
Smoothing Imprecise 1.5D Terrains

Chris Gray

Maarten Löffler

Rodrigo I. Silveira

Technical Report UU-CS-2008-036

November 2008

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl



ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands



Smoothing imprecise 1.5D terrains ∗

Chris Gray† Maarten Löffler‡ Rodrigo I. Silveira‡

Abstract

We study optimization problems for polyhedral terrains in the presence of data imprecision.
An imprecise terrain is given by a triangulated point set where the height component of the
vertices is specified by an interval of possible values. We restrict ourselves to terrains with a
one-dimensional projection, usually referred to as 1.5-dimensional terrains, where an imprecise
terrain is given by an x-monotone polyline, and the y-coordinate of each vertex is not fixed but
only constrained to a given interval. Motivated mainly by applications in terrain analysis, in
this paper we study five different optimization measures related to obtaining smooth terrains,
for the 1.5-dimensional case. In particular, we present exact algorithms to minimize and
maximize the average turning angle, as well as to minimize the maximum slope change.
Furthermore, we also give approximation algorithms to minimize the largest turning angle
and to maximize the smallest turning angle.

1 Introduction

Terrain modeling is a central task in geographical information systems (GIS). Terrain models can
be used in many ways, for example for visualization or analysis purposes (to compute features
like watersheds or visibility regions [7]). One common way to represent a terrain is by means of
a triangulated irregular network (TIN): a planar triangulation with additional height information
on the vertices. This defines a bivariate and continuous function, defining a surface that is often
called a 2.5-dimensional (or 2.5D) terrain.

The height information used to construct TINs is often collected by airplanes flying over the terrain
and sampling the distance to the ground, for example using radar or laser altimetry techniques,
or it is sometimes obtained by optically scanning contour maps and then fitting an approximating
surface. These methods often return a height interval rather than a fixed value, or produce heights
with some known error bound. For example, in high-resolution terrains distributed by the United
States Geological Survey, it is not unusual to have vertical errors of up to 15 meters [26]. However,
algorithms in computational geometry often assume that the height values are precise. Besides not
necessarily representing the real terrain, this may lead to artifacts that compromise the reliability
of the terrain model.

1.1 Imprecise terrains

Data imprecision is an important issue in computational geometry. In recent years there has
been a growing interest in modeling imprecision in an exact way. An early model is espilon
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(a) (b)

Figure 1: (a) An imprecise terrain. (b) A possible realization of the real terrain.

geometry, introduced by Guibas et al. [12]: here the input is a set of points, but each point has
an imprecision radius of ε. Abellanas et al. [1] study the tolerance of a geometric structure:
the largest perturbation of the vertices such that the combinatorial structure remains the same.
Bandyopadhyay and Snoeyink [4] compute the set of “almost-Delaunay simplices,” which are the
tuples of points that could define a Delaunay simplex if the entire point set is perturbed by at most
ε > 0. Khanban and Edalat [15] develop a theory of computing partial structures on imprecise
points, based on answering predicates with three possible answers: yes, no, or maybe. Löffler and
Van Kreveld [20] consider the problem of determining the smallest and largest possible values for
several geometric extent measures—such as the diameter or convex hull area—of a set of imprecise
points.

More specifically focussed on imprecision in terrain data, Gray and Evans [11] propose a model
where an interval of possible heights is associated with every vertex of the triangulation. Fig-
ure 1 shows an example of an imprecise terrain, and a possible realization of the real terrain.
Kholondyrev and Evans [16] also study this model. Silveira and Van Oostrum [25] also allow
moving vertices of a TIN up and down to remove local minima, but do not assume bounded
intervals.

In this paper we use the same model as in [11, 16]; each vertex has a height interval. This creates
some freedom in the terrain: the real terrain is unknown, and any choice of a height for each
vertex, as long as it is within its height interval, leads to a realization of the imprecise terrain.

Considering only the height information as imprecise can be seen as a simplifying assumption, since
it can be argued that (x, y)-data is also inherently imprecise. However, assuming imprecision only
in the height information is reasonable for many applications. Elevation data is often obtained
from a different source than the (x, y)-data. For example, when laser altimetry techniques are
used, the height information is obtained from measuring the time needed for a laser beam sent
from an airplane to touch the Earth’s surface and go back, whereas the (x, y)-data usually comes
from a GPS device located on the airplane. Hence the imprecision in the elevation is completely
independent from the one of the (x, y)-coordinate data. As a second example, consider a terrain
model based on contour maps (that is, isolines). Any point between two consecutive contours has
(rather) exact (x, y) coordinates, whereas the z-coordinate can only be obtained approximately
by considering the heights of the two contours, giving rise to an imprecision interval.

