
Clustering with partial information

Hans L. Bodlaender

Michael R. Fellows

Pinar Heggernes

Federico Mancini

Charis Papadopoulos

Frances Rosamond

Technical Report UU-CS-2008-033

September 2008

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht

The Netherlands

Clustering with partial information∗

Hans L. Bodlaender† Michael R. Fellows‡ Pinar Heggernes§

Federico Mancini§ Charis Papadopoulos§ Frances Rosamond‡

Abstract

The Correlation Clustering problem, also known as the Cluster Editing
problem, seeks to edit a given graph by adding and deleting edges to obtain a col-
lection of vertex-disjoint cliques, such that the editing cost is minimized. The Edge
Clique Partitioning problem seeks to partition the edges of a given graph into
edge-disjoint cliques, such that the number of cliques is minimized. Both problems
are known to be NP-hard, and they have been previously studied with respect to
approximation and fixed parameter tractability. In this paper we study these two
problems in a more general setting that we term fuzzy graphs, where the input graphs
may have missing information, meaning that whether or not there is an edge between
some pairs of vertices of the input graph can be undecided.

For fuzzy graphs the Correlation Clustering and Edge Clique Parti-
tioning problems have previously been studied only with respect to approximation.
Here we give parameterized algorithms based on kernelization for both problems. We
prove that the Correlation Clustering problem is fixed-parameter tractable on
fuzzy graphs when parameterized by (k, r), where k is the editing cost and r is the
minimum number of vertices required to cover the undecided edges. In particular we
show that it has a polynomial-time reduction to a problem kernel on O(k2 + r) ver-
tices. We provide an analogous result for the Edge Clique Partitioning problem
on fuzzy graphs. Using (k, r) as parameters, where k bounds the size of the partition,
and r is the minimum number of vertices required to cover the undecided edges, we
describe a polynomial-time kernelization to a problem kernel on O(k4 · 3r) vertices.
This implies fixed-parameter tractability for this parameterization. Furthermore we
also show that parameterizing only by the number of cliques k, is not enough to
obtain fixed-parameter tractability. The problem remains, in fact, NP-hard for each
fixed k > 2.

∗This work is supported by the Research Council of Norway.
†Department of Information and Computing Sciences, Utrecht University, The Netherlands.

hansb@cs.uu.nl
‡PCRU, Office of DVC (Research), University of Newcastle, Australia.

michael.fellows@newcastle.edu.au, frances.rosamond@newcastle.edu.au
§Department of Informatics, University of Bergen, Norway. pinar@ii.uib.no, federico@ii.uib.no,

charis@ii.uib.no

1

1 Introduction

The Correlation Clustering problem for general (ordinary) graphs was introduced
and proved NP-hard by Bansal et al. [2, 3]. Given a complete graph with labels 〈+〉 or 〈−〉
on each edge, the problem is to partition the vertices into clusters so that the number of 〈−〉
edges inside each cluster plus the number of 〈+〉 edges between the clusters, is minimized.
Taking 〈+〉 edges as edges and 〈−〉 edges as non-edges, this problem is equivalent to the
Cluster Editing problem, where we are given an ordinary graph graph and asked to add
and delete the total minimum number of edges so that the resulting graph is a collection of
disconnected (i.e., vertex-disjoint) cliques. The Correlation Clustering problem has
been proven NP-hard several times, as it has been discovered and rediscovered in various
applications areas, such as hierarchical tree clustering [23], computational biology [4, 30],
and phylogenetic trees [8]. General versions of the Correlation Clustering problem
have been defined and studied from the point of view of approximation [7, 10, 11, 13].
The second problem that we study in this paper is the Edge Clique Partitioning
problem, which asks to partition the edges of a given graph into the minimum number of
edge-disjoint cliques. This problem is NP-hard [28] for general graphs, but also for K4-free
and even chordal graphs [24].

In a general way, one can view the problems we consider here, the Correlation
Clustering (equivalent to Cluster Editing) problem, and the Edge Clique Par-
titioning problem, as belonging to a loose class of problems, having to do with “clique-
structuring” of graphs by means of editing or covering operations. For rhetorical conve-
nience, we will refer to this loose class of problems as GRAPH CLUSTERING PROBLEMS.
This class of problems, in which we would also include Vertex Cover, Clique Cover
and many others, has proved to be a highly productive source of practical applications for
parameterized algorithms [1, 9, 20].

A key point of what we offer here is to expand the investigation of GRAPH CLUSTER-
ING PROBLEMS to inputs consisting of fuzzy graphs, where some pairs of vertices of the
input may have an undetermined, unknown or undecided relation. For many applications,
this clearly adds to the realism of the modeling in an important way. To mention one
application area where a similar idea has been considered before, in bioinformatics, the
notion of “sandwich graph problems” has played a useful role [18].

NP-hard problems remain hard also on fuzzy graphs, as they are a generalization of
ordinary graphs. Hence we investigate their tractability from a parameterized complexity
point of view, and we try to understand which structural parameters are more suitable to
attack problems on fuzzy graphs.

A problem is fixed parameter tractable (FPT) if its input can be partitioned into a
main part of size n and a parameter (usually an integer) k so that there is an algorithm
that solves the problem in time O(nc · f(k)), where f is a computable function and c is a
fixed constant [12]. A kernel is an instance of the problem smaller than the input, such
that the problem has a solution on the input if and only if it has a solution on the kernel.
It is well known that a problem is FPT if and only if a kernel of size g(k) can be computed
from the input in polynomial time, for a computable function g [12, 27].

2

The fixed-parameter tractability of the Cluster Editing problem (for ordinary non-
fuzzy graphs) has been shown, with a series of improvements in [6, 19, 29], when using the
editing cost k as parameter. The problem has also been shown to admit a linear kerneliza-
tion [15, 21]. On fuzzy graphs, it is not known whether using only k as parameter, ensures
fixed parameter tractability. Here we introduce a new parameter r, that represents the
minimum number of vertices required to cover the undecided edges. By parameterizing
the Cluster Editing problem by (k, r), we show that the problem admits a quadratic
kernel, specifically on O(k2 + r) vertices, and therefore FPT also for fuzzy graphs. Fur-
thermore the results hold also when the fuzzy graph is weighted.

The Edge Clique Partitioning problem has been recently shown to be FPT in [26],
when parameterized by the number k of cliques that the edges can be partitioned into. In
their work the authors give a quadratic kernel for it. The corresponding parameterization
on fuzzy graphs asks, given a fixed k, whether the fuzzy edges can be turned into edges and
non-edges so that the resulting set of edges can be partitioned into at most k edge-disjoint
cliques. We prove that the problem becomes hard when the input is a fuzzy graphs, namely
NP-complete for any fixed k ≥ 3. Parameterizing only by k is thus not enough to ensure
fixed-parameter tractability. However, if we parameterize by (k, r), where r is again the
minimum number of vertices required to cover the undecided edges of the fuzzy graph,
then the problem becomes FPT, and admits a polynomial time kernelization to a kernel
on O(k4 · 3r) vertices.

