ ? where
Con :: a→ Spine a
(�) :: Spine (a→ b)→ Typed a→ Spine b

The Typed representation is given by:

data Typed a = (:̂){typeOf :: Type a, val :: a}
data Type :: ?→ ? where

Int :: Type Int
List :: Type a→ Type [a]
. . .

This approach represents the structure of datatype values by making the appli-
cation of a constructor to its arguments explicit. For example, the list [1, 2] can
be represented by10 Con (:) � (Int :̂ 1) � (List Int :̂ [2]). We can define the usual
SYB combinators such as gfoldl on the Spine datatype. Function gunfold cannot
be implemented in the approach. Scrap Your Boilerplate Revolutions [Hinze
and Löh, 2006] solves this problem by introducing the “type spine” and “lifted
spine” views. These views allow the definition of not only generic readers such
as gunfold, but even functions that abstract over type constructors, such as map,
in a natural way. Additionally, functions taking multiple arguments (such as
generic equality) also become straightforward to define.

A disadvantage of having the explicit Spine view that generic and non-
generic universe extension require recompilation of type representations and
generic functions. For this reason, these variants cannot be used as a library,
and should be considered a design pattern instead. It is possible to make the
variants extensible by using a similar approach as discussed in Section 7.6: ab-
straction over type classes. We refer the reader to [Hinze et al., 2006, Hinze and
Löh, 2006] for further information.
10 Note the difference between the list constructor (:) and the Typed constructor (:̂).

56

7.8 Case study: selections in exercises assistants

One of the extensions to the exercise assistants that we are implementing is that
a student may select a subexpression and ask for possible rewrite rules for that
subexpression. This means that the student selects a range in a pretty-printed
expression and chooses a rule to apply to the selection.

Before we can present the possible rewrite rules, we want to check if a se-
lected subexpression is valid. Determining the validity of a subexpression may
depend on the context. In the general case, a subexpression is valid if it is a
typed value that appears in the abstract syntax tree of the original expression.
However, in some cases this definition might be too strict. For instance, for
arithmetic expressions, the expression 2 + 3 would not be a subexpression of
1 + 2 + 3, because the plus operator is left-associative, hence only 1 + 2 is a
valid subexpression. Therefore we consider a subexpression to be valid if it ap-
pears in the original expression modulo associative operators and special cases
(such as lists).

Checking whether a subexpression is valid or not can be determined in var-
ious ways. It is important to realize that the problem is strongly connected to
the concrete syntax of the datatype. The validity of a selection depends on how
terms are pretty-printed on the screen. Aspects to consider are fixity and as-
sociativity of operators, parentheses, etc. Simply parsing the selection will not
give an acceptable solution. For instance, in the expression 1 + 2 ∗ 3, the selec-
tion 1 + 2 parses correctly, but it is not a valid subexpression.

For these reasons, the selection problem depends on parsing and pretty-
printing, and the way a datatype is read and shown to the user. Therefore we
think that the best way to solve this problem is to devise an extended parser
or pretty-printer, which additionally constructs a function that can check the
validity of a selection.

However, parsers and pretty-printers for realistic languages are usually not
generic. Typically, operator precedence and fixity are used to reduce the num-
ber of parentheses and to make the concrete syntax look more natural. There-
fore, parsers and pretty-printers are often hand-written, or instances of a generic
function with ad-hoc cases.

For conciseness, we will present only a simple solution to this problem,
which works for datatypes that are shown with the gshow function of the previ-
ous section. For simplicity, we do not deal with associativity or infix construc-
tors. We use a state monad transformer with an embedded writer monad. The
state monad keeps track of the current position using an Int, while the writer
monad gradually builds a Map. Ideally, this would map a selection range (con-
sisting of a pair of Ints) to the type of that selection. This is necessary because
an expression might contain subexpressions of different types. However, for
simplicity we let Type be singleton.

type Range = (Int, Int)
type Type = ()
type Selections = Map Range Type

57

type Pos = Int
type MyState = StateT Pos (Writer Selections) ()

Using the monad transformer in this way enables us to maintain the position as
state while building the output Map at the same time, avoiding manual thread-
ing of these values.

The top-level function selections runs the monads. Within the monads, we
first get the current position (m). Then we calculate the position at the end of
the argument expression (n), and add the selection of the complete expression
(m, n) to the output Map. The main worker function selsConstr calculates the se-
lections within the children of the top-level node. selsConstr defines the general
behavior, and through overloading pairs and strings are given ad-hoc behavior.

selections :: Data a⇒ a→ Selections
selections t′ = execWriter (evalStateT (sels′ t′) 0) where

sels′ :: Data a⇒ a→ MyState
sels′ t = do

m← get
let n = m + length (gshow t)
tell (M.singleton (m, n) ())
(selsConstr ‘ext2Q‘ selsPair ‘extQ‘ selsString) t
put n

For the children of the current term we use different functions based on the
type. After the children are done we set the current position to the end of this
term. This means that the functions that process the children do not need to
care about updating the position to reflect finalizing elements (such as a closing
bracket, for instance).

Children are dealt with as follows. In case there are no children, the position
has to be updated to take into account the opening bracket, the length of the
constructor and the closing bracket. If there are children, we recursively apply
the worker function to each child. However, the arguments of a constructor are
separated by a space, so we have to increment the position in between each
child. This is done with intersperse (modify (+1)). Finally the list of resulting
monads is sequenced:

selsConstr :: Data a⇒ a→ MyState
selsConstr t = do

when (nrChildren t > 0) $
modify (+(2 + length (showConstr (toConstr t))))

sequence $ intersperse (modify (+1)) $ gmapQ sels′ t

The nrChildren function returns the number of children of the argument expres-
sion, irrespective of their type.

As with function gshow, we need different code to handle some specific
types. For pairs and Strings we use the following:

58

selsPair :: (Data a, Data b)⇒ (a, b)→ MyState
selsPair (a, b) = do

modify (+1)
sels′ a
modify (+1)
sels′ b

selsString :: String→ MyState
selsString t = return ()

The trivial definition of selsString ensures that a String is not seen as a list of
characters.

We can check that our function behaves as expected (for the Logics type of
Section 3.4):

map fst . M.toList . selections $ (Or (Not (Lit True)) (Lit False))
[(0, 37), (4, 22), (9, 21), (14, 20), (23, 36), (28, 35)]

Indeed we can confirm that

(0, 37) corresponds to (Or (Not (Lit (True))) (Lit (False)))
(4, 22) corresponds to (Not (Lit (True)))
(9, 21) corresponds to (Lit (True))

(14, 20) corresponds to (True)
(23, 36) corresponds to (Lit (False))
(28, 35) corresponds to (False)

As mentioned before, the selections function presented in this section has
been simplified in many ways. Possible improvements include support for op-
erator fixity and precedence (which change the parentheses), mapping a range
to the actual value in the selection, dealing with associative operators and de-
coupling from a fixed pretty-printer (gshow in this case). Additionally, selections
of constant types (such as Bool in the example above) are typically not relevant
and should not be considered valid.

Exercise 19. Extend the selections function with a specific case for lists. Valid se-
lections within a list are every element and the entire list. Additionally, change
Type to Dynamic (introduced in Section 3.6). �

8 Comparison of the libraries

In the sections 5, 6, and 7, we introduced three libraries for generic program-
ming in Haskell. There are many other libraries that we exclude for lack of
space (see Section 10.1 for a list). The obvious question a Haskell programmer
who wants to implement a generic program now asks is: Which library do I use

59

for my project? The answer to this question is, of course, that it depends. In this
section, we present an abridged comparison of the three libraries we have seen,
focusing mainly on the differences between them. For further study, we refer
the reader to a recent, extensive comparison of multiple generic programming
libraries and their characteristics [Rodriguez et al., 2008b].

8.1 Differences

There are a few aspects in which the three libraries we have presented differ
considerably.

Universe size
What are the datatypes for which generic universe extension is possible? In
Section 3, we saw a variety of Haskell datatypes. The more datatypes a library
can support, the more useful that library will be. None of the libraries supports
existentially quantified datatypes or GADTs. On the other hand, all libraries
support all the other datatypes mentioned.

SYB’s automatic derivation does not work for higher-order kinded datatypes,
but the programmer can still add the instances manually. Datatypes which are
both higher-order kinded and nested are not supported by SYB. Both LIGD and
EMGM can support such datatypes, but they cannot be used with EMGM’s rep-
resentation dispatchers.

