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Analysis of Data Reduction:
Transformations give evidence for non-existence of

polynomial kernels

Hans L. Bodlaender∗ Stéphan Thomassé† Anders Yeo‡

Abstract

In this paper, we introduce a new technique to give evidence for combinatorial prob-
lems that they cannot be preprocessed in polynomial time such that resulting in-
stances always have a size bounded by a polynomial in a specified parameter (or, in
short: do not have a polynomial kernel); these results are assuming the validity of
certain complexity theoretic assumptions. We build upon a framework by Bodlaen-
der et al. [6], and add a notion of transformation to this framework. Using these
transformations, we show that Disjoint Cycles, and Disjoint Paths do not have
polynomial kernels, unless the or-distillation conjecture does not hold, which would
imply by a result of Fortnow and Santhanam [12] that NP ⊆ coNP/poly, and we
show that Hamiltonian Circuit parameterized by treewidth does not have a
polynomial kernel, unless the and-distillation conjecture does not hold. We also show
that the problem to determine if there are k edge disjoint cycles has a polynomial
kernel.

1 Introduction

In many practical settings, exact solutions to NP-hard problems are needed. A common
approach in such cases is to start with a preprocessing or data reduction algorithm: before
employing a slow exact algorithm (e.g., ILP, branch and bound), we try to transform the
input to an equivalent, smaller input.

Currently, the theory of fixed parameter complexity gives us tools to make a theoretical
analysis of such data reduction or preprocessing algorithms. A kernelization algorithm is
an algorithm, that uses polynomial time, and transforms an input for a specific problem to
an equivalent input whose size is bounded by some function of a parameter. The resulting
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instance is also called a kernel. Questions of both theoretical and practical interests are
for a specific problem: does it have a kernel, and if so, how large can this kernel be? An
excellent overview of much recent work on kernelization was made by Guo and Niedermeier
[14].

For the question, whether a specific (parameterized) problem has a kernel, the fixed
parameter tractability theory introduced by Downey and Fellows gives good tools to answer
these. We say a problem is fixed parameter tractable (in FPT), if it has an algorithm that
runs in time O(ncf(k)), with n the input size, k the parameter, c a constant, and f any
function. Now, it can easily be seen that a decidable problem is in FPT, if and only if it
has a kernel.1

Recently, Bodlaender and al. [6] gave a framework to give evidence that problems (in
FPT) do not have a kernel of polynomial size. The framework is based upon the notion of
composability. There are actually two forms: and-composability, and or-composability. We
have a parameterized problem, whose variant as a decision problem is NP-complete, and it
is and-composable, then it does not have a kernel whose size is bounded by a polynomial,
unless the and-distillation conjecture does not hold. Similarly for or-composability, and the
or-distillation conjecture, but in this case, one can use a result by Fortnow and Santhaman,
and strengthen the conjecture to NP 6⊆ coNP/poly [12].

In this paper, we extend the framework by introducing a notion of transformation.
While the main idea parallels classic notions of transformation, we think that our contri-
bution is a new important tool for the theory of data reduction/kernelization and fixed
parameter tractability. We use our framework to show for the following problems that
they do not have a kernel of polynomial size unless NP 6⊆ coNP/poly: Disjoint Cycles,
Disjoint Paths, Hamiltonian Circuit parameterized by treewidth. The latter
problem is an example of more problems where similar techniques work.

Concerning the size of a kernel of a parameterized problem, we can summarize the
situation in Table 1. Assuming that the problem is decidable, the second and third column
give the main available positive or negative, respectively, evidence that the problem has a
kernel of the size given in the first column. E.g., W [1]-hardness indicates that a problem
is not in FPT; a problem is in FPT, if and only if it has a kernel of any size (i.e., bounded
by a function of k.) The use of transformations is a contribution made by this paper.

This paper is organized as follows. In Section 2, we give some known results and intro-
duce some new notations. In Section 3, we introduce the notion of polynomial parameter
transformation, and show how it can be used to obtain results on the existence of poly-
nomial kernels. In Section 4, we apply the technique to some concrete problems. In par-
ticular, we show that Disjoint Cycles, Disjoint Paths, and Hamiltonian circuit
with treewidth as parameter have no polynomial kernel unless NP ⊆ coNP/poly.
We also give a short proof that the variant of Disjoint Cycles where cycles must be
edge disjoint does have a polynomial kernel. Section 5 concludes the paper with some final

1We sketch this folklore result: If the problem has a kernel, then decide the kernel. If a problem has
an O(ncf(k)) algorithm, then if n ≤ f(k), do nothing, and otherwise the algorithm solves the problem in
O(nc+1) time, and transform to an O(1)-size yes- or no-instance.

