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Connected Rectilinear Graphs on Point Sets∗

Maarten Löffler† Elena Mumford‡

Abstract

Let V be a set of n points in Rd. We study the question whether there exists an orientation
such that V is the vertex set of a connected rectilinear graph in that orientation. A graph is
rectilinear if its edges are straight line segments in d pairwise perpendicular directions. We
prove that at most one such orientation can be possible, up to trivial rotations of 90◦ around
some axis. In addition, we present an algorithm for computing this orientation (if it exists)
in O(n2) time when d = 2.

1 Introduction

Suppose you are given a set of points in the plane, or more generally in Rd, and you want to
know whether this is the vertex set of some connected rectilinear graph. Then you have to find
the orientation that this graph should have. At the Canadian Conference on Computational
Geometry in 2007, Therese Biedl asked the question: can a given set of points in the plane be the
vertex set of two rectilinear polygons that have different orientations (other than trivial rotations
by multiples of 90◦)?

Here we show that the answer is no, even when the points are in Rd and even for arbitrary
connected rectilinear graphs instead of polygons. Figure 1 shows an example of two rectilinear
graphs on the same point set, but note that G′ is not connected. The connectedness is essential:
without this restriction, it is sometimes possible to have sets of rectilinear polygons in two different
orientations, as Biedl already showed with a regular octagon as example, see Figure 2. For the
special case where the points are in the plane and have rational coordinates, Fekete and Woeginger
already proved that at most one orientation is possible [10] (Theorem 4.7).

∗This research was partially supported by the Netherlands Organisation for Scientific Research (NWO) through the
project GOGO.

†Utrecht University, loffler@cs.uu.nl
‡Technical University Eindhoven, e.mumford@tue.nl
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Figure 1: Two rectilinear graphs in the plane with the same vertex set, but different slopes. Note
that G′ is not connected.
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Figure 2: The vertices of a regular octagon allow a spanning set of rectilinear polygons in two
different orientations.

1.1 Related Work

Problems on orthogonol polygons have been studied a lot before. O’Rourke [21] proves that there
can be at most one way to connect a given point set into a rectilinear polygon that makes a 90◦

turn at each vertex, and gives a simple algorithm to compute it. On the other hand, if turns of 180◦

are allowed, Rappaport [23] shows that the problem is NP-hard. Durocher and Kirkpatrick [7]
study the problem of finding a collection of rectilinear tours that use the given points as vertices,
where the tours are allowed to have different orientations. They prove that this is NP-hard as
well. Jansen and Woeginger [14] show that deciding if a given rectilinear geometric graph has a
planar sub-graph is NP-complete. This is a more restricted case of the more general problem for
topological graphs, which was shown NP-hard earlier [18], and for which Knauer et al. [17] show
several hardness-of-approximation results.

Many papers exist that study how to draw the edges of a given graph where the vertices are
mapped to a given point set. For example, Pach and Wenger [22] show that in order to make such
a graph planar, a linear number of bends per edge may be necessary. On the other hand, if the
mapping between vertices and points is not given, Kaufmann and Wiese [16] show that a planar
embedding with at most 2 bends can be computed in polynomial time. Cabello [6] shows that
deciding whether a planar straight line embedding exists on a given point set, is NP-complete. If
the given graph is outerplanar, Bose [5] shows that a planar straight line embedding on a fixed
point set can be computed in near-linear time. Efrat et al. [9] study the possibility of drawing a
crossing-free graph with circular arcs as edges.

On the other hand, rectilinear graphs also received a lot of attention from a graph drawing per-
spective. Vijayan and Wigderson [25] show how to embed an abstract graph with an additional
‘direction’ associated to each edge can be embedded as a rectilinear graph in the plane in O(n2)
time; Hoffman and Kriegel [13] improve this to O(n) time. Garg and Tamassia [12] show that
without such associated directions, it is NP-hard to decide if a graph has a rectilinear planar
embedding. Bodlaender and Tel [4] show that all graphs with angular resolution of at least 90◦

have a rectilinear embedding. Biedl and Kant [2] give algorithms to draw graphs with rectilinear
edges, that are allowed to have a few bends.