First-class generic functions
If generic functions are first-class, they can be passed as argument to other
generic functions. gmapQ (as introduced in Section 7.4) is an example of a func-
tion which can only be defined if generic functions are first-class.

In LIGD and SYB, a generic function is a polymorphic Haskell function, so it
is a first-class value in Haskell implementations that support rank-n polymor-
phism.

EMGM supports first-class generic functions but in a rather complicated
way. The type class instance for a higher-order generic function needs to track
calls to a generic function argument. This makes the definition of gmapQ in
EMGM significantly more complex than other functions.

Ad-hoc definitions for datatypes
A library supports ad-hoc definitions for datatypes if it can define functions
with specific behavior on a particular datatype while the other datatypes are
handled generically. Moreover, the use of ad-hoc cases should not require re-
compilation of existing code (for instance the type representations).

In LIGD, giving ad-hoc cases requires extending the type representation
datatype, and hence recompilation of the module containing type representa-
tions. This means the library itself must be changed, so we consider LIGD not
to support ad-hoc definitions.

60

In SYB, ad-hoc cases for queries are supported by means of the mkQ and
extQ combinators. Such combinators are also available for other traversals, for
example transformations. The only requirement for ad-hoc cases is that the type
being case-analyzed should be an instance of the Typeable type class. The new
instance does not require recompilation of other modules. In EMGM, ad-hoc
cases are given as instances of Rep, FRep, or one of the other representation
dispatchers. Recompilation of the library is not required, because ad-hoc cases
are given as type class instances.

Extensibility
If a programmer can extend the universe of a generic function in a different
module without the need for recompilation, then the approach is extensible.
This is the case for libraries that allow the extension of the generic show func-
tion with a case for printing lists, for instance. Extensibility is not possible for
approaches that do not support ad-hoc cases. For this reason, LIGD is not ex-
tensible.

The SYB library supports ad-hoc definitions, but does not support extensible
generic functions (as outlined in Section 7.6).

In EMGM, ad-hoc cases are given in instance declarations, which may reside
in separate modules; therefore, the library supports extensibility.

Overhead of library use
The overhead of library use can be compared in different ways including auto-
matic generation of representations, number of structure representations, and
amount of work to define and instantiate a generic function.

SYB is the only library that offers support for automatic generation of rep-
resentations. It relies on GHC to generate Typeable and Data instances for new
datatypes. This reduces the amount of work for the programmer.

The number of structure representations is also an important factor of over-
head. LIGD and EMGM have two sorts of representations: a representation for
kind ? types and representations for type constructors, which are arity-based.
The latter consists of a number of arity-specific representations. For example,
to write the map function we have to use a representation of arity two. Since
there are useful generic functions requiring a representation of arity three, this
makes a total of four type representations for these libraries: one to represent
kind ? types, and three for all useful arities. In SYB, the structure representa-
tion is given in a Data instance. This instance has two methods which are used
for generic consumer and transformer functions (gfoldl) and generic producer
functions (gunfold). Therefore, every datatype needs two representations to be
used with SYB functions.

Instantiating a generic function should preferably also be simple. Generic
functions require a value representing the type to which they are instantiated.
This representation may be explicitly supplied by the programmer or implic-
itly derived. In approaches that use type classes, representations can be de-
rived, thus making instantiation easier for the user. Such is the case for SYB

61

and EMGM. LIGD uses an explicit type representation, which the user has to
supply with every generic function call.

Practical aspects

With practical aspects we mean the availability of a library distribution, quality
of documentation, predefined generic functions, etc.

LIGD does not have a distribution online. EMGM recently gained an on-
line status with a website, distribution, and extensive documentation [Utrecht,
2008]. Many generic functions and common datatype representations are pro-
vided. SYB is distributed with the GHC compiler. This distribution includes a
number of traversal combinators for common generic programming tasks and
Haddock documentation. The GHC compiler supports the automatic genera-
tion of Typeable and Data instances.

Portability

The fewer extensions of the Haskell 98 standard (or of the coming Haskell
Prime [Haskell Prime list, 2006] standard) an approach requires, the more por-
table it is across different Haskell compilers.

LIGD, as presented here, relies on GADTs for the type representation. It is
not yet clear if GADTs will be included in Haskell Prime. LIGD also requires
rank-2 types for the representations of higher-kinded datatypes, but not for
other representations or functions. Hence rank-n types are not essential for the
LIGD approach, and LIGD is the most portable of the three libraries.

Generics for the Masses as originally introduced [Hinze, 2004] was entirely
within Haskell 98; however, EMGM as described in these notes is not as porta-
ble. It relies on multiparameter type classes to support implicit type representa-
tions and type operators for convenience (both currently slated to become part
of Haskell Prime). The features for supporting convenient extensibility (Sec-
tions 6.5 and 6.6) also rely on overlapping and undecidable instances, and we
do not know if these will become part of Haskell Prime.

SYB requires rank-n polymorphism for the type of the gfoldl and gunfold
combinators, unsafeCoerce to implement type safe casts and compiler support
for deriving Data and Typeable instances. Hence, it is the least portable of the
three libraries.

8.2 Similarities

There are a couple of aspects in which the libraries are similar.

Abstraction over type constructors

Generic functions like map or crush require abstraction over type constructors
to be defined. Type constructors are types which expect a type argument (and
therefore have kind ? → ?), and represent containers of elements. All libraries

62

support the definition of such functions, although the definition in SYB is rather
cumbersome11.

Separate compilation

Is generic universe extension modular? A library that can instantiate a generic
function to a new datatype without recompiling the function definition or the
type/structure representation is modular.

All presented libraries are modular. In LIGD, representation types have a
constructor to represent the structure of datatypes, namely RType. It follows that
generic universe extension requires no extension of the representation datatypes
and therefore no recompilation. In EMGM, datatype structure is represented
by rtype, so a similar argument applies. In SYB, generic universe extension is
achieved by defining Data and Typeable instances for the new datatype, which
does not require recompilation of existing code in other modules.

Multiple arguments

Can a generic programming library support a generic function definition that
consumes more than one generic argument? Functions such as generic equal-
ity require this. The LIGD and EMGM approaches support the definition of
generic equality. Furthermore, equality is not more difficult to define than other
consumer functions. Equality can also be defined in SYB, but the definition is
not as direct as for other functions such as gshow. In SYB, the gfoldl combinator
processes just one argument at a time. For this reason, the definition of generic
equality has to perform the traversal of the arguments in two stages using the
generic zip introduced in Section 7.4.

Constructor names

All generic programming libraries discussed in these notes provide support for
constructor names in their structure representations. These names are used by
generic show functions.

Consumers, transformer and producers

LIGD and EMGM can define consumer, transformer, and producer functions.
SYB can also define them, but consumers and producers are written using dif-
ferent combinators.

11 This has recently been shown by Reinke [2008] and Kiselyov [2008]. However, the
definition is rather intricate, and as such we do not present it in these notes.

63

9 Type-indexed datatypes with type families

So far, we have been looking at libraries for generic programming and what
functions can be expressed in these libraries. A strongly related concept in
generic programming is the concept of type-indexed datatypes [Hinze et al.,
2002]. Such datatypes are constructed in a generic way from an argument data-
type.

For example, a type-indexed datatype is needed when we want to represent
datatypes with “holes”. This might be necessary when editing a value: we start
editing with a hole, and gradually fill in the details of our object, or parts of an
expression might be removed and later filled in. To allow for holes, the origi-
nal datatype has to be extended with an extra constructor which represents a
hole. However, the datatype might not even be accessible (if it is taken from a
library, for instance). The best solution is to define a new datatype which takes
a datatype as argument, and adds to it a new constructor for holes. This can be
done using a type-indexed datatype.

Other examples of type-indexed types are: extending a datatypes with vari-
ables, for example for the purpose of rewriting or unification [Van Noort et al.,
2008], the zipper and variants [McBride, 2001, Hinze et al., 2002, McBride, 2008],
the algebra type for folds [Malcolm, 1990b], generic tries [Hinze, 2000b], etc.

Type-indexed datatypes are available in Generic Haskell [Löh, 2004], an
extension of Haskell with generic programming constructs. The generic pro-
gramming libraries available for Haskell do not offer support for defining type-
indexed datatypes. However, they can be implemented directly in Haskell us-
ing type families [Chakravarty et al., 2005a,b, Schrijvers et al., 2008], a recent
extension of Haskell implemented in GHC.