2 Notation and definitions
For an undirected graph G = (V, E), we denote its vertex set by V (G) = V and edge set
by E(G) = E with n = |V |. The set of neighbors of v ∈ V is NG(v) = {u | uv ∈ E}, and
the degree of v is dG(v) = |NG(v)|. In addition, NG[v] = NG(v) ∪ {v}. Analogously, for a
set S ⊆ V , NG[S] = ∪x∈SNG[x] and NG(S) = NG[S] \ S. We omit subscripts when there
is no ambiguity. An induced subgraph of G by U ⊆ V is the graph G[U] = (U, EU), where
EU = {xv ∈ E | x, v ∈ U}. Given a vertex x of G, we denote the graph G[V \ {x}] by
G − x. In addition, for a set of edges M ⊂ E, we define G(M) = ({x | ∃u, xu ∈ M}, M).

A graph is complete if every pair of vertices are adjacent. If a subgraph is complete
then it is called a clique. If G[K] is a clique for K ⊂ V , we also say that K is a clique. If
G(M) is a clique for M ⊂ E, we also say that M is a clique. A vertex subset S ⊆ V is a
vertex cover if every edge of G has at least one endpoint in S. A connected component is
a maximal connected subgraph.

We define a fuzzy graph G = (V, E, F) to be a graph with two types of edges: E is
the set of real edges, and F is the set of fuzzy edges. Between all other pairs of vertices in
the graph we say that we have non-edges. When we decide for each fuzzy edge whether
it should become a real edge or a non-edge, we say that we realize the fuzzy edges. The
resulting graph is called a normalization of the fuzzy graph. Formally we say that (R+, R−)
with F = R+ ∪ R− is a realization of F into real edges R+ and non-edges R− such that
G′ = (V, E ∪ R+) is the corresponding normalization of G = (V, E, F). When we speak

3

about the connected components of a fuzzy graph, we mean the connected components of
the graph obtained by turning all fuzzy edges into non-edges. So a connected fuzzy graph
is a fuzzy graph where between any two vertices there is a path of real edges.

3 Parameterized cluster editing with partial informa-

tion

A cluster graph is a graph where each connected component is a clique. In this section
we study the problem of editing a weighted fuzzy graph G = (V, E, F) to obtain a cluster
graph. Editing means turning some real edges into non-edges (deleting), turning some
non-edges into real edges (adding), and turning all fuzzy edges into either real edges or
non-edges. Each edge and non-edge is associated with a positive weight, whereas each
fuzzy edge has weight 0. The cost of an edit is the sum of the weights of the deleted and
added edges, and the goal is to minimize the cost. The problem is formally defined as
follows.

Weighted Fuzzy Cluster Editing (WFCE)
Instance: A fuzzy graph G = (V, E, F), a weight function w : V × V → N such that
w(uv) = 0 if uv ∈ F and w(uv) > 0 if uv /∈ F , and a natural number k ≥ 0.
Question: Is there a set M ⊆ V × V such that: G′ = (V, (E \ M) ∪ (M \ E)) is a cluster
graph and

∑

uv∈M w(uv) ≤ k?

First we characterize the fuzzy graphs that can be turned into a cluster graph just
by realizing the fuzzy edges, that is, without any editing cost. We show that they can
be defined by a family of forbidden induced (fuzzy) subgraphs. The result was already
noted in [13], but we restate it in a form more suitable for our framework and we give a
constructive proof.

We define a fuzzy path P f
l = {v1, v2, ..., vl} to be a fuzzy graph where for every 1 ≤ i ≤

l − 1, vivi+1 is a real edge, v1vl is a non-edge, and all the other pairs of vertices are joined
by fuzzy edges (see Figure 1).

>2

2 vl

v1

−1v

l
lv

Figure 1: The family of fuzzy paths. Real edges are represented by continuous lines,
non-edges by dashed lines, and fuzzy edges by dotted lines.

Theorem 3.1 Let G be a fuzzy graph. Then there exists a realization of the fuzzy edges
that results in a cluster graph without editing any real edge or non-edge if and only if G
does not contain any induced subgraph isomorphic to P f

l for l ≥ 3.

4

Proof. Let G contain a P f
l = {v1, v2, ..., vl} as an induced subgraph, and assume for a

contradiction that there is a normalization G′ of G that is a cluster graph. We know that
the vertices v1, v2, ..., vl must appear in the same clique of G′ since they induce a connected
graph no matter how we realize the fuzzy edges. However, in this case, the clique of G′

would contain also the non-edge v1vl, that has not been edited, giving a contradiction.
If there are no fuzzy paths in G, then we show that every connected component of G

is without non-edges. Once we prove this, it is easy to see that it is enough to turn all
fuzzy edges in a connected component into real edges, and all fuzzy edges between con-
nected components into non-edges to get a cluster graph G′. Assume there is a connected
component containing a non-edge uv, then we can find a shortest path {u, p1, p2, ..., v} of
real edges connecting u and v. However, if this is the case, we show that either the whole
path {u, p1, p2, ..., v} or one of its subpaths induces a fuzzy path. If G[{u, p1, p2, ..., v}] is
a fuzzy path we are done. Otherwise, since we took the shortest uv-path, we can deduce
that in this subgraph there is some non-edge other than uv. Pick a non-edge pipj such
that pi and pj are closest on the path, and call Pij the corresponding subpath that they
define. Notice that one of pi and pj can be also u or v. As we took the closest such pair,
there cannot be other non-edges in G[Pij], and no real edges other than the ones on the
pi, pj-path, as this is a subpath of a shortest uv-path. It follows that all remaining edges
are fuzzy, hence G[Pij] is a fuzzy path, concluding the proof.

The k-Weighted Fuzzy Cluster Editing problem (k-WFCE) is the WFCE prob-
lem where we choose k of the problem instance to be the parameter. The complexity of
k-WFCE is open even for the unweighted case. The characterization given in Theorem 3.1
is through an infinite set of forbidden induced subgraphs, and hence an FPT algorithm for
k-WFCE does not follow from the results of Cai [6].

In order to give an FPT algorithm, we introduce an additional parameter. We define a
fuzzy vertex cover of a fuzzy graph to be a vertex subset S such that each fuzzy edge has an
endpoint in S. The new parameter is r = |S| where S is a smallest fuzzy vertex cover of G.
We call the corresponding new problem the (k, r)-Weighted Fuzzy Cluster Editing,
or (k, r)-WFCE, problem. Observe that checking whether G has a fuzzy vertex cover of
size at most r is FPT when parameterized by r. To do this we create a non-fuzzy graph
G′ from G(F) by turning all real edges of G(F) into non-edges and all fuzzy edges into
real edges. It is easy to see that G has a fuzzy vertex cover with at most r vertices if and
only if G′ has a vertex cover of at most r vertices. Since the r-Vertex Cover problem
is well known to be FPT, our claim follows.

3.1 Kernel for the (k, r)-Weighted Fuzzy Cluster Editing prob-

lem

We show fixed-parameter tractability by giving a set of rules that either enable us to answer
no, or produce a kernel of size O(k2+r) in polynomial time, for the (k, r)-WFCE problem.
First we give a general result to simplify some later proofs.

5

Observation 3.2 Let G be a weighted fuzzy graph with connected components C1, . . . , Cl.
Then G can be made into a cluster graph with editing cost at most k if and only if each
connected component Ci can be made into a cluster graph with editing cost at most ki, such
that

∑

1≤i≤l ki ≤ k.

Proof. If each connected component Ci can be made into a cluster graph with editing
cost at most ki such that

∑

1≤i≤l ki ≤ k, then G can be made into a cluster graph G′ with
editing cost at most k, since there are only non-edges and fuzzy edges between any two
connected components of G, and the fuzzy edges can be turned into non-edges with no
cost.