2



size positive evidence negative evidence conjecture
O(1) P-time algorithm NP-hardness P 6= NP

polynomial poly-kernel algorithm composability & NP-c NP 6⊆ coNP/poly, ADC
transformations

any kernel ∈ FPT W [1]-hardness FPT 6= W [1]
ETH

Table 1: Size of kernels and evidence. ETH = Exponential Time Hypothesis. ADC =
And-distillation Conjecture. NP-c = NP-completeness

remarks.

2 Notions

In this section, we give several results, mostly from [6], and introduce some new notation.
We also give some basic notions from fixed parameter tractability, as introduced by Downey
and Fellows, see e.g., [11].

Definition 1 A parameterized problem is a subset of L∗ ×N for some finite alphabet L:
the second part of the input is called the parameter.

We assume here that the second parameter is an integer. It is not hard to modify the
techniques such that it works with other types of parameters, e.g., pairs of integers.

Definition 2 A parameterized problem Q ⊆ L∗×N is said to belong to the class FPT (to
be fixed parameter tractable, if there is an algorithm A, a polynomial p, and a function
f : N → N, such that A determines for a given pair (x, k) ∈ L∗ ×N whether (x, k) ∈ Q
in time at most p(|x|) · f(k). (|x| denotes the length of input x.)

Definition 3 A kernelization algorithm for a parameterized problem Q ⊆ L∗×N computes
a function K : L∗ ×N → L∗ ×N, such that

• For all (x, k) ∈ L∗ ×N, the algorithm takes time polynomial in |x|+ k.

• For all (x, k) ∈ L∗ ×N: (x, k) ∈ Q ⇔ A(x, k) ∈ Q.

• There is a function g : N → N, such that for all (x, k) ∈ L∗×N: |A(x, k)|+k ≤ g(k).

We say that Q has a kernel of size f . If f is bounded by a polynomial in k, we say that
Q has a polynomial kernel.

Sometimes, in the literature one requires that the kernelization algorithm does not
increase the parameter, i.e., when we write A(x, k) = (x′, k′), then k′ ≤ k. This assumption
is not necessary for obtaining the results and deleting it slightly strengthens our results.

Bodlaender et al. [6] give the following two conjectures.
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Conjecture 4 (And-distillation conjecture [6]) Let R be an NP-complete problem.
There is no algorithm D, that gets as input a series of m instances of R, and outputs
one instance of R, such that

• If D has as input m instances, each of size at most n, then D uses time polynomial
in m and n, and its output is bounded by a function that is polynomial in n.

• If D has as input instances x1, . . . , xm, then

D(x1, . . . , xm) ∈ R ⇔ ∀1≤i≤mxi ∈ R.

Conjecture 5 (Or-distillation conjecture [6]) Let R be an NP-complete problem.
There is no algorithm D, that gets as input a series of m instances of R, and outputs
one instance of R, such that

• If D has as input m instances, each of size at most n, then D uses time polynomial
in m and n, and its output is bounded by a function that is polynomial in n.

• If D has as input instances x1, . . . , xm, then

D(x1, . . . , xm) ∈ R ⇔ ∃1≤i≤mxi ∈ R.

Theorem 6 (Fortnow and Santhaman [12]) If the or-distillation conjecture does not
hold, then NP ⊆ coNP/poly.

There is no equivalent to Theorem 6 known for and-distillation. This is an important
open problem in this area.

The main tool to give evidence for the non-existence of polynomial kernels for specific
parameterized problems from [6] is the notion of compositionality. Compositionality allows
us to build one instance from a collection of instances. There are two different notions:
and-compositionality and or-compositionality. In the first case, the new instance is a yes-
instance, if and only if each instance in the collection is a yes-instance; in the second case,
this happens, if and only if at least one instance in the collection is a yes-instance.