Type families are actively developed in GHC12. They provide a limited ver-
sion of named functions at the type level. Their relation with vanilla type con-
structors is comparable to the relation between polymorphic functions and ad-
hoc methods of type classes. While polymorphic functions behave the same
way for all type instances, class methods can behave differently depending on
the class type parameter. For this reason, type families are frequently presented
alongside a class declaration. In this case, they are usually called associated type
synonyms.

Type families exist in two flavors: data families and type synonym families.
The former correspond to algebraic datatypes and the latter to type synonyms.
Their usefulness for generic programming is two-fold. They can be used to im-
plement type-indexed functions, just like the approaches we have seen in the
previous sections. Even more interesting, however, is their ability to implement
type-indexed datatypes.

12 A fully working implementation is present as of GHC 6.10. See also http://hackage.

haskell.org/trac/ghc/wiki/TypeFunctions.

64

http://hackage.haskell.org/trac/ghc/wiki/TypeFunctions
http://hackage.haskell.org/trac/ghc/wiki/TypeFunctions

9.1 Generic insertion

We will show the possibilities of type families through an implementation of a
generic insertion function. This function takes a list of elements to insert and a
value of a datatype extended with holes (that might contain holes). It returns
the same value in which the holes have been filled, in inorder, with elements
from the list. The function fails if there are not enough values in the list to fill
all holes.

Before we define the function, we will define the type-indexed datatype for
extending a datatype with a hole. As a first attempt, we could try to add a
hole by defining a representation datatype as a sum of a unit and the original
datatype. For instance, in LIGD we would define:

type Ext a = Unit :+: a

Ext (List a) represents the datatype of lists extended with holes. However, this
definition only adds holes at the top-level of a datatype. Ext (List a) expands to
Unit :+: (List a), which is isomorphic to Maybe (List a). The problem is that we
have to add the possibility to construct a hole at each recursive occurrence of a
list, and not just at the top level.

To get holes that may appear anywhere in a value, we need to use a dif-
ferent generic view [Holdermans et al., 2006]. With a fixed-point view we can
identify the recursive points of a datatype, and therefore define hole extension
adequately. The structure constructors for a fixed-point view are shown below:

data Unit r = Unit
data Id r = Id {unId :: r}
data K a r = K a
data Sum f g r = Inl (f r) | Inr (g r)
data Prod f g r = Prod (f r) (g r)

Like in the sum of products view (used by LIGD and EMGM), we give a defi-
nition for Units, Sums and Prods. However, these now take an extra type argu-
ment, which is used to encode the recursive argument. Recursive occurrences
are represented by the Id case, which simply contains the r type variable used to
encode recursion. Finally, constants (such as Int or type variables) are encoded
with K.

We now define a type class to aggregate regular types that can be viewed as
fixed-points. This class defines an associated type synonym PF a, which stands
for the “pattern functor” of type a, and will be the structure representation of
the type. We call this class Regular since only regular datatypes can be given an
instance (recall the definition of regular in Section 2.7).

class Regular a where
type PF a :: ?→ ?
from :: a→ (PF a) a
to :: (PF a) a→ a

65

It also defines the conversion functions which represent the isomorphism be-
tween a type a and its pattern functor (PF a) a. More specifically, from trans-
forms the top-level constructor into a structure value, while leaving the imme-
diate subtrees unchanged. The function to performs the transformation in the
opposite direction.

Note that the type synonym PF a is of kind ? → ?. This is because the pat-
tern functor is parametrised over the recursive argument. In our case, PF a is
applied to a itself. This means that we have a shallow representation: at top
level we have the structural representation, but at the next level we have the
original datatype itself. This representation has the advantage of increased ef-
ficiency, as is shown in Van Noort et al. [2008]. To fully convert a value, the
conversion functions to and from can be applied recursively.

As an example, we instantiate the standard list datatype on the Regular class:

instance Regular [a] where
type PF [a] = Sum Unit (Prod (K a) Id)

The pattern functor for lists is a sum, since there are two ways to construct a list.
The empty list is associated with the Unit value, since the empty list constructor
has no arguments. The (:) constructor is encoded as a product of the argument
a (which is a constant) and a recursive occurrence of a list (represented by Id).

Now we only have to provide the conversion functions between lists and
their structural counterpart:

from [] = Inl Unit
from (x : xs) = Inr (Prod (K x) (Id xs))
to (Inl Unit) = []
to (Inr (Prod (K x) (Id xs))) = x : xs

Instantiating a type to the Regular class effectively represents universe extension
in this approach, since we are providing the means for generic operations on the
datatype.

With this representation in place, we can now properly define the type-
indexed datatype that extends a datatype with holes. It is enough to introduce
a sum type to encode the choice between the hole case and a value from the
original pattern functor:

type Ext f = Sum Unit f

We still have the same problem as before, namely, Ext extends a type with holes
on the top-level only, but we also have to allow holes to occur in subterms. To
this end, we introduce a type synonym Hole that encodes the recursive structure
by means of the fixed-point operator Fix:

newtype Fix f = In{out :: f (Fix f)}
type Hole f = Fix (Ext (PF f))

66

The Fix operator encodes explicit recursion, which allows us to state that the
recursive points are Ext (PF f) instead of simply f, therefore allowing holes to
appear at any level of the datatype.

Having a run-time type representation and a mechanism for universe exten-
sion, we are ready to define generic functions. We define a monadic traversal
function (a variant on the traverse function in the Data.Traversable module):

class TraverseM f where
traverseM :: Monad m⇒ (a→ m b)→ f a→ m (f b)

instance TraverseM Unit where
traverseM f Unit = return Unit

instance TraverseM Id where
traverseM f (Id x) = liftM Id (f x)

instance TraverseM (K a) where
traverseM (K a) = return (K a)

instance (TraverseM f, TraverseM g)⇒ TraverseM (Sum f g) where
traverseM f (Inl x) = liftM Inl (traverseM f x)
traverseM f (Inr x) = liftM Inr (traverseM f x)

instance (TraverseM f, TraverseM g)⇒ TraverseM (Prod f g) where
traverseM f (Prod x y) = liftM2 Prod (traverseM f x) (traverseM f y)

The most interesting case is for the Id datatype. Since we are at a recursive point,
the function f is applied. In all other cases we just recurse through the datatype.

Using the monadic traversal function, we can finally define the worker func-
tion that inserts values in a value of a datatype extended with holes:

insert′ :: Insert a⇒ Hole a→ State [a] (Maybe a)
insert′ (In (Inl Unit)) = do

l← get
case l of

[] → return Nothing
(x : t)→ put t >> return (Just x)

insert′ (In (Inr x)) = do
t← traverseM insert′ x
return (traverseM id t >>= return . to)

We keep the list with values to insert as state in a monad. When we encounter a
hole (signalled by a left injection), we return the element at the head of the list
or fail if there are no more elements. When we encounter a regular value (sig-
nalled by a right injection), we use traverseM to recursively apply the insertion
function to the value. Afterwards, we propagate the Maybe monad to the top
level (note that the expression traverseM id has type (Monad m, TraverseM f) ⇒
f (m a)→ m (f a)).

We define the auxiliary insert function which just runs the state monad:

insert :: Insert a⇒ [a]→ Hole a→ Maybe a
insert as h = evalState (insert′ h) as

67

The Insert class is a simple synonym for types that have a pattern functor
view and can be traversed:

class (Regular a, TraverseM (PF a))⇒ Insert a

This synonym is useful to allow us to get automatic instances from the com-
piler. As an example, we show part of the the instantiation of the Expr datatype
(introduced in Section 3):

instance Regular (Expr a) where
type PF (Expr a) = Sum (K String)

(Sum (K a)
(Sum (Prod Id Id)
(Sum (Prod Id Id)
(Sum (Prod Id Id)

(Prod Id Id)))))
from (Var s) = Inl (K s)
from ...
to (Inl (K s)) = Var s
to ...

instance Insert (Expr Int)

The last line is used to tell the compiler that the Expr datatype is automatically
traversable, since it has a pattern functor view. We can now test insertion in
expressions:

expr :: Hole (Expr Int)
expr = sum hole (sum (lit 2) hole) where

value x = In (Inr x)
hole = In (Inl Unit)
sum a b = value (Inr (Inr (Inl (Prod (Id a) (Id b)))))
lit n = value (Inr (Inl (K n)))

ins1, ins2 :: Maybe (Expr Int)
ins1 = insert [Lit 4, Lit 6] expr
ins2 = insert [Lit 4] expr

As expected, ins1 Just (Lit 4 + (Lit 2 + Lit 6)) and ins2 Nothing.
It is unfortunate that we have to use constructors of the generic represen-

tation (such as Inr and Prod) to represent values with holes. Ideally we would
use the constructors of the original Expr datatype. We do not go into further
details in this section, but the reader is referred to Van Noort et al. [2008] for a
full description of the related problem of datatype-generic rewriting using type
families, and also for how to represent expressions with holes in a nicer syntax.