The large number of different realizations of an imprecise terrain leads naturally to the problem
of finding one that is best (i) according to the characteristics of the (real) terrain being modeled,
and (ii) depending on the way the model will be used. As an example, consider a terrain model of
an area that is known to have a smooth topography, like the dunes of some desert. Then based on
the information known about the real terrain, trying to find a realization that is smooth becomes
important. On the other hand, terrain models are often used for terrain analysis, like for water
run-off simulation. When simulating the way water flows through a terrain, artificial pits create
artifacts where water accumulates, affecting the simulation. Therefore for the purpose of using
the model for water run-off simulation, minimizing the number of pits is a criterion of interest.
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In this paper, we study the problem of smoothing imprecise terrains. Many other interesting
criteria to optimize exist, and to our knowledge, almost none have been studied in depth before.
However, before concentrating on the smoothing problem, it is worth noting that we can deal with
the second criterion mentioned, minimizing the number of pits, in an efficient and simple way. A pit
or local minimum is a vertex that has no lower neighbors. If several such vertices are connected, we
consider the whole group as one local minimum. As mentioned before, minimizing the number of
local minima is important for some uses of terrain analysis, in particular for hydrologic applications.
It is easy to see that a realization of an imprecise terrain that minimizes the number of local
minima can be found by beginning with all the vertices as low as possible, and then lifting each
local minimum until it disappears or until it cannot be lifted any further. As we will see soon,
such simple solutions do not seem possible for other criteria like smoothing terrains.

1.2 Smooth terrains

From now on we focus on trying to obtain a smooth terrain, respecting the height intervals. There
are several reasons to be interested in smooth terrains. A first one, already mentioned, is because
some additional information about the topography of the terrain is known (that is, there are not
too many sharp ridges in that area). Other reasons include visualization (smooth shapes usually
look better), compression, and noise reduction. Finally, in terrain classification it is useful to have
a measure of the smoothness of a certain piece of terrain: in an imprecise context, this means we
are interested in tight bounds on the possible smoothness (determined by the smoothest and least
smooth possible terrains that respect the imprecision).

Smoothing of terrains has been previously studied in the context of grid terrains [13, 26], where
techniques from image processing can be applied. Smoothing TINs is a less well-studied topic,
but still some results are known [14, 27]. These techniques aim at smoothing a terrain in general,
trying to preserve the global shape but removing local “noise”. However, there is no guarantee
that in the process no important features of the terrain where removed.

When imprecision about the terrain is known, it is natural to ask for the smoothest possible terrain
that respects the imprecision intervals. In a TIN, a smooth terrain implies that the spatial angles
between triangle normals are not too large. We can try to find a height value for each vertex,
restricted by the height intervals, such that the resulting terrain minimizes some function of the
spatial angles that models the notion of smoothness, like the largest spatial angle or the sum of
all spatial angles. Measures on spatial angles, in particular the angle between the surface normals
of adjacent triangles, are known to be important for several GIS applications. In particular, they
have been shown to be good for improving the quality of the approximation, for achieving good
slope characteristics and for flow modeling [8, 9, 28].

1.3 1.5-Dimensional terrains

A 1.5D terrain is the lower-dimensional analogue of a 2.5D terrain. It consists of a set of vertices
whose vertical projections lie on a line, and consecutive vertices are linked with edges. In other
words, it is an x-monotone polyline in the plane. Such 1.5D terrains are often studied to simplify
problems on 2.5D terrains, but also have direct applications. Recently they have been studied in
relation to guarding problems [5, 17, 18].

Here we study the smoothing problem on 1.5D terrains. The main reason is that, even though the
2.5D version is clearly more interesting, a simpler model is easier to handle and gives considerable
insight into the difficulties of 2.5D terrains. As will become clear later, this restricted model is still
challenging enough, and hopefully, the results can serve as building blocks for the 2.5D version.
Some more comments on possible extensions are given in Section 8.
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To smooth 1.5D imprecise terrains, we study several measures, but most importantly we try to
minimize the largest turning angle at any vertex of the terrain. This will result in a smooth surface,
without any sharp turns. This measure is discrete in nature; its continuous analogue would be
to fit an x-monotone curve through the intervals, such that the maximum curvature of the curve
in minimized. This problem is related to e.g. signal processing or non-holonomic robot motion
planning [6]. The main difference is that by studying a discrete measure directly, we obtain a
discrete terrain with provable guarantees, while when translating a continuous curve back to a
discrete one it is not clear what properties will be preserved. It is worth mentioning that several
discrete notions of curvature have been defined for polyhedral surfaces involving angles between
triangles and vertices. Moreover, a notion of concentrated curvature for polygonal lines has been
recently introduced [22], where the curvature at a vertex is defined by its turning angle. We further
note that the discrete nature of these measures allows us to have a non-uniform sampling of the
terrain, with more samples where the terrain is more curved. A consequence of this, though, is
that the solution is not invariant under additional measurements.