Orienting point sets is a frequent task in matching and surface reconstruction. In his classic
work on rotating calipers, Toussaint [24] shows, among other problems, how to find an orientation
that minimises the axis-aligned bounding box. A different way to orient a point set is principal
component analysis [15]. Finding orientations that best match a point set to another point set or
object is still an active research topic [3, 19].

The rest of the paper is organised as follows. First we discuss some existing terminology in
Section 2. Then, in Section 3, we show that a point set allows for a connected rectilinear graph
in at most one orientation. In Section 4, we discuss a related algorithmic question of finding such
an orientation for a point set in the plane. We conclude in Section 5.
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2 Preliminaries

In this section, we review several concepts and terminology from graph theory, geometry, and
algebra, which will be used throughout the rest of the text.

In this paper, we consider a graph G to be an embedded graph (in Rd) with straight line edges.
We say that G is d-dimensional if it is not contained in any lower-dimensional subspace of Rd.
We call G rectilinear if each pair of edges of G is either parallel or perpendicular. We call G
axis-aligned if each edge of G is parallel to one of the axes of the normal axis system. If B is an
orthogonal basis of Rd, we call G B-aligned if each edge of G is parallel to one of the basis vectors
in B.

Observation 1 If G is a d-dimensional connected rectilinear graph, there is a unique orthonormal
basis B of Rd, up to rearranging the vectors, such that G is B-aligned.

Proof: We take the largest linearly independent set of vectors from the set of edges of G. Since
G is connected and d-dimensional, it contains d vectors and since G is rectilinear it is orthogonal.
�

We also call this basis the orientation of G. In the special case where d = 2, B can be fully
desribed by a slope s, and will consist of the vectors (1, s) and (− 1

s , 1) (normalised). In this case
we also say that G has slope s. If V is a set of points in Rd, and B is an orthogonal basis, then
we define the maximal rectilinear graph on V with orientation B as the graph with V as vertex
set that has an edge between two vertices whenever that edge is parallel to some vector in B. If
the maximal rectilinear graph is connected, we also say that B allows for a connected rectilinear
graph on V .

If F ⊂ R is a field, and x ∈ R, we denote by F (x) the extended field generated by adjoining x
to F , or in other words, the smallest subfield of R that contains both Q and x. We denote by
[F (x) : F ] the degree of the extension.

If X ⊂ R is a finite subset of R, we denote by F 〈X〉 the vector space that contains all sums of
elements of the set {fx | f ∈ F, x ∈ X}. Let k ≤ |X| be the dimension of this vector space, and
let E = (e1, . . . , ek) be a basis for it. Then F 〈X〉 = F 〈E〉, and each element x ∈ F 〈X〉 can be
written as x =

∑
j xjej , where xj ∈ F .

An algebraic integer is an element a ∈ C that is the root of a monic polynomial with integer
coefficients, that is, a polynomial p =

∑n
i=0 cix

i where ci ∈ N and cn = 1. We denote by OF the
ring of integers of F , which consists of all algebraic integers that are in F . Intuitively, the ring of
integers OF behaves towards the field F as Z behaves towards Q. Every element f ∈ F can be
written as f = a/b, where a, b ∈ OF . An element a ∈ OF is irreducible if it cannot be written as
a = b · c with b, c ∈ OF . Every element a ∈ OF can be written as the product of a finite sequence
a =

∏
i ai, where ai ∈ OF is irreducible, though this factorisation is not necessarily unique. Two

elements a, b ∈ OF are said to have a common divisor d if there exist factorisations of both a and
b that include a term d.

We denote by OF 〈X〉 the OF -module that contains all sums of elements of the set {ax | a ∈
OF , x ∈ X}, and again OF 〈X〉 = OF 〈E〉.

3 Existence of orientations

In this section, we prove by contradiction that a point set cannot be the vertex set of two rectilinear
graphs of different orientations. We first study the situation in the plane, which falls apart into
two different cases, and then show how to extend the result to any dimension.
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G′

G
vi vi+1

Figure 3: For any edge vivi+1 of G, there is also a path in G′ connecting vi to vi+1.

Let V be a set of points in the plane, and let X and Y be the sets of all x-coordinates and
y-coordinates of the points in V respectively. Assume w.l.o.g. that min(X) = min(Y ) = 0. Let
G be a connected axis-aligned rectilinear graph that has V as its vertex set. Let s ∈ R be any
real positive real number. We will suppose that there exists another connected rectilinear graph
G′ that has V as vertex set and has slope s, and show that this leads to a contradiction.