Definition 7 An and-composition algorithm for a parameterized problem Q ⊆ L∗ ×N is
an algorithm, that gets as input a sequence ((x1, k), . . . , (xr, k)), with each (xi, ki) ∈ L∗×N,
and outputs a pair (x′, k′), such that

• the algorithm uses time polynomial in
∑

1≤i≤r |xi|+ k;

• k′ is bounded by a polynomial in k

• (x′, k′) ∈ Q, if and only if for all i, 1 ≤ i ≤ r, (xi, k) ∈ Q.

The definition for or-composition is identical, except that the last condition becomes:
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• (x′, k′) ∈ Q, if and only if there exists an i, 1 ≤ i ≤ r, (xi, k) ∈ Q.

Many problems have natural composition algorithms. For many graph problems, the
only operation needed is the disjoint union of connected components. Consider for instance
the Longest Cycle problem: does G have a cycle of length at least k? As a graph has a
cycle of length at least k, if and only if at least one of its connected components has such
a cycle, the problem is trivially or-compositional.

We need one further notion: for a parameterized problem, we have the derived classic
problem. Formally, if R ⊆ L∗ × N is a parameterized problem, we take a symbol 1 6∈ L,
and take as derived classic problem the set {x1k | (x, k) ∈ R}. Here, we associate in a
natural way a classic one-argument input problem with a parameterized problem; note
that we assume that the parameter is given in unary. For instance, the Disjoint Cycles
problem as parameterized problem belongs to FPT, and its derived classic problem is NP-
complete. In several cases, we use the same name for the derived classic problem as for
the parameterized version.

We now give here some results from [6] and other papers, and introduce some notation
(the classes NPK0

or and NPK0
and) that will be helpful for further presentation of the results.

Definition 8 The class NPK0
and is the class of parameterized problems, that are and-

compositional and whose derived classical problem is NP-complete.

Definition 9 The class NPK0
or is the class of parameterized problems, that are or-

compositional and whose derived classical problem is NP-complete.

Theorem 10 (Bodlaender et al. [6])
(i) If a problem in the class NPK0

and has a polynomial kernel, then the and-distillation
conjecture does not hold.
(ii) If a problem in the class NPK0

or has a polynomial kernel, then the or-distillation
conjecture does not hold.

As a corollary of Theorems 10 and Theorem 6, we have

Corollary 11 (Bodlaender et al.[6], Fortnow and Santhaman [12]) If a problem
in the class NPK0

or has a polynomial kernel, then NP ⊆ coNP/poly.

In turn, NP ⊆ coNP/poly would imply a collapse of the polynomial time hierarchy
to the third level. Currently, there is no equivalent result to Theorem 6 known for the
and-distillation conjecture.

3 Polynomial time and parameter transformations

We now introduce a notion of transformation, that allows us to prove results for problems
that do not obviously have compositionality.
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Definition 12 Let P and Q be parameterized problems. We say that P is polynomial
time and parameter reducible to Q, written P ≤Ptp Q, if there exists a polynomial time
computable function f : {0, 1}∗ ×N → {0, 1}∗ ×N, and a polynomial p : N → N, and for
all x ∈ {0, 1}∗ and k ∈ N, if f((x, k)) = (x′, k′), then the following hold:

• (x, k) ∈ P , if and only if (x′, k′) ∈ Q, and

• k′ ≤ p(k).

We call f a polynomial time and parameter transformation from P to Q.

If P and Q are parameterized problems, and P c and Qc are the derived classical prob-
lems, then f can also be used as a polynomial time transformation (in the usual sense of the
theory of NP-completeness) from P c to Qc. As an additional condition to polynomial time
transformations, we have that the size of the parameter can grow at most polynomially.
Note that the fixed parameter reductions by Downey and Fellows (see e.g., [9, 10, 11]) are
similar, but allow non-polynomial growth of the parameter, and are used for a different
purpose: to show hardness for W [1] or a related class, thus, these transformations are
usually applied to problems that do not have any parameter at all.

Theorem 13 Let P and Q be parameterized problems, and suppose that P c and Qc are
the derived classical problems. Suppose that Qc is NP-complete, and P c ∈ NP . Suppose
that f is a polynomial time and parameter transformation from P to Q. Then, if Q has a
polynomial kernel, then P has a polynomial kernel.