1.4 Contribution and structure

This paper studies five different problems. The most interesting one, and also the most involved
one, is minimizing the largest turning angle. This problem turns out to be hard from an algebraic
point of view, therefore we propose an (additive) ε-approximation algorithm, for any ε > 0, which
runs in linear time. We also study its counterpart to produce rough terrains: maximizing the
smallest turning angle. Such a measure could be useful for modeling terrains that are known
to have rough topography, but more importantly to get an idea of the worst possible case, if
smoothness is the goal. For this problem we also give an ε-approximation algorithm, which is based
on similar properties as the one for minimizing the largest angle. It is worth mentioning that even
though the analysis of these two algorithms is rather involved, the algorithms themselves do not
require any complicated technique or data structure, and should be relatively easy to implement
in practice.

Since we are not able to solve exactly the optimization of the worst angle, we also study three other
measures which also reflect the idea of smoothness (or roughness), but can be optimized exactly.
Closely related to optimizing the worst (maximum/minimum) angle, we consider minimizing (or
maximizing) the total turning angle. This is another natural criterion that deals with turning
angles, which has been studied before in the context of bicriteria path problems [2]. Moreover,
we also consider minimizing the maximum slope change of the edges. This also results in smooth
terrains, although this measure behaves differently than the ones about angles. In particular,
when edges can be very steep, the slopes grow towards infinity, and a small change in the turning
angle at one of the vertices of such an edge can result in a huge change in the slope. Despite this,
in some situations, for example when edges are known to have gentle slopes or when we want to
discourage steep edges, such an alternative measure can be useful. For these three measures we
give exact algorithms. The first two, for optimizing the total turning angle, run in linear time,
whereas the third one, for minimizing the worst slope change, runs in quadratic time.

This paper is structured as follows. We begin in Section 2 by introducing some definitions and
making some observations about 1.5D terrains. In Section 3 we present our main result: an ε-
approximation algorithm to minimize the largest turning angle. Then, in Section 4 we study its
counterpart to maximize the smallest turning angle. The next three sections are devoted to other
related measures that can be optimized exactly. Section 5 deals with minimizing the sum of the
turning angles of the terrain, and Section 6 with the maximization of the sum of turning angles.
In Section 7 the goal is to minimize the maximum slope change. Finally, in Section 8 we give some
conclusions and discuss directions for further research.
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Figure 2: (a) An imprecise, 1.5D terrain. (b) A possible realization of the terrain, with the largest
turning angle α highlighted in gray.

2 Preliminaries

In this section we introduce imprecise 1.5D terrains more formally, together with a number of def-
initions and concepts, most of them rather intuitive, which will be used throughout the remainder
of the paper.

As mentioned in the introduction, a 1.5D terrain is an x-monotone polyline with n vertices. An
imprecise 1.5D terrain is a 1.5D terrain with a y-interval at each vertex rather than a fixed
y-coordinate. More formally, an (imprecise) terrain T is given by a sequence of n intervals
{I1, I2, · · · , In}. Each interval Ii has an x coordinate xi (with xi < xj if i < j), and a closed
interval of possible y coordinates. When, in addition to an imprecise terrain, we are given a
sequence of n y-coordinates, one for each interval, we have a realization of the terrain. Each
y-coordinate must be within its corresponding interval.

A realization of a terrain induces an x-monotone polyline with n vertices, with one vertex per
interval. The vertex corresponding to interval Ii is denoted vi, and has coordinates (xi, yi). See
Figure 2. In the discussion of the algorithms below, we sometimes treat realizations of 1.5D terrains
directly as x-monotone polylines. Similarly, we sometimes refer, with some abuse of notation, to
the vertices and edges of the realization. In this context, we call a vertex left-turning when this
polyline, seen from left to right, turns to the left (upwards). Similarly, we call the vertex right-
turning if it turns to the right (downwards), and straight if it does not change direction. We call an
edge left-turning if both its endpoints are left-turning vertices, right-turning if both its endpoints
are right-turning, or a saddle edge if one of its endpoints is left-turning and the other is right-
turning. In other words, a saddle edge is the last edge of a sequence of consecutive left-turning
edges, and – at the same time – the first edge of a sequence of right-turning edges (or vice versa).
The two endpoints of a saddle edge are called saddle vertices. The notion of saddle edge can be
generalized to a sequence of edges. A set of consecutive edges that are on a straight line with a
left-turning first vertex and a right-turning last vertex (or vice versa) is called a saddle group.