Assume now that G can be made into a cluster graph G′ with editing cost at most k.
If G′ contains a cluster K that contains vertices from different connected components of
G, then all edges in K between vertices of different connected components of G are either
fuzzy edges or non-edges of G. Hence, if for every such edge we either keep the original
non-edge or turn the fuzzy edge into a non-edge, we get a vertex-disjoint union of smaller
cliques rather than the cluster K. If we apply this transformation to each cluster of G′

containing vertices from different connected components of G, we get a new graph G′′ with
the following properties: G′′ is a cluster graph, the editing cost of turning G into G′′ is at
most k, and every cluster of G′′ contains only vertices from the same connected component
of G. Consequently, there must exist a value ki such that G[Ci] can be made into a cluster
graph, namely G′′[Ci], with at most ki as the editing cost, where

∑

1≤i≤l ki ≤ k, proving
the theorem.

Now we start presenting the rules, that are mostly self-explanatory. We will not give
sharp bounds on the running time of each rule, but we will limit the explanation to why
they can be executed in polynomial time. Our main goal is to prove that there exists a
quadratic kernel that can be computed in polynomial time, and therefore the (k, r)-WFCE
problem is FPT.

Rule 3.1.1 If there is a connected component C with no non-edges, remove C.

Lemma 3.3 Rule 3.1.1 is correct and can be applied in linear time.

Proof. Since such a connected component can be made into a clique by only realizing
fuzzy edges, removing it will not affect the final result by Observation 3.2. Finding the
connected components of a graph and checking its edges can be clearly done in linear time.

Rule 3.1.2 If Rule 3.1.1 does not apply and there are more than k + 1 connected compo-
nents, then answer no.

Lemma 3.4 Rule 3.1.2 is correct and can be applied in linear time.

6

Proof. If Rule 3.1.1 does not apply, then in every connected component there is at least
one non-edge, and at least one path of real edges connecting the endpoints. As already
shown in the proof of Theorem 3.1, this means that there exists a fuzzy path in each
connected component, and each of them requires at least one editing to be destroyed. As
there are more than k disjoint fuzzy paths, the result follows. Checking the number of
connected components of a graph can be obtained by a linear-time graph traversal.

For the following rule, note that a minimum cut between two vertices u and v is the
minimum total weight of a collection of real edges that must be deleted so that u and v
have no real paths between them. The idea is that, if two vertices cannot be disconnected
deleting edges of total weight at most k, then they must belong to the same cluster in every
solution, if any exists. For this rule we also need some new definitions. When we contract
two vertices u and v into one new vertex x, then u and v are deleted from the graph, x is
added to the graph, and each previous pair of real edge, fuzzy edge, or non-edge uz and
vz, appears now as two parallel edges between x and z. See Figure 2 for an example.

u v

a b c d a b c d

x

Figure 2: An example of contraction of two vertices u and v, with the resulting parallel
edges. Real edges are represented by continuous lines, non-edges by dashed lines, and fuzzy
edges by dotted lines.

Rule 3.1.3 If there are vertices u and v such that the value of a minimum cut between
them is at least k + 1, then contract u and v into one vertex x and do all of the following:

1. If uv was a non-edge then let k = k − w(uv).

2. If there are parallel edges with endpoint x and at least one of them is fuzzy, remove
the fuzzy edge.

3. If there are parallel real edges (resp. non-edges) with endpoint x, replace them with
one real edge (resp. non-edge) with weight equal to the sum of the weights of the
parallel real edges (resp. non-edges).

4. If there is a real edge e = ax in parallel with a non-edge f = ax then:

(a) If w(e) > w(f), then subtract let k = k − w(f) and replace e and f with a real
edge e′ such that w(e′) = w(e) − w(f).

7

(b) If w(e) < w(f), then let k = k − w(e) and replace e and f with a non-edge f ′

such that w(f ′) = w(f) − w(e).

(c) If w(e) = w(f), then let k = k − w(e) and replace e and f with a fuzzy edge g.

If now k < 0, answer no.

Lemma 3.5 Rule 3.1.3 is correct and can be applied in polynomial time.

Proof. Let G = (V, E, F) be the current graph, and let G′ = ((V \ {u, v})∪{x}, E ′, F ′) =
(V ′, E ′, F ′) and k′ be the new graph and the parameter we obtain after applying the rule.
Then we show that we can obtain a cluster graph H = (V, EH) from G with editing cost
at most k if and only if we can obtain a cluster graph H ′ = (V ′, EH′) from G′ with editing
cost at most k′.

Assume we can make a cluster graph H = (V, EH) from G with at most kT ≤ k edge
modifications. Since we cannot separate u from v by deleting edges of total weight less
than k + 1, these vertices must belong to the same cluster of H . Let us call such a cluster
K. This means that for every other vertex z ∈ V , either zv, zu ∈ EH if z is in the same
cluster as u and v in H , or zv, zu /∈ EH otherwise. When we contract u and v into one
new vertex x, we modify only the edges between x and the other vertices of the graph.
That is, G[V \ {u, v}] = G′[V ′ \ {x}]. We show that if we edit the edges of G′ so that a
vertex in H ′ is adjacent to x if and only if it is adjacent to both u and v in H , and we set
H [V \ {u, v}] = H ′[V ′ \ {x}], then we get a valid solution H ′ for G′.

The graph H ′ is clearly a cluster graph. In fact H ′[V ′ \ {x}] is a cluster graph by con-
struction, and NH′ [x] = NH [v] \ {u} = NH [u] \ {v}, i.e., H ′ = H − v = H − u if we do not
consider weights. Let us check the editing cost of turning G′ into H ′. The cost of turning
G′[V ′ \{x}] into H ′[V ′ \{x}] is the same as that of turning G[V \{u, v}] into H [V \{u, v}].
Let us call this cost k1. Then, for every vertex z /∈ K that has real edges to both u and
v, or one real edge and a fuzzy edge, the cost of replacing these edges with non-edges is
w(zu) + w(zv) both in G and G′, by the construction given in case 2 and 3. The same is
true for every vertex z ∈ K with non-edges to both u and v, or one non-edge and one fuzzy
edge. If both edges are fuzzy, there is no cost in either G or G′. Let us call the total cost
of these edges k2. Now, for every vertex z such that zu ∈ E, but zu /∈ E ∪F or vice versa,
we have to edit either zu or zv in G to get any valid solution, including H . Hence, for
each such vertex, we always have a cost of at least min{w(zu), w(zv)}, no matter whether
z will belong to K or not in the solution. We call the set of these vertices Z, and we
partition it in 4 smaller sets according to which kind of editing operation we apply to each
vertex z ∈ Z in order to get H . So we have: Z+

u = {z | z ∈ K ∧ zv ∈ E ∧ zu /∈ E ∪ F},
Z+

v = {z | z ∈ K ∧ zu ∈ E ∧ zv /∈ E ∪ F}, Z−
u = {z | z /∈ K ∧ zu ∈ E ∧ zv /∈ E ∪ F},

and Z−
v = {z | z /∈ K ∧ zv ∈ E ∧ zu /∈ E ∪ F}. The “+” and “−” indicate whether

we add or remove, respectively, an edge incident to z, and u and v indicate whether we
edit zu or zv. By case 4a,4b and 4c of the rule, to disconnect or connect z and x in G′,
the cost is w(zu)−min{w(zu), w(zv)} or w(zv)−min{w(zu), w(zv)}, according to which
vertex is incident to the edited edge in G. We define the total cost of these editings in G′