This section has shown how to define a type-indexed datatype using type
families. Type-indexed datatypes come naturally with generic functions, and
the possibility to define type-indexed datatypes in Haskell itself using type
families makes generic programming in Haskell even more attractive.

68

10 Conclusions

These lecture notes serve as an introduction to generic programming in Haskell.
We begin with a look at the context of generics and variations on this theme.
The term “generics” usually involves some piece of a program parametrised
by some other piece. The most basic form is the function, a computation pa-
rametrised by values. A more interesting category is genericity by the shape
of a datatype. This has been studied extensively in Haskell, because datatypes
plays a central role in program development.

We next explore the world of datatypes. From monomorphic types with no
abstraction to polymorphic types with universal quantification to existentially
quantified types that can simulate dynamically typed values, there is a wide
range of possibilities in Haskell. The importance of datatypes has led directly
to a number of attempts to develop methods to increase code reuse when using
multiple, different types.

In the last decade, many generic programming approaches have resulted in
libraries. Language extensions have also been studied, but libraries have been
found to be easier to ship, support, and maintain. We cover three representa-
tive libraries in detail: LIGD, EMGM, and SYB. LIGD passes a run-time type
representation to a generic function. EMGM relies on type classes to repre-
sent structure and dispatching on the appropriate representation. SYB builds
generic functions with basic traversal combinators. As a related idea, we in-
troduce type-indexed datatypes and an implementation using type families, a
recent extension of Haskell.

Having introduced variants of generic programming libraries in Haskell, we
can imagine that the reader wants to explore this area further. For that purpose,
we provide a collection of references to help in this regard.

Lastly, we speculate on the future of libraries for generic programming.
Given what we have seen in this field, where do we think the research and
development work will be next? What are the problems we should focus on,
and what advances will help us out?

10.1 Further reading

We provide several categories for further reading on topics related to generic
programming, libraries, programming languages, and similar concepts or back-
ground.

Generic programming libraries in Haskell

Each of these articles describes a particular generic programming library or
approach in Haskell.

69

LIGD [Cheney and Hinze, 2002]
SYB [Lämmel and Peyton Jones, 2003]

[Lämmel and Peyton Jones, 2004]
PolyLib [Norell and Jansson, 2004a]
EMGM [Hinze, 2004, 2006]

[Oliveira et al., 2006]
SYB with Class [Lämmel and Peyton Jones, 2005]
Spine [Hinze et al., 2006]

[Hinze and Löh, 2006]
RepLib [Weirich, 2006]
Smash your Boilerplate [Kiselyov, 2006]
Uniplate [Mitchell and Runciman, 2007]
Generic Programming, Now! [Hinze and Löh, 2007]

Generic programming in other programming languages

We mention a few references for generic programming using language exten-
sions and in programming languages other than Haskell.

Generic Haskell [Löh, 2004, Hinze and Jeuring, 2003b]
OCaml [Yallop, 2007]
ML [Karvonen, 2007]
Java [Palsberg and Jay, 1998]
Clean [Alimarine and Plasmijer, 2002]
Maude [Clavel et al., 2000]
Relational languages [Backhouse et al., 1991]

[Bird and Moor, 1997]
Dependently typed languages [Pfeifer and Ruess, 1999]

[Altenkirch and McBride, 2003]
[Benke et al., 2003]

Comparison of techniques

Here we list some references comparing different techniques of generic pro-
gramming, whether that be with language extensions, libraries, or between dif-
ferent programming languages.

Approaches in Haskell [Hinze et al., 2007]
Libraries in Haskell [Rodriguez et al., 2008b]

[Rodriguez et al., 2008a]
Language Support [Garcia et al., 2007]
C++ Concepts and Haskell Type Classes [Bernardy et al., 2008]

Background

Lastly, we add some sources that explain the background behind generic pro-
gramming in Haskell. Some of these highlight connections to theorem proving
and category theory.

70

Generic Programs and Proofs [Hinze, 2000a]
An Introduction to Generic Programming [Backhouse et al., 1999]
ADTs and Program Transformation [Malcolm, 1990a]
Law and Order in Algorithmics [Fokkinga, 1992]
Functional Programming with Morphisms [Meijer et al., 1991]

10.2 The future of generic programming libraries

There has been a wealth of activity on generic programming in the last decade
and on libraries for generic programming in Haskell in the last five years. Ge-
neric programming is spreading through the community, and we expect the
use of such techniques to increase in the coming years. Generic programming
libraries are also getting more mature and more powerful, and the number of
examples of generic programs is increasing.

We expect that libraries will replace language extensions such as Generic
Haskell—and possibly Generic Clean [Alimarine and Plasmijer, 2002]—since
they are more flexible, easier to maintain and distribute, and often equally
as powerful. In particular, if the community adopts type families and GADTs
as common programming tools, there is no reason to have separate language
extensions for generic programming. Since each generic programming library
comes with some boilerplate code, for example for generating embedding-pro-
jection pairs, we expect that generic programming libraries will be accompa-
nied by code-generation tools.

Generic programs are useful in many software packages, but we expect that
compilers and compiler-like programs will particularly profit from generic pro-
grams. However, to be used in compilers, generic programs must not intro-
duce performance penalties. At the moment, GHC’s partial evaluation tech-
niques are not powerful enough to remove the performance penalty caused by
transforming values of datatypes to values in type representations, performing
the generic functionality, and transforming the result back again to the origi-
nal datatype. By incorporating techniques for partial evaluation of generic pro-
grams [Alimarine and Smetsers, 2004], GHC will remove the performance over-
head and make generic programs a viable alternative.

Acknowledgements. This work has been partially funded by the Netherlands
Organisation for Scientific Research (NWO), via the Real-life Datatype-Generic
programming project, project nr. 612.063.613, and by the Portuguese Founda-
tion for Science and Technology (FCT), via the SFRH/BD/35999/2007 grant.

We are grateful to many people for their comments on these lecture notes.
The anonymous referee suggested many improvements to the text. Americo
Vargas and students of the Generic Programming course at Utrecht Univer-
sity provided feedback on an early version. The attendees at the 2008 Summer
School on Advanced Functional Programming provided further reactions.

71

Bibliography

Andrei Alexandrescu. Modern C++ design: generic programming and design pat-
terns applied. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2001. ISBN 0-201-70431-5.

Artem Alimarine and Rinus Plasmijer. A generic programming extension for
Clean. In Thomas Arts and Markus Mohnen, editors, The 13th International
Workshop on the Implementation of Functional Languages, IFL 2001, Selected Pa-
pers, volume 2312 of LNCS, pages 168–186. Springer, 2002.

Artem Alimarine and Sjaak Smetsers. Optimizing generic functions. In Dex-
ter Kozen, editor, MPC04long, volume 3125 of LNCS, pages 16–31. Springer,
2004.

Thorsten Altenkirch and Conor McBride. Generic programming within depen-
dently typed programming. In Jeremy Gibbons and Johan Jeuring, editors,
Generic Programming, volume 243 of IFIP, pages 1–20. Kluwer Academic Pub-
lishers, 2003.

Roland Backhouse, Peter de Bruin, Grant Malcolm, Ed Voermans, and Jaap
van der Woude. Relational catamorphisms. In B. Möller, editor, Proceedings of
the IFIP TC2/WG2.1 Working Conference on Constructing Programs, pages 287–
318. Elsevier Science Publishers B.V., 1991.

Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lambert Meertens.
Generic programming—an introduction. In S. Doaitse Swierstra et al., edi-
tors, Advanced Functional Programming, volume 1608 of LNCS, pages 28–115.
Springer, 1999.

Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes for generic programs
and proofs in dependent type theory. Nordic Journal of Computing, 10(4):265–
289, 2003.