When looking at a realization of an imprecise terrain, it will be useful to distinguish between two
types of vertices: external and internal. We say that a vertex is external if it lies on one of the
endpoints of its imprecision interval, and internal otherwise.

The external vertices of a realization partition it into a sequence of chains: each chain starts at
an external vertex, then goes through a (possibly empty) sequence of internal vertices, and finally
ends at an external vertex again (see Figure 3(a)). The leftmost and rightmost chains might be
only half-chains if the leftmost or rightmost vertices of the realization are not external. Chains
can be further subdivided into subchains: a subchain consists of only left-turning or right-turning
vertices (see Figure 3(b)). Subchains are connected by saddle edges into chains, and chains are
connected by shared vertices into the final realization.

Finally, we note that for brevity, and when the context makes it clear, we will sometimes use
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Figure 3: (a) Subdivision of a realization of terrain into chains {C1, · · · , C4} by external vertices
(white circles). (b) Division of chains into subchains. Consecutive subchains in the same chain
share a saddle edge.

terrain to refer to a realization of an imprecise terrain.

3 Minimizing the largest turning angle

In this section we consider the problem of minimizing the largest angle in the terrain. In fact,
we will present an algorithm for a somewhat more general problem. Let T be a realization of
the terrain. We denote by V (T ) the sorted vector of turning angles at the vertices of T . Angles
along the vector occur from largest (first position) to smallest (last position). We will find the
terrain T with the lexicographically smallest vector V (T ), that is, we will minimize the complete
vector of turning angles V (T ), in lexicographical order. Figure 4 shows an example of a path that
minimizes V (T ). It can be shown that the solution is unique, unless it consists of all vertices on
a straight line.

However, computing the optimal terrain exactly is difficult due to algebraic reasons. To illustrate
the difficulty, consider the following simpler subproblem. Suppose we have a part of the optimal
solution that consists of several consecutive left-turning vertices with angles of θ (for θ ≤ π/2).
Suppose that the leftmost point is fixed at the origin (and the previous point was on the negative
x-axis), and the intervals are all vertical lines with x-coordinates xi for i = 1, 2, . . .. Then the
height yi at which the line at xi is crossed is a function of θ with the following shape:

yi(θ) = yi−1(θ) + (xi − xi−1) tan(iθ) =
i∑

j=1

(xj − xj−1) tan(jθ) (∗)

Figure 5 illustrates the situation. Even when the endpoint of such a chain is known, we need to
compute the inverse function θ(yi) to find the best possible angle. This is not possible under any
reasonable model of computation, like the real-RAM model, standard in computational geometry.

Figure 4: Optimal terrain for min max angle.
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Figure 5: A simple case of our problem where the turn at each vertex is exactly θ. Even for this
restricted case, algebraic difficulties arise.

We note that this type of algebraic hardness is present in several other computational geometry
problems, especially in problems related to facility location [3].

Therefore, we present an algorithm to compute an approximate solution. A solution T is said
to be an ε-approximation of the optimal solution T ∗ if its vector of angles V is at most ε larger
at every position, that is, if Vi(T ) ≤ Vi(T ∗) + ε. Our solution will incorporate approximation in
different stages; for this purpose we define a smaller value ε′ = ε/4. We also define k = d π

2ε′ e; the
algorithm relies on dividing the possible directions of edges in the terrain into k sectors, and on
subdividing the terrain into independent pieces of length O(k).

First, we discuss several properties of optimal terrains that we will need later. Then we present
an algorithm for approximating a specific simplified problem. Finally, we show how to construct
an algorithm for the original problem using this subroutine, and argue that this approximates the
optimum within an error of ε. The final algorithm will run in O(nk4 log k) time.

We define a subproblem S(pi, di, pj , dj) on two fixed points, pi on the ith interval, and pj on the
jth interval (in fact, they will always lie on endpoints of their intervals), and two cones, di and
dj , which bound the possible directions in which the solution may leave pi and enter pj . Within
this, we want to compute the optimal terrain T ∗(pi, di, pj , dj) that leaves pi in a direction from
di, enters pj in a direction from dj , and otherwise optimizes the sorted vector of angles.