8

as k3 =
∑

z∈Z+
u ∪Z−

u

w(zu) − min{w(zu), w(zv)} +
∑

z∈Z+
v ∪Z−

v

w(zv) − min{w(zu), w(zv)}.
Notice at this point, that k′ = k −

∑

z∈Z min{zu, zv}(−w(uv)), where the ′′ − w(uv)′′

is in parenthesis because it might be there or not, according to case 1 of the rule. In
other words k − k′ is a lower bound on the editing cost of G. Hence if k′ < 0, then
the editing cost is at least k − k′ > k and there cannot be a solution for G. There-
fore we can safely assume k′ ≥ 0 and kT ≥

∑

z∈Z min{zu, zv}(+w(uv)), i.e. kT −
∑

z∈Z min{zu, zv}(−w(uv)) ≥ 0. Now we are ready to show that k′
T = k1 + k2 + k3 ≤ k′.

By construction k′ = k −
∑

z∈Z min{zu, zv}(−w(uv)) and being k ≥ kT , we have that
k′ ≥ kT −

∑

z∈Z min{zu, zv}(−w(uv)). By our previous discussion kT = k1 + k2 +
∑

z∈Z+
u ∪Z−

u

w(zu) +
∑

z∈Z+
v ∪Z−

v

w(zv)(+w(uv)). Putting the two things together we get
k′ ≥ k1 +k2 +

∑

z∈Z+
u ∪Z−

u

w(zu)+
∑

z∈Z+
v ∪Z−

v

w(zv)(+w(uv))−
∑

z∈Z min{zu, zv}(−w(uv)).
This translates into k′ ≥ k1 + k2 + k3 = k′

T as assumed, proving one direction of our main
claim.

For the other direction, we use almost the same argument. Assume we can make a
cluster graph H ′ = (V, EH′) from G′ using at most k′

T ≤ k′ edge modifications. We show
that if we edit the edges of G so that a vertex in H is adjacent to both u and v if and only
if it is adjacent to x in H ′, we set H [V \ {u, v}] = H ′[V ′ \ {x}], and we add a real edge
between u and v if there is not one, then we get a valid solution H for G. First notice that
the graph H we obtain in this way is a cluster graph. By construction H [V \ {u, v}] is a
cluster graph, and NH′ [x] = NH [v] \ {u} = NH [u] \ {v}. If we do not consider the weights,
the graph H is isomorphic to a graph obtained from H ′ adding a vertex incident to x and
with the same adjacencies as x. This would clearly be a cluster graph. Now it is left to
show that the editing cost to make G into H is kT ≤ k.

The argument is very similar to the one for the previous direction, so we use the
same notation as well. The costs k′

1, k′
2 are defined as k1 and k2 in the previous part

of the proof, and they are the same for both G and G′. We redefine k′
3 =

∑

z∈Z w(zx)
in G′, and analyze the cost of the corresponding modifications in G. If z ∈ Z and it
costs w(zx) to edit zx in G′, then the equivalent editing cost in G to edit either zu
or zv is w(zx) + min{w(zu), w(zv)} even if w(zx) = 0, by construction of G′. Since k =
k′+

∑

z∈Z min{zu, zv}(+w(uv)) and k′ ≥ k′
T , we get k ≥ k′

T +
∑

z∈Z min{zu, zv}(+w(uv)).
By definition k′

T = k′
1 + k′

2 + k′
3, and replacing this in the inequality, we obtain k ≥

k′
1 + k′

2 +
∑

z∈Z w(zx) +
∑

z∈Z min{zu, zv}(+w(uv)), that is exactly kT . Hence kT ≤ k,
proving he correctness of the rule.

The running time is polynomial because the minimum cut of two vertices of a graph
can be found in polynomial time [17], and G′ can clearly be constructed in polynomial time
as well.

Theorem 3.6 If Rules 3.1.1, 3.1.2 and 3.1.3 do not apply, and we have not answered no
yet, then either the current graph has at most k2 + 3k + r vertices, or the answer is no.

Proof. If Rule 3.1.1 and Rule 3.1.2 do not apply, it means that the graph has at most
k connected components, and each of them must be edited. If Rule 3.1.3 does not apply,
then there cannot be cliques of size greater than k + 1.

9

Let us now consider a connected fuzzy graph G = (V, E, F) with no clique of size
greater than k + 1 and that can be made into a cluster graph by editing a set of real edges
and non-edges M of total weight at least 1 and at most k. Then we show that G cannot
have more than k2 + 3k + r vertices. Let us define: S ⊆ V the set of vertices that are
incident to some edited edge or non-edge in M ; R a minimum fuzzy vertex cover of G; and
X = V \R, so that G[X] does not contain any fuzzy edge. We define also X ′ = S∩X. It is
easy to see that |X ′| ≤ |S| ≤ 2k. Let us focus on the graph G[X \X ′]. It does not contain
fuzzy edges, and none of its vertices is incident to an edited real edge or non-edge. We can
conclude that it must be a union of disjoint cliques. In particular we show that it must be
the union of at most k + 1 disjoint cliques, and that each of them has specific neighbors
in the rest of the graph. Since no vertex of these cliques is incident to an edited edge,
and there are no fuzzy edges in between them, each of them must belong to a different
cluster in the solution. However, to create more than k + 1 connected components from a
connected graph, we need to remove at least k + 1 edges. Hence the first part of the claim
is proved. From the previous argument, it also follows that all vertices in X ′ connected to
a clique in G[X \ X ′], must end up in the same cluster of the solution as the clique they
are adjacent to. Assume they do not, then we should delete an edge incident to a vertex
in G[X \X ′], getting a contradiction. Therefore every vertex in X ′ can be connected to at
most one clique in G[X \ X ′], and furthermore it must be adjacent to all vertices of this
clique. This means that every clique in G[X \X ′] has either some neighbors in X ′ and size
at most k, or it has neighbors only in R and size at most k + 1. Going back to G, if we
define N as the number of cliques in G[X \X ′] that have neighbors only in R, we can give
the following bound: |V | ≤ (k + 1) · N + k · (k + 1 − N) + (2k − N) + |R| = k2 + 3k + r.
The first two terms give a bound on the number of vertices in G[X \ X ′] according to the
previous discussion, while the term (2k − N) represents a tighter bound on |X ′|. In fact,
for every clique with neighbors only in R, there must be at least one distinct vertex in R
incident to an edited edge. This because we need to disconnect the clique from the rest of
the graph, but we cannot touch edges incident to its vertices. Besides at least one endpoint
of the edge we have to remove will belong to the same cluster as the clique.

Consider now a fuzzy graph G with l connected components C1, . . . , Cl, where 1 ≤ l ≤ k.
By Observation 3.2 we know that there is a solution for G that edits at most k edges
if and only if there is a solution for each G[Ci] that edits at most ki edges, such that
∑l

i=1 ki ≤ k. This means that, by what we just proved for connected fuzzy graphs, if
there is a solution for G then |V (G[Ci])| ≤ k2

i + 3ki + ri for 1 ≤ i ≤ l, where ri is the
size of a minimum vertex cover of G[Ci]. Hence |V (G)| =

∑l

i=1 k2
i + 3ki + ri, that is

∑l

i=1 k2
i +3

∑l

i=1 ki +
∑l

i=1 ri ≤ (
∑l

i=1 ki)
2 + 3k + r = k2 + 3k + r, completing the proof.