Jean-Philippe Bernardy, Patrik Jansson, Marcin Zalewski, Sibylle Schupp, and
Andreas Priesnitz. A comparison of C++ concepts and Haskell type classes.
In ACM SIGPLAN Workshop on Generic Programming. ACM, 2008.

Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Devel-
opment. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. EATCS, 2004. ISBN 3-540-20854-2.

Richard Bird and Lambert Meertens. Nested datatypes. In Johan Jeuring, editor,
MPC98long, volume 1422 of LNCS, pages 52–67. Springer, 1998.

Richard Bird and Oege de Moor. Algebra of programming. Prentice-Hall, 1997.
ISBN 0-13-507245-X.

Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. Associated
type synonyms. Proceedings of the 10th ACM SIGPLAN International Conference
on Functional Programming, IFCP 2005, pages 241–253, 2005a.

Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and Simon
Marlow. Associated Types with Class. Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2005, pages
1–13, 2005b.

James Cheney and Ralf Hinze. A lightweight implementation of generics and
dynamics. In Manuel Chakravarty, editor, Proceedings of the 2002 ACM SIG-
PLAN workshop on Haskell, Haskell 2002, pages 90–104. ACM, 2002.

Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random
testing of Haskell programs. In Proceedings of the 5th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP 2000, pages 268–279. ACM,
2000.

Manuel Clavel, Francisco Durán, and Narciso Martı́-Oliet. Polytypic program-
ming in Maude. Electronic Notes in Theoretical Computer Science, 36:339–360,
2000.

Chris Dornan, Isaac Jones, and Simon Marlow. Alex User Guide, 2003. URL
http://www.haskell.org/alex.

Maarten M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University of
Twente, 1992.

Ira R. Forman and Scott H. Danforth. Putting metaclasses to work: a new dimen-
sion in object-oriented programming. Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA, 1999. ISBN 0-201-43305-2.

Ronald Garcia, Jaakko Järvi, Andrew Lumsdaine, Jeremy Siek, and Jeremiah
Willcock. An extended comparative study of language support for generic
programming. Journal of Functional Programming, 17(2):145–205, 2007.

Jeremy Gibbons. Datatype-generic programming. In Roland Backhouse,
Jeremy Gibbons, Ralf Hinze, and Johan Jeuring, editors, Spring School on
Datatype-Generic Programming, volume 4719, pages 1–71. Springer, 2007.

The Haskell Prime list. Haskell prime, 2006. Wiki page at http://hackage.
haskell.org/trac/haskell-prime.

Ralf Hinze. Generics for the masses. In Proceedings of the ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP 2004, pages 236–243.
ACM, 2004.

Ralf Hinze. Generics for the masses. Journal of Functional Programming, 16:451–
482, 2006.

Ralf Hinze. Generic programs and proofs. Bonn University, Habilitation, 2000a.
Ralf Hinze. Generalizing generalized tries. Journal of Functional Programming,

10(4):327–351, 2000b.
Ralf Hinze and Johan Jeuring. Generic Haskell: applications. In Generic Pro-

gramming, volume 2793 of LNCS, pages 57–96. Springer, 2003a.
Ralf Hinze and Johan Jeuring. Generic Haskell: practice and theory. In Generic

Programming, volume 2793 of LNCS, pages 1–56. Springer, 2003b.
Ralf Hinze and Andres Löh. “Scrap Your Boilerplate” revolutions. In Tarmo

Uustalu, editor, MPC06, volume 4014 of LNCS, pages 180–208. Springer, 2006.
Ralf Hinze and Andres Löh. Generic programming, now! In Roland Backhouse,

Jeremy Gibbons, Ralf Hinze, and Johan Jeuring, editors, Datatype-Generic Pro-
gramming, LNCS, pages 150–208. Springer, 2007.

Ralf Hinze and Andres Löh. Generic programming in 3D. Science of Computer
Programming, 2009. To appear.

Ralf Hinze, Johan Jeuring, and Andres Löh. Type-indexed data types. In Pro-
ceedings of the 6th International Conference on Mathematics of Program Construc-
tion, MPC 2002, volume 2386 of LNCS, pages 148–174. Springer, 2002.

73

http://www.haskell.org/alex
http://hackage.haskell.org/trac/haskell-prime
http://hackage.haskell.org/trac/haskell-prime

Ralf Hinze, Andres Löh, and Bruno C. d. S. Oliveira. “Scrap Your Boilerplate”
reloaded. In Philip Wadler and Masimi Hagiya, editors, Proceedings of the
8th International Symposium on Functional and Logic Programming, FLOPS 2006,
volume 3945 of LNCS. Springer, 2006.

Ralf Hinze, Johan Jeuring, and Andres Löh. Comparing approaches to generic
programming in Haskell. In Roland Backhouse, Jeremy Gibbons, Ralf Hinze,
and Johan Jeuring, editors, Generic Programming, Advanced Lectures, volume
4719 of LNCS. Springer, 2007.

Stefan Holdermans, Johan Jeuring, Andres Löh, and Alexey Rodriguez. Generic
views on data types. In Tarmo Uustalu, editor, MPC06, volume 4014 of LNCS,
pages 209–234. Springer, 2006.

Vesa A.J. Karvonen. Generics for the working ML’er. In Proceedings of the 2007
Workshop on ML, ML 2007, pages 71–82. ACM, 2007.

Oleg Kiselyov. Smash your boilerplate without class and typeable. http://
article.gmane.org/gmane.comp.lang.haskell.general/14086, 2006.

Oleg Kiselyov. Compositional gmap in SYB1. http://www.haskell.org/
pipermail/generics/2008-July/000362.html, 2008.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical ap-
proach to generic programming. In Proceedings of the ACM SIGPLAN Work-
shop on Types in Language Design and Implementation, TLDI 2003, pages 26–37.
ACM, 2003.

Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflection, zips,
and generalised casts. In Proceedings of the ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2004, pages 244–255. ACM, 2004.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate with class: ex-
tensible generic functions. In Proceedings of the ACM SIGPLAN International
Conference on Functional Programming, ICFP 2005, pages 204–215. ACM, 2005.

Eelco Lempsink, Sean Leather, and Andres Löh. Type-safe diff for families of
datatypes. Submitted for publication, 2009.

Josje Lodder, Johan Jeuring, and Harrie Passier. An interactive tool for manipu-
lating logical formulae. In M. Manzano, B. Pérez Lancho, and A. Gil, editors,
Proceedings of the Second International Congress on Tools for Teaching Logic, 2006.

Andres Löh. Exploring Generic Haskell. PhD thesis, Utrecht University, 2004.
Andres Löh and Ralf Hinze. Open data types and open functions. In Michael

Maher, editor, Proceedings of the 8th ACM SIGPLAN symposium on Principles
and practice of declarative programming, PPDP 2006, pages 133–144. ACM, 2006.

Grant Malcolm. Algebraic data types and program transformation. PhD thesis,
Department of Computing Science, Groningen University, 1990a.

Grant Malcolm. Data structures and program transformation. Science of Com-
puter Programming, 14:255–279, 1990b.

Simon Marlow and Andy Gill. Happy User Guide, 1997. URL http://www.
haskell.org/happy.

Conor McBride. Clowns to the left of me, jokers to the right (pearl): dissect-
ing data structures. In Proceedings of the 35th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2008, pages 287–295.
ACM, 2008.

74

http://article.gmane.org/gmane.comp.lang.haskell.general/14086
http://article.gmane.org/gmane.comp.lang.haskell.general/14086
http://www.haskell.org/pipermail/generics/2008-July/000362.html
http://www.haskell.org/pipermail/generics/2008-July/000362.html
http://www.haskell.org/happy
http://www.haskell.org/happy

Conor McBride. The derivative of a regular type is its type of one-hole contexts.
strictlypositive.org/diff.pdf, 2001.

Lambert Meertens. Calculate polytypically! In Proceedings of the 8th International
Symposium on Programming Languages: Implementations, Logics, and Programs,
PLILP 1996, pages 1–16. Springer, 1996.

Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. Proceedings 5th ACM Con-
ference on Functional Programming Languages and Computer Architecture, FPCA
1991, 523:124–144, 1991.

Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348–375, 1978.

Neil Mitchell and Colin Runciman. Uniform boilerplate and list processing. In
Proceedings of the 2007 ACM SIGPLAN workshop on Haskell, Haskell 2007. ACM,
2007.

Ulf Norell. Towards a practical programming language based on dependent type the-
ory. PhD thesis, Chalmers University of Technology and Göteborg University,
2007.