If T ∗(pi, di, pj , dj) has no external vertices other than pi and pj , we call it free. In this case we also
call the subproblem S(pi, di, pj , dj) free. We will show later, in Lemma 3, that if a subproblem
is free, we can ignore the imprecision intervals of its vertices, since the solution to the same
subproblem with vertical lines instead of bounded intervals is the same. Free subproblems play
an important role in our algorithm, and we will show later that we only have to be able to solve
those. Unfortunately, we will not be able to solve free problems, but we will be able to solve
δ-free problems instead. We call a subproblem δ-free if it is free and if any δ-approximation of the
optimal solution is also free. This further step will finally allow us to show that we can obtain an
ε-approximation of the optimal terrain.

3.1 Properties of chains

Recall that chains are parts of a realization between external vertices. Let T ∗ be an optimal
realization of an imprecise terrain, possibly with extra conditions on the starting and ending
angles (such as defined by subproblems). Any terrain, in particular T ∗, is composed of chains. In
this subsection we investigate some properties of chains of the optimal terrain. In what follows,
C∗ denotes some chain in T ∗.

We begin by showing that chains of T ∗ cannot have many bends, but they are what we can call
S-shaped.
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Figure 6: Moving the gray vertices upwards together does not increase any turning angle.

Lemma 1 C∗ has at most two subchains.

Proof: Suppose that the direction of curvature changes more than once along a chain. Because
C∗ is a chain, all its vertices (except for the first and last one) are allowed to move in either
direction. Then take a part of consecutive vertices that all bend left (resp. right), while the
neighbors bend right (resp. left). In Figure 6, such a part is marked by gray vertices. If we move
this part as a whole up (resp. down), the only turning angles that change are the ones at the
outermost vertices of this part and their neighbors (that is, the saddle vertices). But clearly all
these angles only become smaller. This contradicts the assumption that C∗ was part of the terrain
with the optimal vector of turning angles. £

Due to Lemma 1, we can see that every optimal chain has at most one saddle edge. Next, we
show that all the vertices of an optimal chain, except possibly for one of the saddle vertices, have
the same turning angle. For this we introduce the concept of morphing a chain. We say a chain
C can be morphed into another chain C ′, if there exists a continuous transformation of C into C ′

such that the values in V (C) only increase.

Lemma 2 All vertices of C∗ have the same turning angle, except possibly for one of the saddle
vertices, which can have a smaller angle.

Proof: Recall that all vertices are internal, so we can move them both up and down a little bit.
We will show that if the lemma is false, we can move some vertices over an infinitesimally small
amount such that the value of the solution decreases. First we will show that each subchain only
has vertices with the same turning angle, except for the saddle vertices which may have a smaller
angle.

Let P ∗ be such a subchain. Suppose that not all vertices have the same turning angle, and let θ
be the largest turning angle that occurs on P ∗. Then there must exist a vertex v that is not a
saddle vertex and that has an angle smaller than θ, and at least one neighbor w with an angle of
θ. If v is left-turning, then so are its neighbors (since it is not a saddle vertex), so we can move
v down by a small amount, which makes its angle worse but the angles of its neighbors better.
Now w has a smaller angle, so the number of vertices with angle θ has decreased. Therefore the
lexicographical value of P ∗ has decreased, which contradicts its optimality. Symmetrically, if v is
right-turning, we can move it upwards a little bit.

Now suppose that C∗ has two subchains with different turning angles: assume without loss of
generality that it first has a left-turning subchain with angles of θ, and then a right-turning
subchain with angles of φ < θ. If we decrease the turning angle of the first chain a little bit (by
moving vertices down), but keeping the first two vertices of the subchain (the external vertex and
the first internal vertex) where they are, the last vertex of the subchain (the saddle vertex) will
move downwards. However, if we increase the turning angle of the second chain a little bit (also
by moving vertices down), keeping the last two vertices of the subchain where they are, the first
vertex of the subchain (the other saddle vertex) will also move downwards. We can balance the
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changes so that the turning angles at the saddle vertices do not change. However, we decreased
the worst turning angle of C∗, which contradicts its optimality.

Finally, suppose both saddle vertices have a turning angle smaller than θ. Then we can decrease
the turning angle of both subchains, and the saddle vertices will move away from each other,
increasing their turning angles until one of them becomes θ too, again contradicting optimality.
£

As a direct consequence of the arguments described in the proof, we can establish the following
corollary.