It is easy to construct examples where we have (k+1)·N+k·(k+1−N)+(k+1−N)+r =
k2 + 2k + 1 + r vertices in a yes instance for any given k; see Figure 3 for an example.
Hence Theorem 3.6 gives a quite tight bound on the size of the kernel, that is in any case
O(k2 + r).

We have thus proved that the (k, r)-WFCE problem has a kernel of size O(k2 + r). We
can now conclude the following.

10

X’

X\X’

R
k=3, N=1

Figure 3: Example of a kernel with k2 + 2k + 1 + r vertices for k = 3. The non-edges are
not drawn to keep the figure easier to observe.

Theorem 3.7 The (k, r)-Weighted Fuzzy Cluster Editing problem can be solved
in time nO(1) + O((k2 + r)2k).

Proof. Run Rules 3.1.1, 3.1.2 and 3.1.3 on the input graph G until either we get a no as
an answer or we get to an equivalent fuzzy graph that has size bounded by a function of k
and r. Notice that the rules can be applied at most n times since, every time one of them
is applied, either at least one vertex is removed from the graph, or we stop. Also, each
of Rules 3.1.1, 3.1.2 and 3.1.3 can be applied in polynomial time by Lemmas 3.3, 3.4 and
3.5. This means that the total preprocessing can be performed in time polynomial only in
n. After the preprocessing we either return that there is no solution or the current fuzzy
graph G = (V, E, F), has with at most k2 +3k+r vertices by Theorem 3.6 and we can just
use brute force to solve the problem on this graph. The brute force approach consists in
trying all possible subsets M of the set (V ×V) \F of total weight at most k. For each set
M , we build a graph G′ = (V, (E \M)∪ (M \E), F). Since no more editing of real edges or
non-edges is allowed for this graph, then this is a valid solution if and only if realizing the
fuzzy edges inside each connected component into real edges, and the rest into non-edges,
produces a cluster graph. If for some set M we get a cluster graph, we answer YES, else
there is no solution. Since |(V × V) \ F | ≤

(

k2+3k+r

2

)

and |M | ≤ k, the result follows.

4 Parameterized edge clique partition with partial in-

formation

In this section, we study the problem of partitioning the edges of a fuzzy graph G =
(V, E, F) into edge-disjoint cliques. In this problem, no editing of the edges or non-edges
of G is involved, but we have to decide for each fuzzy edge whether or not it should become
a real edge or a non-edge. Below is a formal definition of the problem.

11

Fuzzy Edge Clique Partitioning (FECP)
Instance: A fuzzy graph G = (V, E, F) and an integer k ≥ 0.
Question: Is there a realization (R+, R−) of the fuzzy edges such that the edges of G′ =
(V, E ∪ R+) can be partitioned into at most k edge-disjoint cliques?

Naturally, being a more general version of the problem on non-fuzzy graphs, the Fuzzy
Edge Clique Partitioning problem is NP-hard as well. Interestingly, we show that it
remains NP-hard also when k is a fixed constant and not a part of the input, for every
k ≥ 3. Recall that, in contrast, the Edge Clique Partitioning problem is FPT when
parameterized by k. We show the FECP problem parameterized by both k and r, where
r is again the size of a minimum fuzzy vertex cover, is FPT. We call this version of the
problem (k, r)-FECP.

4.1 The k-Fuzzy Edge Clique Partitioning problem is NP-complete

Here we prove that deciding whether the edges of a fuzzy graph can be partitioned into
at most k edge-disjoint cliques, is NP-complete for every fixed k ≥ 3, and polynomial
otherwise. The problem we reduce from, is the classical k-Coloring problem. In this
problem, the input is a graph G = (V, E) and a fixed k > 0, and the question is whether
the vertices of G can be colored with at most k colors, such that no two adjacent vertices
have the same color. It is well known that this problem is NP-complete for every fixed
k ≥ 3.

Theorem 4.1 The k-Fuzzy Edge Clique Partitioning problem is NP-complete for
fixed k ≥ 3.

Proof. Given a graph G = (V, E) we build a fuzzy graph G′ = (V ′, E ′, F) as follows. For
each vertex vi ∈ V , create a new vertex ui and call U the set of such vertices, so that
V ′ = V ∪ U . Now the only real edges in E ′ are the edges viui, because we replace each
vivj ∈ E with a non-edge, and for every other pair of vertices we add a fuzzy edge. See
Figure 4 for an example.

Now we claim that G = (V, E) can be colored with at most k colors if and only if there
exists a normalization of G′ = (V ∪ U, E ′, F) whose edges can be partitioned into at most
k edge-disjoint cliques.

Assume there is a coloring of G = (V, E) that uses only k colors, so that no two adjacent
vertices have the same color. This is equivalent to partitioning V into k sets A1, · · · , Ak,
such that Aj is an independent set for each 1 ≤ j ≤ k. Let us partition also U into k
sets A′

1, · · · , A′
k such that ui ∈ A′

j if and only if vi ∈ Aj . Then, by construction and the
fact that G[Aj] contains only non-edges, we know that G′[Ai ∪ A′

i] contains only fuzzy
edges and real edges for each 1 ≤ j ≤ k. Hence, if we realize all fuzzy edges inside each
G′[Ai ∪A′

i] into real edges, and all the remaining fuzzy edges into non-edges, we get a non-
fuzzy graph consisting of k vertex-disjoint cliques, with no edges between them. Hence,
we have a natural solution for the k-Edge Clique Partitioning problem on G′, since
vertex-disjoint cliques are also edge-disjoint and their union contains all edges.

12

Assume now that there exists a normalization H of G′, that admits a partition K =
{K1, . . . , Kl} of its edges, so that H(Ki) is a clique for each 1 ≤ i ≤ l and l ≤ k. By
construction we know that the graph is not edgeless, so that l ≤ 1. Let us now build a
solution for the k-Coloring problem for G using K. We associate a different color ci to each
element Ki ∈ K, and give to a vertex vj ∈ V the color ci if the edge vjuj ∈ Ki. We claim
that this gives a legal k-coloring. First of all there are at most k cliques in K, so at most
k colors are used. Besides each edge vjuj is contained in a unique clique of K, so we have
no ambiguity and all vertices of G are colored with a unique color. Assume now that there
is at least one edge vivj ∈ E such that the endpoints vi and vj got the same color. This
implies that viui and vjuj belong to the same clique of K. However, by construction, there
should be a non-edge between vi and vj in G′. Hence there cannot be any normalization
of G′ where viui and vjuj belong to the same clique, and therefore to the same element of
a valid edge clique partition. This proves our claim.

Clearly, G′ can be constructed from G in polynomial time; hence the theorem follows.

G’
3−Partition of G’3−Coloring of G

G

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

Figure 4: An example of the graph G′ obtained from a graph G, and the equivalence
of a solution of the 3-Coloring problem on G with a solution of the 3-Edge Clique
Partitioning problem on G′. In G′ the fuzzy edges are not drawn to keep the figure
clean, while in the corresponding clique partition the non edges are not drawn.