Let Q(s) be the field generated by adjoining s to Q, and consider the vector space Q(s)〈X ∪ Y 〉.
Let E = (e1, . . . , ek) be a basis for this vector space. We now have X, Y ⊂ Q(s)〈E〉 so we can
write xi =

∑
j xijej for all xi ∈ X, and yi =

∑
j yijej for all yi ∈ Y , where xij , yij ∈ Q(s).

We consider the following cases:

1. [Q(s) : Q] < ∞, s is algebraic over Q. We consider this case in Section 3.1.

2. [Q(s) : Q] = ∞, s is transcendental over Q. We consider this case in Section 3.2.

3.1 Algebraic slopes

When s is algebraic over Q, we will first argue that we can assume the coordinates of the points
in V have no common divisors. We know that all xij , yij ∈ Q(s).

Observation 2 W.l.o.g. we can assume that all xij , yij ∈ OQ(s) and that they do not have a
common divisor.

Proof: Each element of Q(s) can be written as a fraction p/q with p, q ∈ OQ(s). Therefore,
we can multiply all coordinates by q for each xij and yij to ensure all coordinates are in OQ(s).
Furthermore, each element of OQ(s) can be written (possibly in multiple ways) as a product of
irreducible elements. A set of elements S ⊂ OQ(s) has a common divisor d if each element si ∈ S
can be written as d · ri with r ∈ OQ(s). In this case, we can take the set R = {ri|si ∈ S} instead.
Since the sequences of irreducible elements are finite, this eventually results in a set without a
common divisor. �

As a result, we have xi, yi ∈ OQ(s)〈E〉. Consider any pair of points v, v′ ∈ V , and the horizontal and
vertical distances ∆x and ∆y between them. These points are connected by a path v1, v2, . . . , vm

in G, where v1 = v and vm = v′. Denote by (∆xi,∆yi) the horizontal and vertical distance
between vi and vi+1. Note that ∆xi and ∆yi are also in OQ(s)〈E〉.

Lemma 1 Given a set of points in the plane with a rectilinear axis-aligned graph on them, there
cannot be another rectilinear graph with algebraic slope (other than 0) on the same point set.

Proof: Assume for contradiction that there is such a graph G′ with slope s. Then we know that
there exists a path in G′ from vi to vi+1, see Figure 3. This path uses edges with slope s or − 1

s ,
so when following this path we move over distances (a, sa) or (sb,−b). Since all point coordinates
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are in OQ(s)〈E〉, we know that a, b ∈ OQ(s)〈E〉. In total we move from vi to vi+1 over a distance
(ai + sbi, sai − bi) where ai, bi ∈ OQ(s)〈E〉.

Since G is axis-aligned, every edge between two points vi and vi+1 is either horizontal or vertical.
If it is horizontal, we have:

∆yi = sai − bi = 0 ∆xi = ai + sbi = ai + s2ai = (1 + s2)ai

If it is vertical, we have:

∆xi = ai + sbi = 0 ∆yi = sai − bi = −s2bi − bi = −(1 + s2)bi

In other words, all ∆xi and ∆yi are multiples of 1 + s2. Now write ∆xi =
∑

j ∆xijej and ∆yi =∑
j ∆yijej , and also write ai =

∑
j aijej and bi =

∑
j bijej . Clearly ∆xij ,∆yij , aij , bij ∈ OQ(s).

Since the elements of E are linearly independent over Q(s), it follows that ∆xij = (1 + s2)aij for
horizontal segments and ∆yij = −(1 + s2)bij for vertical segments for all i, j.