Corollary 1 Any chain C can be morphed into the optimal chain C∗

Proof: By Lemma 2, we can morph P into another path P ′ such that P ′ is better than P , but
none of the vertices have moved more than an arbitrarily small distance δ. We can again keep
deforming it until all angles are the same. Since we are decreasing the vector of angles all the
time, this process will terminate in a unique situation: that of P ∗. £

Another observation we can make is that the shape of C∗ does not depend on the intervals it goes
through, except for the first and last one.

Lemma 3 Given fixed directions for the first and last edges of a chain C∗, if we replace the
imprecision intervals of the internal vertices of C∗ by vertical lines (that is, if we allow any y-
coordinate for each vertex), then C∗ is still the optimal chain.

Proof: Suppose all internal intervals are infinite. Let P ∗ be the optimal path considering infinite
intervals. Now let P be any other path. If P has more than 2 subchains, we can take any subchain
other than the first and last one, and move it upwards or downwards as in Lemma 1. We can
continue to do so this until the subchain is reduced to a line segment tangent to its neighboring
subchains. Eventually, only 2 subchains will be left.

Now, by Corollary 1, we can morph P into P ∗. To prove the lemma, suppose that C∗ is different
from P ∗, and consider the original imprecision intervals again. In this case, let P = C∗. The only
reason why we would not be able to morph it into P ∗, is that at some point a vertex cannot move
any further. But this only happens when it is on an endpoint of its imprecision interval, which
contradicts the fact that C∗ is a chain, because a chain has only internal vertices (except for its
endpoints). £

Another observation we can make is related to the approximation setting we are in. It states that
any long chain can be replaced by a number of shorter chains, without worsening the vector of
turning angles too much.

Lemma 4 Suppose C∗ consists of more than 3k internal vertices. Then there exists a sequence of
j chains C1, C2, . . . , Cj such that each Ci has at most 2k vertices, C1 starts at the same external
vertex and in the same direction as C∗ and Cj ends at the same external vertex and in the same
direction as C∗, such that the vector of angles V (C1 ∪ C2 ∪ . . . ∪ Cj) is at most ε worse than
V (C∗).

Proof: Take a stretch of the optimal solution of at least 3k internal vertices. The angle at these
vertices must be less than ε, because k = d 2π

ε e. Now we will construct a different piece of the
solution, with the same beginning and end as this stretch, with only angles of at most ε, which
touches an endpoint of an interval. Then we can replace the original stretch by this new piece and
no angle has increased by more than ε.

To define this new piece, we start at the left starting position, and make a right-turn of ε at each
new segment. After at most k segments, the direction of the terrain will be less than ε from going
vertically down. In the same way, going from right to left, we start at the right starting position

9



(a) (b)

Figure 7: (a) The optimal solution. (b) An ε-approximation. The middle part can be moved down
as far as we want, since the turning angles at the saddles can never become worse than ε.

and make a left-turn of ε at each new segment, until also this part of the terrain goes almost
vertically down. Then, the middle part has at least k segments left, which means we can make a
complete turn from going vertically down to going vertically up. We call this new chain C.

If P completely stays within all imprecision intervals, then we move this middle part of the terrain
down until it hits an endpoint. No matter how far this is, the turning angles will stay less than
ε. Figure 7 illustrates the optimal terrain and the new approximate terrain. On the other hand,
if C does not stay within all intervals, we can start morphing it back to C∗, until all vertices are
within their intervals.

The procedure may need to be applied several times, every time splitting a chain into at least two
new chains, until all of them have at most 3k internal vertices. £

3.2 Solving the subproblems

We now discuss how to solve the subproblems. Recall that a subproblem S(pi, di, pj , dj) is specified
by two fixed points pi and pj , on endpoints of the ith and jth intervals, respectively, and two
direction cones di and dj , which bound the possible directions in which the solution may leave pi

and enter pj . See Figure 8. Moreover, the properties from the previous section allow us to assume
that the subproblem is free.

pi

pjdi

dj

(a)

pi

pjdi

dj

(b)

Figure 8: (a) A subproblem S(pi, di, pj , dj). (b) The optimal solution.
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Figure 9: Horns for two values of θ. (a) This value of θ is not feasible. (b) This value of θ is
feasible. The dashed line shows the inner tangent, which, together with part of the inner curves,
gives a terrain with largest angle θ.