As a complementary result, we prove next that the k-FECP problem is solvable in
polynomial time when k is 0, 1, or 2. For the following results, we define an isolated vertex
of a fuzzy graph to be a vertex that is not incident to any real edge. Similarly, we define a
universal vertex of a fuzzy graph to be a vertex that is not incident to any non-edge.

Theorem 4.2 The 0-FECP and the 1-FECP problems are solvable in polynomial time.

Proof. The 0-FECP problem is solvable if only if there is a normalization of the input
fuzzy graph that is edgeless. In other words if the input graph has no real edges.

The 1-FECP problem is solvable if only if there is a normalization of the input where
the set of all edges induces a complete graph. This is equivalent to checking whether there
is any non-edge in the input graph after we remove all isolated vertices. If there is, then
there is no normalization satisfying the desired conditions. In fact there would be two
vertices incident to some real edges, that cannot be in a clique together, i.e., the endpoints
of the non-edge. If there is not any non-edge, instead, we can turn all fuzzy edges into real

13

edges and get a complete graph, while we turn all fuzzy edges incident to isolated vertices
into non-edges, so that they are still isolated in the normalization.

In both cases the conditions can clearly be checked in polynomial time.

For the 2-FECP problem, we need a few more details, and we start with an observation
to formalize some simple facts.

Observation 4.3 Let G = (V, E, F) be a fuzzy graph with a normalization H that ad-
mits a minimum edge clique partition K = {K1, K2}, and let V1 = V (H(K1)) and V2 =
V (H(K2)). Then either V1 ∩ V2 = ∅ or V1 ∩ V2 = {x} for some x ∈ V . In the latter case,
H − x is a normalization of G − x with an edge clique partition K ′ such that |K ′| ≤ 2,
and if K ′ = {K ′

1, K
′
2} then K ′

1 = K1 \ {xy | y ∈ K1}, K ′
2 = K2 \ {xy | y ∈ K2}, and

V (H(K ′
1)) ∩ V (H(K ′

2)) = ∅.

Proof. The edges of H−x can be partitioned in at most 2 cliques. In fact, when removing
x, and therefore all edges incident to it, the remaining edges in the graph are completely
contained in V1 \ {x} and V2 \ {x}. Furthermore, since V1 and V2 are cliques, V1 \ {x} and
V2 \{x} are also cliques. What might happen is that V1 \{x} or V2 \{x} (or both) consists
of a single isolated vertex. Therefore the edges of H − x might be partitioned into 0, 1, or
2 cliques. Finally, as V (H(K ′

1)) = V1 \ {x} and V (H(K ′
2)) = V2 \ {x}, it is obvious that

V (H(K ′
1)) ∩ V (H(K ′

2)) = ∅.

Theorem 4.4 The 2-FECP problem can be solved in polynomial time.

Proof. We describe a polynomial-time algorithm to solve the problem. Let G = (V, E, F)
be the fuzzy input graph.

First we describe how to solve a special case of the 2-FECP, namely the problem of
checking whether there is a normalization of G whose vertices and edges can be partitioned
into at most 2 vertex-disjoint cliques. We call this problem 2-Fuzzy Edge-Vertex
Clique Partitioning problem, or 2-FEVCP. Checking whether such a normalization
exists is equivalent to checking whether the connected components of G can be partitioned
in at most two sets C1 and C2 such that G[C1] and G[C2] do not contain any non-edge. This
can be done as follows. First check whether any connected component of G contains non-
edges. If so, answer no. This is a necessary condition for the problem to have a solution,
but not sufficient. If no connected component contains non-edges, create a graph G′ that
has a vertex for each connected component of G, and an edge between two vertices if and
only if there is at least one non-edge between the corresponding connected components. It
is easy to see that our problem is the same as asking whether G′ is 2-colorable. Thus the
2-FEVCP is solvable in polynomial time.

Now let G∗ be our input graph without isolated vertices. There is a solution to the
2-FECP problem for G if and only if there is for G∗. If there is a solution for G∗, i.e.,
a normalization H∗ whose edges can be partitioned in at most 2 cliques, then there is a
solution for G, just turning all fuzzy edges incident to isolated vertices into non-edges, and

14

adding them as isolated vertices in H∗. Also, if there is a solution for G, then removing
all isolated vertices of G from H , yields a solution for G∗.

We show how to solve the 2-FECP problem on G∗, by using the algorithm for the 2-
FEVCP problem as a subroutine. First we run the algorithm for 2-FEVCP on G∗. Notice
that a solution to the 2-FEVCP, is also a solution for the 2-FECP, but not vice versa. In
particular, if we get a no answer to the 2-FEVCP, we know that if there is a solution to
the 2-FECP problem on G∗, it consists of at least two cliques, intersecting each other in
one vertex for some normalization H∗ of G∗. Furthermore, this vertex would be universal
in G∗. Thus, by Observation 4.3, G∗ has a solution if and only if there exists a vertex
v ∈ V (G∗) such that G∗− v is a yes instance for the 2-FEVCP problem and v is universal
in G. Notice that when we run the 2-FEVCP algorithm on G∗ − v, we do not remove
isolated vertices, because they were not isolated in G∗. Hence they must be part of the
vertices that must be partitioned in G∗ − v, or we might get false positives.

Since the algorithm for the 2-FECP problem essentially consists of calling at most
n + 1 times the 2-FEVCP algorithm as a subroutine, it runs in polynomial time, proving
the theorem.

4.2 The (k, r)-Fuzzy Edge Clique Partitioning problem is FPT

To obtain a kernel for (k, r)-FECP, we first give some observations that apply to any valid
solution of the problem on non-fuzzy graphs, i.e., the k-Edge Clique Partitioning
problem.

For a non-fuzzy graph G = (V, E), and a fixed k ≥ 0, we call a feasible solution a
partition K = {K1, K2, ..., Kl} of E such that G(Ki) is a clique for each i, and l ≤ k. For
Ki ∈ K, we define V (Ki) as the union of the endpoints of the edges in Ki, i.e. V (G[Ki]).
We call gateways the vertices that are in the intersection of some cliques defined by elements
of K, while the vertices contained only in one clique are called normal. Two normal vertices
in the same clique are said to be co-normal. We define a set V ′ ⊆ V to be a type if there
is at least one vertex v such that N [v] = V ′. So we say that two vertices are of the same
type if their closed neighborhood is identical, and that they are of different type otherwise.
Finally notice that the intersection of two cliques in any solution cannot consist of more
than one vertex, or there would be one edge covered by two cliques.

Theorem 4.5 ([5]) Every edge clique partition of a complete graph on n vertices, except
the trivial one of a single clique, contains at least n cliques.

Lemma 4.6 If the answer to the k-Edge Clique Partitioning problem for a graph
G = (V, E) is yes, then the answer is yes also for each induced subgraph of G.

Proof. Assume there is a partition K = {K1, . . . , Kl} of E, such that l ≤ k and G(Ki) is
a clique for each 1 ≤ i ≤ l. Then consider V ′ ⊂ V , and G′ = G[V \V ′]. We show that it is
possible to modify K in order to obtain a feasible solution K ′ = {K ′

1, · · · , K ′
l′} for G′. For

each vertex v ∈ V ′, remove all edges incident to v in G from the sets of K, and remove

15

the sets the become empty during the process. Now for each set K ′
i ∈ K ′, we still have

the property that G′(K ′
i) is a clique, because G′(K ′

i) = G′[V (Ki) \ V ′], and every induced
subgraph of a clique is still a clique. The intersection of any two sets of K ′ is still empty,
as it was for K, because we only deleted elements from them. Hence no edge is covered
by more than one clique. Furthermore

⋃l′

i=1 K ′
i = E(G′), because

⋃l

i=1 Ki = E and we did
not delete any edge between two vertices of V \ V ′ by construction, but we removed all
edges incident to the vertices of V ′. Finally |K ′| ≤ |K| ≤ k. This concludes the proof.