Proof: Suppose that Q has a polynomial kernel. Now, consider the following algorithm,
that gets as input a pair (x, k) ∈ {0, 1}∗ ×N, which is an input for P . First, we compute
f((x, k)), say f((x, k)) = (x′, k′). Then, we apply the polynomial kernelization algorithm
for Q to (x′, k′); suppose this gives (x′′, k′′). As P c is NP-complete, there is a polynomial
time transformation from Q to P , say f ′. Suppose f ′((x′′, k′′)) = (y, `).

We claim that the algorithm that transforms (x, k) to (y, `) is a polynomial kernel for
P . Note that k′ is polynomially bounded in k, as f is a polynomial time and parameter
transformation. Now, k′′ and the size of x′′ are polynomially bounded in k′ as these are
obtained by a polynomial kernelization algorithm, and thus k′′ is polynomially bounded in
k. As f ′ is a polynomial time transformation, and k′′ is seen to be in unary notation as
input for Qc, we have that the size of y and ` are polynomially bounded in the size of x′′

and k′′ and hence in k.
It is now easy to see that the algorithm uses polynomial time. Finally, we have that

(x, k) ∈ P , if and only if (x′, k′) ∈ Q, if and only if (x′′, k′′) ∈ Q, if and only if (y, `) ∈ P .
2

Note that we could instead require that P c is NP-complete, and Qc is in NP, as the
NP-completeness of Qc would follow from the fact that f is also a ”classic” polynomial
time transformation.

6



Corollary 14
(i) Let P and Q be parameterized problems, and suppose that P c and Qc are the derived
classical problems. Suppose that P and Q are NP-complete, that Q is and-compositional,
and that P ≤Ptp Q. If P has a polynomial kernel, then the and-compositionality conjecture
does not hold.
(ii) Let P and Q be parameterized problems, and suppose that P c and Qc are the derived
classical problems. Suppose that P and Q are NP-complete, that Q is or-compositional, and
that P ≤Ptp Q. If P has a polynomial kernel, then the and-compositionality conjecture does
not hold, and thus coNP ⊆ NP/poly, and thus the polynomial time hierarchy collapses to
the third level.

We now define the classes NPKor and NPKand as the closures of NPK0
or and NPK0

and

under polynomial time and parameter transformations. Membership in these classes gives
a strong indication that there is no polynomial kernel for the problem. We can reformulate
the discussion above as (using results from [6] and [12] and our own observations):

Corollary 15
(i) If parameterized problem P ∈ NPKor, then P has no polynomial kernel, unless coNP ⊆
NP/poly.
(ii) If parameterized problem P ∈ NPKand, then P has no polynomial kernel, unless the
and-distillation conjecture does not hold.

The polynomial time and parameter transformations thus give us a nice method to
show unlikeliness of the existence of polynomial kernels.

4 Results for concrete problems

4.1 Disjoint cycles and paths

Consider the following two parameterized problems.

Disjoint Cycles
Input: Undirected graph G = (V, E)
Parameter: Integer k
Question: Does G contain at least k vertex-disjoint cycles?

The problem is strongly related to the Feedback Vertex Set problem, which has
a kernel of size O(k2) [20] by Thomassé, who improved upon a kernel of size O(k3) [5].
Another related problem is whether a given graph contains at least k cycles which are edge
disjoint. This problem, called Disjoint Cycle Packing has a polynomial kernel. We
give a short proof of this new result here. We conjecture that a more refined construction
can give a smaller kernel. Techniques resemble techniques from [5, 20]. A related result is
a kernel for the version where each cycle must be of length exactly three (Edge Disjoint
Triangle Packing) by Mathieson et al. [17].
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Theorem 16 Disjoint Cycle Packing has a kernel with O(k2 log2 k) vertices.

Proof: We start by removing vertices of degree one and zero, and contracting all vertices
of degree two to a neighbor. This gives an equivalent instance with all vertices of degree
at least three.

Erdös and Posa have shown in 1965 that there is a constant C, such that each graph
has a feedback vertex set of size at most Ck log k or at least k vertex disjoint cycles. Now,
we apply a 2-approximation algorithm for Feedback Vertex Set (e.g., from [3, 4]). If
we obtain a feedback vertex set with ≥ 2Ck log k vertices, then we can resolve the problem
and answer ’yes’. Otherwise, let S be a feedback vertex set of size less than 2Ck log k, and
let F be the forest G− S.