Now s2 ∈ Q(s), so we can write s2 = p/q with p, q ∈ OQ(s) and such that p and q do not contain a
common irreducible factor in any factorisation. This means that, if vivi+1 is horizontal, we have:

∆xij = (1 + p/q)aij = (p + q)aij/q

And if it is vertical, we have:

∆yij = −(1 + p/q)bij = −(p + q)bij/q

Since q does not divide p + q (unless it is 1), p + q is in OQ(s) and divides ∆xij and ∆yij . Since
∆x =

∑
i,j ∆xijej , it follows that p + q divides ∆x, and similarly that p + q also divides ∆y. So,

any two points v and v′ are a OQ(s)〈E〉-multiple of p + q away from each other in both horizontal
and vertical direction, which contradicts the assumption that their coordinates have no common
divisor. �

3.2 Transcendental slopes

When s is transcendental, every element w ∈ Q(s) can be written in the form

w =

∑
0≤l≤h wls

l∑
0≤l′≤h′ w′

l′sl′

for some h, h′ ∈ N, and wl, w
′
l′ ∈ Q.

Observation 3 W.l.o.g. we can assume that we can write:

xij =
∑

0≤l≤h

xijls
l and yij =

∑
0≤l≤h

yijls
l

where h ∈ N and xijl, yijl ∈ Z.

Proof: We can get rid of the expression below the division line of each element w, by multiplying
it and all other elements by

∑
0≤l′≤h′ w′

l′s
l′ . �

Now xij , yij ∈ Z〈s, . . . , sh〉. Assume h ≥ 2 (if it is smaller, just add some 0’s to the descriptions
of the coordinates). We now also know that (1 + s2) ∈ Z〈s, . . . , sh〉. We can assume w.l.o.g. that
not all of xij , yij can be written as (1+ s2)w for some w ∈ Z〈s, . . . , sh〉 (otherwise we could divide
everything by (1 + s2)).
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β

Figure 4: The plane α spanned by b and b′, and the subspaces β and β′ that project onto b⊥ and
b′⊥. In the figure, the subspaces are planes since d = 3, but in general this is not the case.

Lemma 2 Given a set of points in the plane with a rectilinear axis-aligned graph on them, there
cannot be another rectilinear graph with transcendental slope on the same point set.

Proof: Assume that such a graph G′ with slope s exists. As in the proof of Lemma 1, we can
again argue that for horizontal edges vivi+1 we have:

∆xij = (1 + s2)aij

and for horizontal vertical segments we have:

∆yij = −(1 + s2)bij

This time, however, aij , bij ∈ Z〈s, . . . , sh〉. This clearly contradicts our assumption. �

We can summarise Lemmata 1 and 2 in the following result:

Theorem 1 Given a set of points in the plane, there can be at most one orientation that allows
a connected rectilinear graph that has these points as its vertices.

3.3 Higher dimensions

We now show how to extend the result to any dimension. Let V now be a set of n points in Rd.
Assume that V is d-dimensional: it is not contained in any subspace of Rd.

Let G be a connected rectilinear graph on V and let B = b1, . . . , bd be its orientation.

Lemma 3 Any other rectilinear connected graph G′ on V must have the same orientation as G.

Proof: By our assumption Rd is the smallest space that contains V , hence any graph on V has
dimension d.

Assume for a contradiction that there exists a rectilinear connected graph G′ on V with a different
orientation B′. This means that there exists an edge e ∈ G and an edge e′ ∈ G′ such that e is not
parallel nor perpendicular to e′. Let b ∈ B be the direction of e, and b′ ∈ B′ be the direction of
e′. Let α be the plane spanned by b and b′. Let β be the subspace perpendicular to b, and β′ the
subspace perpendicular to b′. Clearly α⊥β and α⊥β′. Figure 4 depicts this situation.

Consider the projection πα of the set of points V to α along a vector eα perpendicular to α. Let
Gα be the graph obtained by projecting G to α. Namely, the set of vertices of Gα is the set of
points πα(V ) and the set of edges is {e′ | e′ = πα(e), e ∈ G, e′ is not a point}. Thus any connected
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pair of vertices of G is represented by either a connected pair of connected vertices or by a single
vertex in Gα. Thus if G is connected, so is Gα.

Now consider an edge e ∈ G. If e has direction b, then its projection does not change it: παe = e.
On the other hand, if e has another direction, it must be perpendicular to b, because G is rectilinear.
Therefore, e ⊂ β. since β is perpendicular to α, e will project to an edge with direction b⊥. We
conclude that Gα is a rectilinear graph on πα(V ).