Lemma 4.6 implies that if there is even only one induced subgraph of G for which the
answer is no, then G itself is a no instance. We will use this observation often.

Observation 4.7 In any solution of k-Edge Clique Partitioning, there cannot be
more than

(

k

2

)

gateway vertices.

Proof. Every two cliques defined by a feasible solution can intersect in at most one vertex,
or they would cover the same edge. Since there are at most

(

k

2

)

possible intersection among
k cliques, the result follows.

To show that this upper bound is tight, we provide a way to construct a graph G with
k(k − 1)/2 gateways, for any k. Let K = {K1, K2, . . . , Kk} be a partition of the edges of
a graph G into k cliques, and let |V (Ki)| = k for each 1 ≤ i ≤ k. Now let vj

i be the vertex
i of G(Kj). If we set vj

i = vi
j for each 1 ≤ i, j ≤ k, we get our graph, that we can see

also in Figure 5. It is easy to see that every two cliques intersect in exactly one vertex, so
that there is no edge covered by more than one clique. Furthermore, since for every pair
of cliques, we have a different intersection, the bound we gave previously is tight.

K 1

K 2

K 3

K 4

K 5

K 6

Figure 5: Example of a graph with
(

k

2

)

gateway vertices. Every box represents a clique,
and every two cliques intersect in exactly one distinct vertex.

16

For the next result, remember that the closed neighborhood of a vertex is the union of
the cliques it belongs to in a feasible solution.

Observation 4.8 If two vertices have the same type, then in any feasible solution either
they are co-normal or they are both gateways.

Proof. Take a feasible solution K = {K1, K2, ..., Kl} of a graph G = (V, E). We show
that if two vertices are neither co-normal nor both gateways, they cannot have the same
type.

Take two sets Ki, Kj ∈ K and take two vertices that are normal but not co-normal, let
us say u ∈ V (Ki) and v ∈ V (Kj). There cannot be an edge between them, or that edge
should be covered by a third clique Kz, where z can be also equal to i or j. In this case
we would have u ∈ V (Ki) ∩ V (Kz) or v ∈ V (Kj) ∩ V (Kz), or both, meaning that at least
one of them is a gateway vertex, giving a contradiction. If there is no such edge, then their
closed neighborhood cannot be identical, since u would not appear in N [v] and vice versa.
This settles the first case.

Assume now that u is normal with respect to some clique Ki and that v is a gateway.
Since by definition a vertex is a gateway if it is in the intersection of some cliques, the
vertex v must appear in at least two cliques Kj and Kz. Then N [v] ⊆ V (Kj) ∪ V (Kz).
Since N [u] = V (Ki), if v /∈ V (Ki), then N [u]∩N [v] = ∅. However, even if we could choose
Kj or Kz to be equal to Ki, let us say Kj = Ki, we would still get that N [u] = V (Ki) ⊂
N [v] ⊆ V (Ku) ∪ V (Kz), because every clique in K contains at least one edge, i.e, two
vertices, and being u a normal vertex, it cannot have neighbors other than v in V (Kz).

Observation 4.9 If there are more than k +
(

k

2

)

vertices of pairwise different type, then
the answer to k-Edge Clique Partitioning is no.

Proof. By Observation 4.8 we know that all vertices that can belong to the same clique
in a feasible solution, must either have the same type or be gateways. By Observation 4.7
there can be at most

(

k

2

)

gateway vertices, and, if the problem has a solution, at most k

cliques. We can conclude that there cannot be more than k+
(

k

2

)

different types of vertices.

Now we show that a simple generalization of the observations given until now, can be
used as rules to give a polynomial time kernelization for the (k, r)-FECP problem. From
now on we assume a fuzzy input graph G = (V, E, F).

First we need to introduce a generalization of the type of a vertex for fuzzy graphs.
The fuzzy neighborhood of a vertex v is the set of the vertices w such that vw ∈ F . We say
that two vertices are of the same absolute type if their closed and fuzzy neighborhoods are
equal.

Consider a fuzzy graph G = (V, E, F), and let S ⊂ V be a minimum fuzzy vertex cover
of G, such that |S| ≤ r. Then for each vertex in X = V \S, there can be at most 3r possible
ways to have adjacencies in S. So we can classify the vertices of X into 3r categories, so
that the vertices in the same category have the same absolute type with respect to the

17

vertices in S. Since G[X] is a non-fuzzy graph, if there is no solution to k-Edge Clique
Partitioning for G[X], then there is no solution to (k, r)-FECP on G no matter how we
realize the fuzzy edges, due to Lemma 4.6.

Rule 4.2.1 If there are more than (k +
(

k

2

)

) · 3r vertices with different absolute type in X,
then the answer is no.

Lemma 4.10 Rule 4.2.1 is correct and can be executed in polynomial time.

Proof. If there are more then (k +
(

k

2

)

) · 3r absolute types of vertices, then G[X] must

have more than (k +
(

k

2

)

) vertices of different types. Hence by Observation 4.9, there is
no solution for G[X]. By Lemma 4.6, this implies that there is no solution for G as well,
proving the first part of the statement.

The rule can be easily executed in polynomial time by listing the absolute closed neigh-
borhoods of the vertices of G, and checking whether there are more than (k +

(

k

2

)

) · 3r

different ones. Since k and r are constants, the result follows.

Rule 4.2.2 If Rule 4.2.1 does not apply and there are more than
(

k

2

)

+ 1 vertices of the
same absolute type in X, then remove one.

Lemma 4.11 Rule 4.2.2 is correct and can be executed in polynomial time.

Proof. Let u be the vertex we remove. Then we show that there is a solution for G if
and only if there is a solution for G− u. Assume there is a normalization H of G− u that
admits a feasible solution K ′. Since in G−u there are at least

(

k

2

)

+ 1 vertices of the same
absolute type as u, we know that at least one of them, let us say v, is a normal vertex
for exactly one clique induced by some set of K ′. By Rule 4.7, in fact, there cannot be
more than

(

k

2

)

gateways in any solution. This means that if we realize the fuzzy edges of
G[V \ {u}] as in H and the fuzzy edges incident to u as the fuzzy edges incident to v in
G−u, we get a normalization H ′ of G where u and v have the same type. Hence a feasible
solution for H ′ can be obtained from K ′ just adding all edges incident to u to the same
set of K ′ containing all edges incident to v.

On the other hand, by Lemma 4.6, if there is a normalization G′ of G with a feasible
solution, then there is also a normalization of G − u that has a feasible solution, namely
G′ − u.

Lemma 4.12 If Rules 4.2.1 and 4.2.2 do not apply, then the graph has at most (
(

k

2

)

+1) ·

((k +
(

k

2

)

) · 3r) + r vertices.

Proof. It follows directly by the fact that Rule 4.2.1 and Rule 4.2.2 do not apply.

Theorem 4.13 (k, r)-Fuzzy Edge Clique Partitioning is FPT with a kernel of size
O(k4 · 3r).