Because of the algebraic difficulties described in the beginning of this section, we cannot solve
a subproblem optimally. However, we can approximate it arbitrarily well. We will present a δ-
approximation algorithm for free subproblems (where the approximation is in the additive vector-
of-angles sense, for any δ, independent of ε), which runs in O((j − i) log 1

δ ) time. The solution
relies on a binary search on the worst angle, and on the following decision algorithm.

Given a value θ, we ask the decision question: is there a solution terrain T for this subproblem
that uses only angles of θ or less? To decide this, we proceed as follows. First we observe that the
optimal solution has an S-shape (by Lemma 1). This means that it has only two subchains. Note
that this holds because we assumed that the subproblem was free, therefore its optimal solution
consists of a single chain.

If possible, we will construct a solution that has this shape, and consists of a curve from pi and
a curve from pj with consecutive angles of θ, and a piece of a straight line to connect them. We
can choose whether the terrain starting from pi turns left or right, and the same for pj , resulting
in four different combinations. We will test them all.

For each combination, we still have freedom to choose in which direction (from the cone di) we
will leave pi. We will take the two directions that define the cone (the ones with smallest and
largest slope inside the cone), and for each of them, we will start making turns of exactly θ. This
results in two curves, also polylines, with turning angles of θ at each vertex. Note that any other
starting direction will produce a polyline contained in the area between the other two. We call
this area a horn. Symmetrically, we also define a horn that starts at pj and grows from right to
left. See Figure 9 for examples for two different values of θ.

To test feasibility, consider the inner curves of both horns. If they intersect, θ is not feasible. If
not, we compute their inner tangent. The two curves have two bitangents; we use the one with
tangent points closest to pi and pj , see Figure 9. If this tangent stays within both horns, θ is
feasible. If not, it is not feasible (we test it for all configurations — left/right turning combination
— and if any is feasible, θ is feasible). The reason is that the tangent touches the curves at
vertices, thus it directly gives a correct solution. On the other hand, if there exists a solution with
worst angle θ, then we will find it, since there will always be a solution with this shape. Define
the shortest θ-terrain as the shortest terrain with worst turning angle θ. Then this terrain will
make turning angles of exactly θ at its ends, and have a straight part in the middle.

It is important to note that even though the subproblem we are solving (and therefore its optimal
solution) is free, this does not guarantee that the approximate solution we compute stays within
the imprecision intervals. In other words, the returned solution might be invalid. Note, however,
that for a δ-free problem, our algorithm is guaranteed to produce a valid solution.
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Lemma 5 Given a free subproblem S(pi, di, pj , dj), its optimal solution T ∗(pi, di, pj , dj) can be
approximated within a factor δ in O((j − i) log 1

δ ) time.

Proof: By Lemma 2, all turning angles in the optimal solution T ∗ are equal. So we can do a
binary search on that angle. For each value of θ, we check whether it is feasible in O(m) time by
applying the decision algorithm described above. If so, we try decreasing θ, and if not, we have to
increase it. Once the difference between the last infeasible and feasible angles becomes less than
δ, we stop, and we report a terrain with this angle as produced by the algorithm. £

3.3 Main algorithm

Now we are ready to describe the algorithm for the original problem. The algorithm itself is
simple; the correctness analysis is more involved. Recall that k = d π

2ε′ e.
Each subproblem S(pi, di, pj , dj) is defined on two points and two directions. Consider all sub-
problems where j − i ≤ 3k. There are O(k3n) such problems, since there are n possible choices
for i, 3k possible choices for j, 2 possible choices for both pi and pj (each can be either at the top
or at the bottom of its interval), and k possible choices for both di and dj . By Lemma 5, each
subproblem can be approximated within an error of δ in O(k log 1

δ ) time, because j − i ≤ 3k. We
approximate all subproblems within a factor of δ = O(ε2) (details on this are given in the next
subsection), so we spend O(nk4 log k) in total. Next, we discard any solutions that do not respect
the imprecision intervals (we establish that those subproblems are not δ-free). Then we invoke
dynamic programming to compute the best concatenation of subproblems, processing them from
left to right and computing for each position (i, pi, di) the best solution so far by minimizing over
all possible placements of the previous external vertex. We claim that the resulting terrain is an
ε-approximation for the original problem; the analysis is done in the next subsection.

One complication occurs because the optimal terrain does not need to have external first and last
vertices. In particular, if j < 3k, it is possible that there is no previous external interval. We
handle this situation as a special case by computing the optimal half-chain up to j. A half-chain
is similar to a chain, with the only difference that its first or last vertex can be internal. In the
same way, we need to do something at the other end of the terrain. We explain here how to
compute an optimal half-chain between I1 and Ij . The last half-chain can be computed similarly.
In particular, the following lemma can also be proved for the last chain in a symmetric way.