We build a collection C of disjoint paths between vertices in S. If there are ` disjoint
paths between s, s′ ∈ S, then these paths give us b`/2c disjoint cycles. So, if we have
(2Ck log k)2 + 2k disjoint paths in C, we have k disjoint cycles and can decide ’yes’. Each
leaf x in F must be incident to two vertices in S (as its degree in G is three), and we take
a path between these two neighbors in S with x as only other vertex in C. Thus, we can
assume there are O(k2 log2 k) leaves in F , and hence also O(k2 log2 k) vertices in F with at
least three neighbors in F . If F contains a path P with ` vertices, each incident to exactly
two vertices, then as each vertex in P is incident to a vertex in S, such a path gives us
b`/2c paths in C. As the number of such paths is bounded by the number of vertices in
F with at least three neighbors in F , we get a bound of O(k2 log2 k) on the number of
vertices on these paths.

The construction shows that if F contains at least 5 · (2Ck log k)2 + 2k vertices, there
are k disjoint cycles, and thus we have a kernel of size O(k2 log2 k). 2

Several of these problems have been investigated for planar graphs. Here, polynomial
and often linear size kernels exist, see [16, 7, 18]. We also consider the following well known
problem, also known as k-Linkage.

Disjoint Paths
Input: Undirected graph G = (V, E), vertices s1, . . . , sk, t1, . . . , tk ∈ V
Parameter: k
Question: Is there a collection of k paths P1, . . . , Pk that are vertex disjoint,

such that Pi is a path from si to ti?

The result that the Disjoint Paths problem is fixed parameter tractable is a famous
result by Robertson and Seymour as part of their fundamental work on graph minors: in
[19], they show that for each fixed k, the problem can be solved in O(n3) time. Here, we
give evidence that the problem has no kernel of polynomial size.

It is well known that the derived classic variants of Disjoint Cycles and Disjoint
Paths are NP-complete, see [13, 15].

We introduce a new problem, which is used as an intermediate problem: we show that
it is or-compositional and (its derived classic variant) NP-complete, and then give a poly-
nomial time and parameter transformation to Disjoint Cycles, respectively Disjoint
Paths.
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Let Lk be the alphabet consisting of the letters {1, 2, . . . , k}. We denote by L∗
k the

set of words on Lk. A factor of a word w1 · · ·wr ∈ L∗
k is a substring wi · · ·wj ∈ L∗

k, with
1 ≤ i < j ≤ r, which starts and ends with the same letter, i.e., the factor has length at
least two and wi = wj.

A word W ∈ L∗
k has the disjoint factor property if one can find disjoint factors F1, . . . , Fk

in W such that the factor Fi starts and ends by the letter i. Observe that the difficulty
lies in the fact that the factors Fi do not necessarily appear in increasing order, otherwise
detecting them would be obviously computable in O(n), where n is the length of W . We
now introduce the parameterized problem Disjoint Factors.

The input of the Disjoint Factors problem is an integer k ≥ 1 and a word W of
L∗

k. The output is true if W has the disjoint factor property, otherwise false. This problem
is clearly FPT since one can try all the k! possible orders of the Fi’s, and compute each of
them linearly. A slightly more involved analysis gives an O(nk · 2k) algorithm.

Proposition 17 The Disjoint Factors problem can be solved in O(nk · 2k) time.

Proof: We use dynamic programming. Suppose word W ∈ L∗
k is given, |W | = n. Write

W = w1w2 · · ·wn. For each i, 0 ≤ i ≤ n, and S ⊆ Lk, x ∈ Lk, let A(S, i) and B(S, x, i) be
Boolean values, with A(S, i) true, if and only if w1 · · ·wi contains disjoint factors Fj for all
j ∈ S, each Fj of length at least two and starting and ending with letter j. B(S, x, i) is
true, if and only if w1 · · ·wi contains disjoint factors Fj for all j ∈ S, as above, and also a
factor Fx, with Fx starting with the letter x and ending with wi, and Fx also disjoint from
the Fj, j ∈ S. I.e., the factor Fx ends at the substring w1 · · ·wi in consideration.

It is a simple exercise in dynamic programming to give recurrences for A and B, and
build a dynamic programming algorithm upon these that solves Disjoint Factors in
O(nk · 2k) time. 2

Theorem 18 The Disjoint Factors is NP-complete.