18

Proof. The size of the kernel follows from Lemma 4.12, so we only need to show that the
preprocessing can be performed in polynomial time. Rules 4.2.1 and 4.2.2 can be applied in
polynomial time by Lemma 4.10 and 4.11. Besides they are applied at most a polynomial
number of times. In fact, every time we apply Rule 4.2.2 we either remove one vertex or
stop, and Rule 4.2.1 needs to be applied only once before every application of Rule 4.2.2.
In total we can have at most 2n application of the rules, hence the theorem follows.

5 Concluding remarks

In this paper we have studied the parameterized complexity of two important examples of
GRAPH CLUSTERING PROBLEMS on inputs consisting of fuzzy graphs: graphs that
represent incomplete information about relationships. We believe that the investigation
of “problems on fuzzy graphs” is extremely well-motivated by applications, particularly in
areas such as machine learning and bioinformatics, where complete information about the
graphs modeling various computational objectives is often not available. In this general
context, much more remains to be done.

We have described two FPT algorithms, respectively, for the Weighted Fuzzy Clus-
ter Editing problem, and the Fuzzy Edge Clique Partitioning problem, where
both are parameterized by the compound parameter (k, r), and where k is a cost parame-
ter: respectively, the total cost of the editing in the case of Weighted Fuzzy Cluster
Editing, and the number of cliques in the partition in the case of Fuzzy Edge Clique
Partitioning; and where r is a structural parameter: the minimum number of vertices
required to cover the undecided edges of the fuzzy graph taken as input. This structural
parameter could be well-motivated by applications where only a small number of “trouble-
maker” vertices are the “cause” of the uncertain information about the input.

We have also shown that in the case of Fuzzy Edge Clique Partitioning, it is not
possible to extend the above positive outcome to a parameterization only by k.

In the case of the Fuzzy Cluster Editing problem, the analogous question remains
open, and this is in fact a prominent concrete open problem in parameterized complexity.
Apart from the important machine learning applications noted in [2, 3], it has recently been
shown that for the special case where all weights are 1, the Fuzzy Cluster Editing
problem (parameterized only by k) is FPT-equivalent [16, 13], to the Minimum Terminal
Edge Separation problem left open by Marx in [25].

Another area of open problems concerning this work is that of improving kernelization
bounds. Because FPT kernelization is of great practical significance due to the general
connection to efficient preprocessing (see [14, 22, 27] for background and discussion of this
point), it is an outstanding open problem as to whether Fuzzy Edge Clique Parti-
tioning admits a Poly(k, r) kernelization.

19

References

[1] F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W. H. Suters, and C. T.
Symons. Kernelization algorithms for the vertex cover problem: Theory and experiments. In
Proceedings of ALENEX/ANALC’04 - 6th Workshop on Algorithm Engineering and Exper-
iments and the First Workshop on Analytic Algorithmics and Combinatorics, pages 62–69,
2004.

[2] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. In Proceedings of FOCS 2002 -
43rd Symposium on Foundations of Computer Science, page 238, 2002.

[3] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning, 56(1-3):89–
113, 2004.

[4] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns. Journal of
Computational Biology, 6(3-4):281–297, 1999.

[5] N.J. De Bruijin and P. Erdos. On a combinatorial problem. Ind. Math., 10:421–423, 1948.

[6] L. Cai. Fixed-parameter tractability of graph modification problems for hereditary proper-
ties. Inf. Process. Lett., 58(4):171–176, 1996.

[7] M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative information. J.
Comput. Syst. Sci., 71(3):360–383, 2005.

[8] Z-Z. Chen, T. Jiang, and G. Lin. Computing phylogenetic roots with bounded degrees and
errors. SIAM J. Comput., 32(4):864–879, 2003.

[9] F. K. H. A. Dehne, M. A. Langston, X. Luo, S. Pitre, P. Shaw, and Y. Zhang. The cluster
editing problem: Implementations and experiments. In Proceedings of IWPEC’06 - 2nd
International Workshop on Parameterized and Exact Computation, pages 13–24. Springer,
2006.

[10] E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. Correlation clustering in general
weighted graphs. Theor. Comput. Sci., 361(2-3):172–187, 2006.

[11] E. D. Demaine and N. Immorlica. Correlation clustering with partial information. In Pro-
ceedings of RANDOM-APPROX 2003 - 7th International Workshop on Randomization and
Approximation Techniques in Computer Science, pages 1–13, 2003.

[12] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[13] D. Emanuel and A. Fiat. Correlation clustering - minimizing disagreements on arbitrary
weighted graphs. In Proceedings of ESA 2003 - 11th Annual European Symposium on Algo-
rithms, pages 208–220, 2003.

[14] M. R. Fellows. The lost continent of polynomial time: Preprocessing and kernelization. In
Proceedings of IWPEC 2006 - Parameterized and Exact Computation, Second International
Workshop, pages 276–277, 2006.

20

[15] M. R. Fellows, M. A. Langston, F. A. Rosamond, and P. Shaw. Efficient parameterized
preprocessing for cluster editing. In Proceedings of FCT 2007 - Fundamentals of Computation
Theory, 16th International Symposium, pages 312–321, 2007.

[16] M. R. Fellows, M. Mnich, F. Rosamond, and S. Saurabh. Manuscript, 2008.

[17] A. V. Goldberg. Recent developments in maximum flow algorithms (invited lecture). In
Proceedings of SWAT ’98 - 6th Scandinavian Workshop on Algorithm Theory, volume 1432,
pages 1–10, 1998.

[18] M. C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems. J. Algorithms,
19(3):449–473, 1995.

[19] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data clustering: Exact
algorithms for clique generation. Theory Comput. Syst., 38(4):373–392, 2005.

[20] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Data reduction, exact, and heuristic
algorithms for clique cover. In Proceedings of the 8th ACM-SIAM ALENEX, pages 86–94.
ACM-SIAM, 2006.

[21] J. Guo. A more effective linear kernelization for cluster editing. In Proceedings of ESCAPE
2007 - Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, First In-
ternational Symposium, pages 36–47, 2007.

[22] J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization. SIGACT
News, 38(1):31–45, 2007.

[23] M. Krivánek and J. Morávek. NP -hard problems in hierarchical-tree clustering. Acta Inf.,
23(3):311–323, 1986.

[24] S. H. Ma, W. D. Wallis, and J. L. Wu. The complexity of the clique partition number
problem. Congr. Numer., 67:59–66, 1988.

[25] D. Marx. Parameterized graph separation problems. In Proceedings of IWPEC’04 - 1st
International Workshop on Parameterized and Exact Computation, pages 71–82. Springer,
2004.

[26] E. Mujuni and F. A. Rosamond. Parameterized complexity of the clique partition problem.
In Proceedings of ACiD 2007 - 2nd Workshop of Algorithms and Complexity in Durham,
2007.

[27] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.

[28] J. Orlin. Contentment in graph theory: Covering graphs with cliques. Indagationes Math.,
39:406–424, 1977.

[29] F. Protti, M. D. da Silva, and J. L. Szwarcfiter. Applying modular decomposition to pa-
rameterized bicluster editing. In Proceedings of IWPEC 2006 - Parameterized and Exact
Computation, Second International Workshop, pages 1–12, 2006.

[30] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Discrete Applied
Mathematics, 144(1-2):173–182, 2004.

21