Ulf Norell and Patrik Jansson. Polytypic programming in Haskell. In Phil
Trinder et al., editors, Proceedings of the 15th International Workshop on Im-
plementation of Functional Languages, IFL 2003, volume 3145 of LNCS, pages
168–184. Springer, 2004a.

Ulf Norell and Patrik Jansson. Prototyping generic programming in Template
Haskell. In Dexter Kozen, editor, Proceedings of the 7th International Confer-
ence on Mathematics of Program Construction, MPC 2004, volume 3125 of LNCS,
pages 314–333. Springer, 2004b.

Bruno C. d. S. Oliveira, Ralf Hinze, and Andres Löh. Extensible and modular
generics for the masses. In Henrik Nilsson, editor, Revised Selected Papers
from the Seventh Symposium on Trends in Functional Programming, TFP 2006,
volume 7, pages 199–216, 2006.

Jens Palsberg and C. Barry Jay. The essence of the visitor pattern. In Proceedings
of the 22nd IEEE Conference on International Computer Software and Applications,
COMPSAC 1998, pages 9–15, 1998.

Harrie Passier and Johan Jeuring. Feedback in an interactive equation solver.
In M. Seppälä, S. Xambo, and O. Caprotti, editors, Proceedings of the Web Ad-
vanced Learning Conference and Exhibition, WebALT 2006, pages 53–68. Oy We-
bALT Inc., 2006.

Holger Pfeifer and Harald Ruess. Polytypic proof construction. In Y. Bertot,
G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors, Proceedings 12th
International Conference on Theorem Proving in Higher Order Logics, number
1690 in Lecture Notes in Computer Science, pages 55–72. Springer, 1999.

Claus Reinke. Traversable functor data, or: X marks the spot. http://www.
haskell.org/pipermail/generics/2008-June/000343.html, 2008.

Alexey Rodriguez. Towards Getting Generic Programming Ready for Prime Time.
PhD thesis, Utrecht University, 2009.

Alexey Rodriguez, Johan Jeuring, Patrik Jansson, Alex Gerdes, Oleg Kiselyov,
and Bruno C. d. S. Oliveira. Comparing libraries for generic programming in
haskell. Technical report, Utrecht University, 2008a.

75

strictlypositive.org/diff.pdf
http://www.haskell.org/pipermail/generics/2008-June/000343.html
http://www.haskell.org/pipermail/generics/2008-June/000343.html

Alexey Rodriguez, Johan Jeuring, Patrik Jansson, Alex Gerdes, Oleg Kiselyov,
and Bruno C. d. S. Oliveira. Comparing libraries for generic programming in
haskell. In Haskell Symposium 2008, 2008b.

Alexey Rodriguez, Stefan Holdermans, Andres Löh, and Johan Jeuring. Generic
programming with fixed points for mutually recursive datatypes. In Proceed-
ings of the ACM SIGPLAN International Conference on Functional Programming,
ICFP 2009, 2009.

Tom Schrijvers, Simon Peyton Jones, Manuel M. T. Chakravarty, and Martin
Sulzmann. Type checking with open type functions. In ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2008, 2008.

Tim Sheard. Using MetaML: A staged programming language. Revised Lectures
of the Third International School on Advanced Functional Programming, 1999.

Tim Sheard and Simon Peyton Jones. Template metaprogramming for Haskell.
In Manuel M. T. Chakravarty, editor, ACM SIGPLAN Haskell Workshop 2002,
pages 1–16. ACM, 2002.

Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis,
Oregon Graduate Institute of Science and Technology, 1999.

Universiteit Utrecht. EMGM, 2008. URL http://www.cs.uu.nl/wiki/
GenericProgramming/EMGM.

Thomas van Noort, Alexey Rodriguez, Stefan Holdermans, Johan Jeuring, and
Bastiaan Heeren. A lightweight approach to datatype-generic rewriting. In
ACM SIGPLAN Workshop on Generic Programming, 2008.

Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM confer-
ence on LISP and Functional Programming, LFP 1990, pages 61–78. ACM, 1990.

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-
hoc. In Conference Record of the 16th Annual ACM Symposium on Principles of
Programming Languages, pages 60–76. ACM, 1989.

Stephanie Weirich. RepLib: a library for derivable type classes. In Proceedings of
the 2006 ACM SIGPLAN workshop on Haskell, Haskell 2006, pages 1–12. ACM,
2006.

Jeremy Yallop. Practical generic programming in OCaml. In Proceedings of the
2007 workshop on Workshop on ML, ML 2007, pages 83–94. ACM, 2007.

A Solutions to the exercises

Solution 1.

rTree :: Rep a→ Rep (Tree a)
rTree ra = RType (EP fromTree toTree)

(RSum RUnit (RProd ra (rForest ra)))
fromTree :: Tree a→ Unit :+: a :×: Forest a

fromTree Empty = L Unit
fromTree (Node x f) = R (x :×: f)
toTree :: Unit :+: a :×: Forest a→ Tree a

76

http://www.cs.uu.nl/wiki/GenericProgramming/EMGM
http://www.cs.uu.nl/wiki/GenericProgramming/EMGM

toTree (L Unit) = Empty
toTree (R (x :×: f)) = Node x f
rForest :: Rep a→ Rep (Forest a)
rForest ra = RType (EP fromForest toForest)

(RSum RUnit (RProd (rTree ra) (rForest ra)))
fromForest :: Forest a→ Unit :+: Tree a :×: Forest a

fromForest Nil = L Unit
fromForest (Cons t f) = R (t :×: f)
toForest :: Unit :+: Tree a :×: Forest a→ Forest a

toForest (L Unit) = Nil
toForest (R (t :×: f)) = Cons t f

Solution 2. We use (|||) and >< from Exercise 11.

enum :: Rep a→ [a]
enum RInt = [0, 1 . .] ||| [−1,−2 . .]
enum RChar = [’\NUL’ . .]
enum RUnit = [Unit]
enum (RSum ra rb) = map L (enum ra) |||map R (enum rb)
enum (RProd ra rb) = enum ra >< enum rb
enum (RType ep ra) = map (to ep) (enum ra)
enum (RCon s ra) = enum ra

Solution 3.

appCrush :: RCrush b a→ (b→ b→ b)→ b→ a→ b

appCrush RInt1 f e = e
appCrush RChar1 f e = e
appCrush RUnit1 f e = e
appCrush (RSum1 ra rb) f e (L a) = appCrush ra f e a
appCrush (RSum1 ra rb) f e (R b) = appCrush rb f e b
appCrush (RProd1 ra rb) f e (a :×: b) = f (appCrush ra f e a) (appCrush rb f e b)
appCrush (RType1 ep ra) f e x = appCrush ra f e (from ep x)
appCrush (RCon1 ra) f e x = appCrush ra f e x
appCrush (RVar1 g) f e x = selCrush g x

crush :: (RCrush a a→ RCrush b (f a))→ (b→ b→ b)→ b→ f a→ b

crush rep = appCrush (rep (RVar1 (Crush id)))

sum rep = crush rep (+) 0

testSumInts = sum rList,1 (Cons 1 (Cons 2 (Cons 7 (Cons 3 (Cons 4 Nil)))))

77

Solution 4.

data Rep3 g a b c where
RInt3 :: Rep3 g Int Int Int
RChar3 :: Rep3 g Char Char Char
RUnit3 :: Rep3 g Unit Unit Unit
RSum3 :: Rep3 g a b c→ Rep3 g d e f → Rep3 g (a :+: d) (b :+: e) (c :+: f)
RProd3 :: Rep3 g a b c→ Rep3 g d e f → Rep3 g (a :×: d) (b :×: e) (c :×: f)
RType3 :: EP a d→ EP b e→ EP c f → Rep3 g d e f → Rep3 g a b c
RCon3 :: String→ Rep3 g a b c→ Rep3 g a b c
RVar3 :: g a b c→ Rep3 g a b c

newtype ZipWith a b c = ZipWith{selZipWith :: a→ b→ c}

type RZipWith a b c = Rep3 ZipWith a b c

appZipWith :: RZipWith a b c→ a→ b→ c
appZipWith RInt3 i j

= if i j then i else error "appZipWith"
appZipWith RChar3 c d

= if c d then c else error "appZipWith"
appZipWith RUnit3 Unit Unit

= Unit
appZipWith (RSum3 ra rb) (L a1) (L a2)

= L (appZipWith ra a1 a2)
appZipWith (RSum3 ra rb) (R b1) (R b2)

= R (appZipWith rb b1 b2)
appZipWith (RSum3 ra rb)

= error "gzipWithG"
appZipWith (RProd3 ra rb) (a1 :×: a2) (b1 :×: b2)

= appZipWith ra a1 b1 :×: appZipWith rb a2 b2

appZipWith (RType3 ep1 ep2 ep3 ra) x y
= to ep3 (appZipWith ra (from ep1 x) (from ep2 y))

appZipWith (RCon3 nm ra) x y
= appZipWith ra x y

appZipWith (RVar3 f) x y
= selZipWith f x y

zipWith :: (RZipWith a b c→ RZipWith (f a) (f b) (f c))
→ (a→ b→ c)→ f a→ f b→ f c

zipWith rep f = appZipWith (rep (RVar3 (ZipWith f)))

Solution 5.