Proof: Clearly, the problem belongs to NP. We show NP-hardness by a transformation
from 3-satisfiability. Let F be a 3-SAT formula with c + 1 clauses C0, . . . , Cc. We
start our construction of our word W with the prefix 123123123456456456 . . . (3c+1)(3c+
2)(3c + 3)(3c + 1)(3c + 2)(3c + 3)(3c + 1)(3c + 2)(3c + 3). Here the factor (3i + 1)(3i +
2)(3i + 3)(3i + 1)(3i + 2)(3i + 3)(3i + 1)(3i + 2)(3i + 3) corresponds to the clause Ci, for
all i = 0, . . . , c.

Note that the factor 123123123 does not have the disjoint factor property, but fails it
only by one. Indeed, one can find two disjoint factors {F1, F2}, or {F1, F3}, etc, but not
three disjoint factors F1, F2, F3. Hence, in this prefix of W , one can find two disjoint factors
for each clause, but not three.

Each variable appearing in F is a letter of our alphabet. In addition to W , we concate-
nate for each variable x a factor to W of the form xp1p1p2p2 . . . plplxq1q1 . . . qmqmx where
the pi’s are the position in which x appears as a positive literal, and the qi’s are the position
in which x appears as a negative literal.
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We feel that an example will clarify our discourse. To the formula F = (x ∨ y ∨ z) ∧
(y ∨ x ∨ z) ∧ (x ∨ y ∨ z), we associate the word WF

123123123456456456789789789x77x1155xy4488y22yz3399z66z
Observe that the solution x = 1, y = 0, z = 0 which satisfies F corresponds the the

disjoint factors appearing in this order in WF : 1231, 3123, 4564, 5645, 8978, 9789, 77,
x1155x, y4488y, 22, z3399z, 66.

Finally, F is satisfiable if and only if WF has the disjoint factor property. This proves
our result. 2

Lemma 19 Disjoint Factors is or-composable.

Proof: Suppose a collection of inputs (W1, k), . . . , (Wt, k) for Disjoint Factors is given.
First we look at the case that t > 2k. In this case, we solve each instance by the dynamic

programming algorithm of Proposition 17. Note that the time to do this is polynomial in∑t
1 |Wi| + k, as 2k <

∑t
1 |Wi| here. So, we completely solve the problem, and can then

transform to a trivial O(1)-size yes- or no-instance.
Now, suppose t ≤ 2k. We can assume that t is a power of two, say t = 2`; if necessary,

we add trivial no-instances (k > 0, W the empty string). For 1 ≤ i ≤ t, 0 ≤ j < `,
i + 2j+1 ≤ t + 1, we define the word Wi,j recursively as follows. If j = 0, Wi,0 is the
word (k + 1)Wi(k + 1)Wi+1(k + 1). If j > 0, Wi,j is the word (k + 1 + j)Wi,j−1(k + 1 +
j)Wi+2j ,j−1(k + 1 + j).

Note that Wi,j contains each of the instances Wi, . . . ,Wi+2j+1−1 as substrings. As result
of the composition, we take the word W ′ = W1,`−1.

In other words, W ′ is the limit word of

• (k + 1)W1(k + 1)W2(k + 1)

• (k + 2)(k + 1)W1(k + 1)W2(k + 1)(k + 2)(k + 1)W3(k + 1)W4(k + 1)(k + 2)

• (k +3)(k +2)(k +1)W1(k +1)W2(k +1)(k +2)(k +1)W3(k +1)W4(k +1)(k +2)(k +
3)(k + 2)(k + 1)W5(k + 1)W6(k + 1)(k + 2)(k + 1)W7(k + 1)W8(k + 1)(k + 2)(k + 3)
. . .

The resulting instance is (W ′, k + `).
By construction, (W ′, k′) has a solution, if and only if at least one of the (Wi, k) has

a solution. Suppose (W ′, k′) has a solution. Then, there are two possibilities for the
factor Fk+`: either it is (k + `)W1,`−2(k + `), or (k + `)W1+2`−1,`−2(k + `). In the first
case, it ’shields’ the instances W1, . . . ,W2`−1 ; in the other case, it ’shields’ the instances
W1+2`−1, . . . ,W2` . No other factors can be taken in the shielded part. This repeats with
the other symbols above k: Fk+`−1 shields half of what was left by Fk+`, and one can see
that there remains exactly one substring Wi that does not belong to any of the Fi with
i > k. In this substring, we must find the factors F1, . . . , Fk, and thus there is at least one
(Wi, k) which has a solution.
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Suppose (Wi, k) has a solution. We take from W ′ the factors F1, . . . , Fk from Wi. The
other factors can be easily chosen: take factors Fk+`, Fk+`−1, etc., in this order, each time
taking the unique possibility which does not overlap already chosen factors.