Exactly the same reasoning can be done for G′
α and an edge e′ ∈ G′ to show that G′

α is a
rectilinear connected graph on πα(V ). Thus we have two rectilinear connected graphs Gα and G′

α

such that Gα contains edges parallel (or perpendicular) to b and G′
alpha contains edges parallel (or

perpendicular) to b′. Pince b and b′ have different slopes on α, this is impossible by Theorem 1.
�

We can summarise:

Theorem 2 Given a set of points in Rd, there can be at most one orientation that allows a
connected rectilinear graph that has these points as its vertices.

4 Finding the right orientation

In this section, we discuss the algorithmic question: given a set of points in the plane, can we find
a slope s such that the graph with edges of slope s and −1/s is connected?

A trivial approach takes O(n2 log n) time. Consider all pairs of points and the line segment
connecting them. Sort those segments by slope. For each slope that has at least n − 1 segments
(together with its perpendicular slope), test whether they form a connected graph. The most
expensive step here is sorting the directions. A long-standing open problem is whether this can
be done any faster than in O(n2 log n) time [1, 11, 20]. However, we don’t really need to sort all
directions, which allows a slightly faster algorithm.

Consider the problem in dual space: we map a point (a, b) in primal space to the line y =
ax + b in dual space. Our set of primal points becomes a set of dual lines, our primal slope a
dual x-coordinate, and two primal points are connected by a line segment of slope s if the two
corresponding dual lines intersect at x-coordinate s. Figure 5 shows an example point set with
a connected rectilinear graph, and its dual analogue. This way of viewing the problem suggests
that to solve it, we just have to sweep two vertical lines (at x = −1/s and x = s) simultaniously
over the dual plane, and keep track of the intersection points on those lines. We can compute
the arrangement of the lines in O(n2) time, using a topological sweep algorithm [8]. However, we
cannot just sweep the vertical lines and treat all encountered intersection points in order, since
sorting them faster than O(n2 log n) time is the same open problem as mentioned above.

Therefore, note that if we want to find a connected graph, each point should be connected to at
least one other point. Let p be a random point (line in dual space). Since it must be connected
to some other point, we only have to consider slopes that involve p, of which there are only a
linear number. In dual space, this means we only need to stop at the events along line p. At each
such event, we need to identify all arrangement vertices on the two vertical sweep lines, and check
whether they form a connected (dual) graph.

In order to find the crossings quickly, we need to maintain the sorted order in which the lines
cross the sweeplines. If we know the sorted order at candidate slope (x-coordinate) si, and the
next candidate is at si+1, let vi be the number of vertices of the arrangement between lines x = si

and x = si+1. We will traverse the arrangement from si to si+1 and update the sorted order,
which takes O(n + vi) time. Since the total number of vertices is O(n2) and the total number of
candidate slopes is O(n), this takes O(n2) time in total.
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G

(a) (b)

Figure 5: (a) A rectilinear graph in the plane with edges of slope 2 and − 1
2 . (b) The dual, with

intersections at the vertical lines x = 2 and x = − 1
2 .

Once we have all vertices on a candidate pair of vertical lines, we have to check whether they form
a connected graph. This can be done in linear time using a simple depth-first search, if we store
the appropriate pointers in the arrangement. Since there are a linear number of candidate slopes,
this also takes O(n2) time in total.

Theorem 3 Given a set of points V , we can determine if there exists a slope s (and return it if
it exists) such that there is a rectilinear graph with V as vertex set and slope s in O(n2) time.

4.1 Non-crossing graphs

If the goal is to find a slope that allows a planar connected rectilinear graph (a simple polygon,
for example), this is NP-hard. Since we know that there is at most one such slope, we can use
the algorithm in the previous section to find it. Then we can compute the maximal rectilinear
graph with this slope. However, now we need to decide whether this graph has a planar connected
subgraph. This was proven NP-complete by Jansen and Woeginger [14].

5 Conclusion

We have proven that, given a point set in Rd, there can exist at most one orientation (up to trivial
rotations) such that the maximal rectilinear graph on the points in that orientation is connected.
However, to find this orientation remains an interesting challange. We have shown that this can
be done in O(n2) time for a 2-dimensional point set, but we see no reason why this should be the
right bound. As soon as we require a solution to be planar though, the problem becomes NP-hard.
Also, the algorithmic question in higher dimensions is still open.
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