78

data LogicL = Lit Bool
| Not LogicL
| Or (List LogicL)

fromBool :: Bool→ Unit :+: Unit
fromBool False = L Unit
fromBool True = R Unit
toBool :: Unit :+: Unit→ Bool
toBool (L Unit) = False
toBool (R Unit) = True
rBool :: Generic g⇒ g Bool
rBool = rtype (EP fromBool toBool) (runit ‘rsum‘ runit)
fromLogicL :: LogicL → Bool :+: LogicL :+: List LogicL

fromLogicL (Lit b) = L b
fromLogicL (Not l) = R (L l)
fromLogicL (Or ls) = R (R ls)

toLogicL :: Bool :+: LogicL :+: List LogicL → LogicL

toLogicL (L b) = Lit b
toLogicL (R (L l)) = Not l
toLogicL (R (R ls)) = Or ls

rLogicL :: Generic g⇒ g LogicL

rLogicL = rtype (EP fromLogicL toLogicL)
(rBool ‘rsum‘ rLogicL ‘rsum‘ rList rLogicL)

data LogicF f = Lit Bool
| Not (LogicF f)
| Or (f (LogicF f))

fromLogicF :: LogicF f → Bool :+: LogicF f :+: f (LogicF f)
fromLogicF (Lit b) = L b
fromLogicF (Not l) = R (L l)
fromLogicF (Or ls) = R (R ls)

toLogicF :: Bool :+: LogicF f :+: f (LogicF f)→ LogicF f

toLogicF (L b) = Lit b
toLogicF (R (L l)) = Not l
toLogicF (R (R ls)) = Or ls

rLogicF :: Generic g⇒ (g (LogicF f)→ g (f (LogicF f)))→ g (LogicF f)
rLogicF rf = rtype (EP fromLogicF toLogicF)

(rBool ‘rsum‘ rLogicF rf ‘rsum‘ rf (rLogicF rf))

79

Solution 6.

newtype Compare a = Compare{selCompare :: a→ a→ Ordering}
compareint i j = compare i j
comparechar c d = compare c d
compare1 Unit Unit = EQ
compare+ ra rb (L a1) (L a2) = selCompare ra a1 a2
compare+ (L) (R) = LT
compare+ (R) (L) = GT
compare+ ra rb (R b1) (R b2) = selCompare rb b1 b2

compare× ra rb (a1 :×: b1) (a2 :×: b2) = case selCompare ra a1 a2 of
EQ → selCompare rb b1 b2
other→ other

comparetype ep ra a1 a2 = selCompare ra (from ep a1) (from ep a2)
comparecon s ra a1 a2 = selCompare ra a1 a2

instance Generic Compare where
rint = Compare compareint
rchar = Compare comparechar
runit = Compare compare1

rsum ra rb = Compare (compare+ ra rb)
rprod ra rb = Compare (compare× ra rb)
rtype ep ra = Compare (comparetype ep ra)
rcon s ra = Compare (comparecon s ra)

compare :: (Rep Compare a)⇒ a→ a→ Ordering
compare = selCompare rep

Solution 7. The EMGM function crushr differs from the LIGD function crush
most significantly in the type signature and the product case. The crush type
says that the binary combining function combines only bs to get a new b value
while crushr uses a combining function that also transforms as to bs. We could
change the solution of Exercise 3 to pass the injection function a → b as an
argument. Currently, it is id. Due to the difference in combining function, the
product is treated differently in each. In crushr, we expect the left side to be a a
value and the right side to be a b.

The r in crushr stands for right associativity. For the difference between
crushr and crushl, look at the definitions in the released EMGM library avail-
able at [Utrecht, 2008].

Solution 8.

showElements :: (Show a, FRep (Crushr String) f)⇒ f a→ String
showElements = crushr (λa b→ show a ++ ","++ b) ""

80

sumElements :: (Num a, FRep (Crushr a) f)⇒ f a→ a
sumElements = crushr (+) 0

Solution 9. Sorry, no solution here. This is an open-ended question!

Solution 10.

infixr 5 ‘rsum3‘
infixr 6 ‘rprod3‘
class Generic3 g where

rint3 :: g Int Int Int
rchar3 :: g Char Char Char
runit3 :: g Unit Unit Unit
rsum3 :: g a1 a2 a3 → g b1 b2 b3 → g (a1 :+: b1) (a2 :+: b2) (a3 :+: b3)
rprod3 :: g a1 a2 a3 → g b1 b2 b3 → g (a1 :×: b1) (a2 :×: b2) (a3 :×: b3)
rtype3 :: EP a2 a1 → EP b2 b1 → EP c2 c1 → g a1 b1 c1 → g a2 b2 c2

class FRep3 g f where
frep3 :: g a b c→ g (f a) (f b) (f c)

newtype ZipWith a b c = ZipWith{selZipWith :: a→ b→ c}
zipWithint i j = if i j

then i
else error "!!"

zipWithchar c d = if c d
then c
else error "!!"

zipWith1 Unit Unit = Unit
zipWith+ ra rb (L a1) (L a2) = L (selZipWith ra a1 a2)
zipWith+ ra rb (R b1) (R b2) = R (selZipWith rb b1 b2)
zipWith+ ra rb = error "!!"
zipWith× ra rb (a1 :×: b1) (a2 :×: b2) = selZipWith ra a1 a2

:×: selZipWith rb b1 b2

zipWithtype ep1 ep2 ep3 ra a1 a2 = to ep3 (selZipWith
ra
(from ep1 a1)
(from ep2 a2))

instance Generic3 ZipWith where
rint3 = ZipWith zipWithint
rchar3 = ZipWith zipWithchar
runit3 = ZipWith zipWith1

rsum3 ra rb = ZipWith (zipWith+ ra rb)
rprod3 ra rb = ZipWith (zipWith× ra rb)
rtype3 ep1 ep2 ep3 ra = ZipWith (zipWithtype ep1 ep2 ep3 ra)

rList3 :: (Generic3 g)⇒ g a b c→ g (List a) (List b) (List c)

81

rList3 ra = rtype3 (EP fromList toList)
(EP fromList toList)
(EP fromList toList)
(runit3 ‘rsum3‘ ra ‘rprod3‘ rList3 ra)

instance (Generic3 g)⇒ FRep3 g List where
frep3 = rList3

zipWith :: (FRep3 ZipWith f)⇒ (a→ b→ c)→ f a→ f b→ f c
zipWith = selZipWith . frep3 . ZipWith

Solution 11.

diag :: [[a]]→ [a]
diag = concat . foldr skew [] . map (map (λx→ [x]))
skew :: [[a]]→ [[a]]→ [[a]]
skew [] ys = ys
skew (x : xs) ys = x : combine (++) xs ys
combine :: (a→ a→ a)→ [a]→ [a]→ [a]
combine xs [] = xs
combine [] ys = ys
combine f (x : xs) (y : ys) = f x y : combine f xs ys

Solution 12. Sorry, no solution here. This is an open-ended question!