Finally, note that k + ` ≤ 2k, so we have a polynomial time and parameter transfor-
mation. 2

Corollary 20 Disjoint Factors belongs to the class NPK0
or, and thus has no polyno-

mial kernel, unless NP ⊆ coNP/poly.

We now show that Disjoint Cycles belongs to NPKor (and hence has no polynomial
kernel, unless NP ⊆ coNP/poly), by giving a polynomial time and parameter transforma-
tion from Disjoint Factors to Disjoint Cycles.

Theorem 21 Disjoint Cycles ∈ NPKor, and hence has no polynomial kernel unless
NP ⊆ coNP/poly.

Proof: We use the following polynomial time and parameter transformation from Dis-
joint Factors. Given an input (W, k) of Disjoint Factors, with W = w1 · · ·wn a
word in L∗

k, we build a graph G = (V, E) as follows. First, we take n vertices v1, . . . , vn,
and edges {vi, vi+1} for 1 ≤ i < n, i.e., these vertices form a path of length n. Call this
subgraph of G P . Then, for each i ∈ Lk, we add a vertex xi, and make xi incident to each
vertex vj with wj = i, i.e., to each vertex representing the letter i.

G has k disjoint cycles, if and only if (W, k) has the requested k disjoint factors.
Suppose G has k disjoint cycles c1, . . . , ck. As P is a path, each of these cycles must

contain at least one vertex not on P , i.e., of the form xj, and hence each of these cycles
contains exactly one vertex xj. For 1 ≤ j ≤ k, the cycle cj thus consists of xj and a
subpath of P . This subpath must start and end with a vertex incident to xj. These both
represent letters in W equal to j. Let Fj be the factor of W corresponding to the vertices
on P in cj. Now, F1, . . . , Fk are disjoint factors, each of length at least two (as the cycles
have length at least three), and Fj starts and ends with j, for all j, 1 ≤ j ≤ k.

Conversely, if we have disjoint factors F1, . . . , Fk with the properties as in the Disjoint
Factors problem, we build k vertex disjoint cycles as follows: for each j, 1 ≤ j ≤ k, take
the cycle consisting of xj and the vertices corresponding to factor Fj.

As Disjoint Cycles in an NP-complete problem, the transformation just given and
the membership of Disjoint Factors in NPK0

or show that Disjoint Cycles ∈ NPKor.
By Corollary 11, it follows that Disjoint Cycles has no polynomial kernel unless

NP ⊆ coNP/poly. 2

A simple modification of the proof above gives our desired result for Disjoint Paths.

Theorem 22 Disjoint Paths ∈ NPKor, and hence has no polynomial kernel unless
NP ⊆ coNP/poly.
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Proof: Suppose we have input (W, k) for the Disjoint Factors problem, W a word
in L∗

k. Build a graph G as follows. Start with a path P with vertices v1, . . . , vn (as in
the previous proof). For each i ∈ Lk, take a new vertex xi and a new vertex yi. Make
xi incident to each vertex representing the first, third, fifth, etc., occurrence of the letter
i in W , and make yi incident to each vertex representing the second, fourth, sixth, etc.,
occurrence of the letter i in W .

Now, the Disjoint Factors problem has a solution, if and only if it has a solution
where each factor Fi starts and ends with an i but has no other i (otherwise we can replace
the solution by an equivalent one where Fi is shorter), and hence is between an even and an
odd occurrence of the letter i. With a proof, similar to the proof of Theorem 21, correctness
of the construction follows. 2

4.2 Problems parameterized by treewidth

We now give a result with an easy proof, but one that seems not to be obtainable with
only the techniques from [6]. Consider the following two problems.

Hamiltonian Path, with given endpoints and given tree decompo-
sition

Input: Undirected graph G = (V, E), vertices s, t ∈ V , tree decomposition of
G.