Solution 13.

instance (Data a)⇒ Data (Expr a) where
gfoldl k z (Var s) = z Var ‘k‘ s
gfoldl k z (Lit x) = z Lit ‘k‘ x
gfoldl k z (e1 + e2) = z (+) ‘k‘ e1 ‘k‘ e2
gfoldl k z (e1 − e2) = z (−) ‘k‘ e1 ‘k‘ e2
gfoldl k z (e1 × e2) = z (×) ‘k‘ e1 ‘k‘ e2
gfoldl k z (e1 ÷ e2) = z (÷) ‘k‘ e1 ‘k‘ e2

gunfold k z l = case constrIndex l of
1→ k (z Var)
2→ k (z Lit)
3→ k (k (z (+)))
4→ k (k (z (−)))
5→ k (k (z (×)))
6→ k (k (z (÷)))
→ error "gunfold for Expr"

toConstr (Var) = con1Expr
toConstr (Lit) = con2Expr
toConstr ((+)) = con3Expr
toConstr ((−)) = con4Expr

82

toConstr ((×)) = con5Expr
toConstr ((÷)) = con6Expr
dataTypeOf = tyExpr
dataCast1 f = gcast1 f

con1Expr = mkConstr tyExpr "ExprVar" [] Prefix
con2Expr = mkConstr tyExpr "Lit" [] Prefix
con3Expr = mkConstr tyExpr "(:+:)" [] Infix
con4Expr = mkConstr tyExpr "(:-:)" [] Infix
con5Expr = mkConstr tyExpr "(:*:)" [] Infix
con6Expr = mkConstr tyExpr "(:/:)" [] Infix
tyExpr = mkDataType "ModuleNameHere.Expr"

[con1Expr, con2Expr, con3Expr, con4Expr, con5Expr, con6Expr]

Solution 14.

everywhere′ :: GenericT → GenericT
everywhere′ f = gmapT (everywhere′ f) . f

Solution 15.

gdepth :: GenericQ Int
gdepth = succ . foldr max 0 . gmapQ gdepth

Solution 16.

gwidth :: GenericQ Int
gwidth = max 1 . foldr (+) 0 . gmapQ gwidth

Solution 17.

gshow :: Data a⇒ a→ String
gshow = (λt→

"("
++ showConstr (toConstr t)
++ concat (gmapQ ((++) " " . gshow) t)
++ ")"

)
‘extQ‘ (show :: Char→ String)
‘ext1Q‘ showLst
‘extQ‘ (show :: String→ String)
‘ext2Q‘ showPair

showLst :: Data a⇒ [a]→ String
showLst l = "["++ (intercalate "," (map gshow l)) ++ "]"

83

newtype Q r a = Q{unQ :: a→ r}
ext2Q :: (Data d, Typeable2 t)⇒

(d→ q)→ (∀d1 d2 . (Data d1, Data d2)⇒ t d1 d2 → q)→ d→ q
ext2Q def ext arg =

case dataCast2 (Q ext) of
Just (Q ext′)→ ext′ arg
Nothing → def arg

showPair :: (Data a, Data b)⇒ (a, b)→ String
showPair (a, b) = "("++ gshow a ++ ","++ gshow b ++ ")"

Efficient version:

gshows :: Data a⇒ a→ ShowS
gshows = (λt→ showParen True

(showString (showConstr (toConstr t))
. foldr (.) id (gmapQ gshows t))

)
‘extQ‘ (shows :: Char→ ShowS)
‘ext1Q‘ showsLst
‘extQ‘ (shows :: String→ ShowS)
‘ext2Q‘ showsPair

showsLst :: Data a⇒ [a]→ ShowS
showsLst l =

showChar ’[’
. foldr (.) id (intersperse (showChar ’,’) (map gshows l))

. showChar ’]’
showsPair :: (Data a, Data b)⇒ (a, b)→ ShowS
showsPair (a, b) = showParen True (gshows a . showChar ’,’ . gshows b)

Solution 18. The full code for gread, as copied from http://www.haskell.org/
ghc/dist/stable/docs/libraries/base/src/Data-Generics-Text.html#gread:

gread :: (Data a)⇒ String→ [(a, String)]
gread = readP to S gread′

where
-- Helper for recursive read

gread′ :: Data b⇒ ReadP b
gread′ = allButString ‘extR‘ stringCase

where
-- A specific case for strings

stringCase :: ReadP String
stringCase = readS to P reads

-- Determine result type
myDataType = dataTypeOf (getArg allButString)

where

84

http://www.haskell.org/ghc/dist/stable/docs/libraries/base/src/Data-Generics-Text.html#gread
http://www.haskell.org/ghc/dist/stable/docs/libraries/base/src/Data-Generics-Text.html#gread

getArg :: ReadP c→ c
getArg = undefined

-- The generic default for gread
allButString =

do
-- Drop ” (”

skipSpaces -- Discard leading space
char ’(’ -- Parse ’(’
skipSpaces -- Discard following space

-- Do the real work
str ← parseConstr -- Get a lexeme for the constructor
con ← str2con str -- Convert it to a Constr (may fail)
x ← fromConstrM gread′ con -- Read the children

-- Drop ”) ”
skipSpaces -- Discard leading space
char ’)’ -- Parse ’)’
skipSpaces -- Discard following space
return x

-- Turn string into constructor driven by the requested result type,
-- failing in the monad if it isn’t a constructor of this data type

str2con :: String→ ReadP Constr
str2con = maybe mzero return . readConstr myDataType

-- Get a Constr’s string at the front of an input string
parseConstr :: ReadP String
parseConstr =

string "[]" -- Compound lexeme ”[]”
<++ infixOp -- Infix operator in parantheses
<++ readS to P lex -- Ordinary constructors and literals

-- Handle infix operators such as (:)
infixOp :: ReadP String
infixOp = do c1 ← char ’(’

str← munch1 (not . () ’)’)
c2 ← char ’)’
return $ [c1] ++ str ++ [c2]

Solution 19. Only two modifications to the code were necessary to include the
Dynamics: changing MyState and the tell in sels′. To handle lists, we introduce
selsList:

type Selections = Map (Int, Int) Dynamic
type MyState = StateT Int (Writer Selections) ()
selections :: Data a⇒ a→ Selections
selections x = execWriter (evalStateT (sels′ x) 0) where

sels′ :: Data a⇒ a→ MyState

85

sels′ t = do
m← get
let n = m + length (gshow t)
tell (M.singleton (m, n) (toDyn t))
(selsConstr ‘ext2Q‘ selsPair ‘ext1Q‘ selsList ‘extQ‘ selsString) t
put n

selsConstr :: Data a⇒ a→ MyState
selsConstr t = do

when (nrChildren t > 0) $
modify (+(2 + length (showConstr (toConstr t))))

sequence $ intersperse (modify (+1)) $ gmapQ sels′ t
selsPair :: (Data a, Data b)⇒ (a, b)→ MyState
selsPair (a, b) = do

modify (+1)
sels′ a
modify (+1)
sels′ b

selsString :: String→ MyState
selsString t = return ()
selsList :: Data a⇒ [a]→ MyState
selsList l = do

modify (+1)
sequence $ intersperse (modify (+1)) $ map sels′ l

86

	Introduction
	Generic programming in context (and in Haskell)
	Value
	Function
	Type
	Interface
	Property
	Program Representation
	Shape

	The world of Haskell datatypes
	Monomorphic datatypes
	Parametric polymorphic datatypes
	Families and mutually recursive datatypes
	Higher-order kinded datatypes
	Nested datatypes
	Existentially quantified datatypes
	Generalized algebraic datatypes

	Libraries for generic programming
	Lightweight Implementation of Generics and Dynamics
	An example function
	Run-time type representation
	Going generic: universe extension
	Support for overloading
	Generic functions in LIGD
	Empty
	Flatten
	Generalised map

	Case study: exercise assistants

	Extensible and Modular Generics for the Masses
	An example function
	Run-time type representation
	Going generic: universe extension
	Support for overloading
	Making generic functions extensible
	Reducing the burden of extensibility
	Generic functions in EMGM
	Empty
	Crush and flatten
	Generalised map

	Case study: generating values

	Scrap Your Boilerplate
	An example function
	Run-time type representation
	Going generic: universe extension
	Generic functions in SYB
	Types of SYB combinators
	Basic examples
	Generic maps
	Equality

	Support for overloading
	Making generic functions extensible
	An explicit view for SYB
	Case study: selections in exercises assistants

	Comparison of the libraries
	Differences
	Universe size
	First-class generic functions
	Ad-hoc definitions for datatypes
	Extensibility
	Overhead of library use
	Practical aspects
	Portability

	Similarities
	Abstraction over type constructors
	Separate compilation
	Multiple arguments
	Constructor names
	Consumers, transformer and producers

	Type-indexed datatypes with type families
	Generic insertion

	Conclusions
	Further reading
	Generic programming libraries in Haskell
	Generic programming in other programming languages
	Comparison of techniques
	Background

	The future of generic programming libraries

	Solutions to the exercises