Parameter: Width of the tree decomposition
Question: Does G have an Hamiltonian Path that starts in s and ends in t?

Hamiltonian Circuit with given tree decomposition
Input: Undirected graph G = (V, E), tree decomposition of G.
Parameter: Width of the tree decomposition
Question: Does G have a Hamiltonian Circuit?

Theorem 23 Hamiltonian Path, with given endpoints and given tree decom-
position and Hamiltonian Circuit with given tree decomposition belong to the
class NPKand.

Proof: It is well known that the classic version of the problems are NP-complete. Hamil-
tonian Path, with given endpoints and given tree decomposition is and-com-
posable: if we have a series of r instances, we take the disjoint union and identify the
vertex playing the role of t in instance i with the vertex playing the role of s in instance
i + 1 (1 ≤ i ≤ r − 1.) Building a tree decomposition can be done as follows: first, take
the disjoint union of the tree decompositions of the r instances. For each i, 1 ≤ i ≤ r − 1,
take a bag it in the tree decomposition of the ith instance that contains the vertex playing
the role of t in that instance, and take a bag js in the tree decomposition of the (i + 1)st
instance that contains the vertex playing the role of s in that instance, and add the edge
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from bag it to js. It is easy to verify that this gives the desired tree decomposition. Thus,
we can conclude that Hamiltonian Path, with given endpoints and given tree
decomposition belongs to NPK0

and ⊆ NPKand.
The well known transformation from Hamiltonian Path to Hamiltonian Circuit

can now be used here as well: add one new vertex to the graph making it adjacent to s and t.
A tree decomposition of the new graph whose width is one larger can be made by adding the
new vertex to each bag. Thus, we have a polynomial time and parameter transformation.
This shows that Hamiltonian Circuit with given tree decomposition belongs to
NPKand. 2

Using this result, we can also show that Hamiltonian Path (with or without specified
endpoints) and Hamiltonian circuit do not have kernels polynomial in the treewidth
of the graph, unless the and-distillation conjecture does not hold, i.e., without assuming
that a tree decomposition is given as part of the input. This can be shown by using that
there is a O(log k)-approximation for treewidth, see [2, 1] or [8], where k is the treewidth.

We expect that with similar techniques, many similar results can be obtained for
graph problems, parameterized by treewidth or other notions like branchwidth, pathwidth,
cliquewidth, . . . .

5 Conclusions

In this paper, we introduced a new technique to give evidence that specific combinatorial
problems do not have a kernel of polynomial size. The technique mimics the way we are
used to give evidence that problems do not have a polynomial time algorithm: instead of
polynomial time transformations to an NP-complete problem, we now use polynomial time
and parameter transformations to problems in the classes NPKand or NPKor. In this way,
we make a contribution to the toolbox for a theoretical analysis what can be achieved by
preprocessing for combinatorial problems.

In addition, we showed for some problems that they do not have a kernel of polynomial
size, i.e., we cannot preprocess the problems such that the resulting instances have a size
bounded by a polynomial of the specific parameter, unless certain complexity theoretic
conjectures do not hold. The results for Disjoint Cycles and Disjoint Paths are most
interesting, and were to us unexpected, as several closely related and similar problems do
have kernels of polynomial sizes. Thus, the result in our paper for e.g. Disjoint Cycles
plays the role that it can direct further research efforts, i.e., it appears not to be useful to
aim at finding a polynomial kernel for the problem; this is somewhat comparable to stating
that an NP-completeness proof directs our research efforts away from finding a polynomial
time algorithm for a problem.

The further development of the theory of kernel sizes is an interesting topic for further
research. An important topic with many recent results (see e.g., the overview paper by
Guo and Niedermeier [14]) is to find kernels of sizes as small as possible for concrete
combinatorial problems. Some questions we want to add to this are: The theory so far
allows to distinguish between constant size, polynomial size, and any size kernels: can we
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refine this? Are the classes NPKand and NPKor the same? (There are some problems
that belong to both classes.) Are there complete or “hardest” problems for these classes?
Another still open problem is whether there exists a result for and-distillation that is
similar to the result of Fortnow and Santhaman for the or-distillation conjecture, i.e., can
we relate the and-distillation conjecture to more widely known and believed complexity
theoretic conjectures?
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