Lemma 6 Let T ∗ be an optimal terrain, and let vj be its first (leftmost) external vertex. If v1 is
not external, then all the vertices of T ∗ between v1 and vj lie on a straight line.

Proof: Consider an optimal terrain and suppose no vertex between I1 and Ij−1 is external.
Assume that v2 is left-turning (resp. right-turning). Then we can move v1 down (resp. up) until
the angle at v2 is zero, and improve the angle vector, contradicting the optimality of the terrain.
Note that this can always be done unless while moving v1 down, it becomes external, but that
would reach a contradiction with our starting hypothesis. Therefore the angle at v2 must be zero,
and the three first vertices must be collinear. Now we can treat them as one single edge from v1

to v3, and apply the same reasoning again. Proceeding in this way, we conclude that, if there are
no external vertices until Ij , then all the vertices up to vj must be collinear. £

In order to solve a subproblem from I1 (internal) to vj , with ending direction cone dj , the algorithm
will check if there exists a line from vj that hits I1 and stays within all intermediate intervals. If
that is not the case, the subproblem can be discarded because we know from the previous lemma
that there must be some other subproblem that contains the line in the optimal solution. Checking
if such a line exists can be done in linear time by starting with the ray from vj with minimum
slope that dj allows. Then we go through the intervals and increase the slope of the ray as to
make it stab all the intervals, if possible.
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Figure 10: Series of approximations used to obtain an ε-approximation, by taking ε = ε′/4.

Note that in this special case of the first half-chain of the terrain, a subproblem S(p1, d1, pj , dj)
has a third option for the position of p1: it can be internal. In that case d1 will be undefined. A
symmetric situation applies to S(pi, di, pn, dn), the last half-chain of the terrain.

3.4 Correctness analysis

Let T ∗ be the optimal terrain. We will argue the existence of several other terrains, each of which
is a close approximation of T ∗ and has certain properties. Eventually, we will establish that one
of the terrains in the class that we encounter in the algorithm, is also a close approximation of
T ∗. A summary of the different stages of the approximation is depicted in Figure 10.

By Lemma 4, we know that there exists a different terrain TS that approximates T ∗ within ε′,
such that all chains of TS are at most 3k long. Let T ∗S be the optimal terrain among all terrains
for which all chains are at most 3k long. Clearly, T ∗S also approximates T ∗ within ε′.

The terrain T ∗S can be partitioned into short chains. For each external vertex in T ∗S , we divide its
circle of directions into 2k cones, and we locate its two outgoing edges in this cone set. We fix
these cones. Observe that any terrain TC that respects these cones will be within an error of ε′ at
these vertices. Therefore, if we take the terrain apart into a sequence of independent subproblems,
each restricted by two vertices and cones, and we solve each subproblem optimally, this will result
in a terrain T ∗C that is an ε′-approximation of T ∗S . These optimal subsolutions may again have
external vertices at places where T ∗S had none. In this case, we again fix these vertices and their
cones, and subdivide the terrain further. Each vertex gets fixed at most once, and in the other
steps can only get a better turning angle, so the terrain remains an ε′-approximation of T ∗S .

Eventually we reach a terrain TF with the property that TF is a concatenation of smaller sub-
problems, each of length at most 3k, such that each subproblem, defined on a pair of vertices and
a pair of directions, is optimal and free. Furthermore, TF is within ε′ from T ∗S . Let T ∗F be the
optimal terrain with these properties. Then also T ∗F is within ε′ from T ∗S , and therefore within
2ε′ from T ∗. Next, we will show that there exists a terrain Tδ that is a concatenation of δ-free
subproblems, which approximates T ∗F within 2ε′. Our algorithm encounters and approximately
solves all δ-free subproblems, so it will compute the optimal terrain T ∗δ of this form. T ∗δ then also
approximates T ∗F with 2ε′, and therefore T ∗ within ε.

Next, let S(pi, di, pj , dj) be a free subproblem, and let R∗ be its optimal solution. We define the
error of a vertex in a terrain as the difference between its turning angle and the corresponding
turning angle in T ∗. We define the error vector e(pi, di, pj , dj) as the sorted vector of errors in R∗.

Lemma 7 If a free subproblem S(pi, di, pj , dj) has an error e, it is either δ-free, or there exists a
sequence of smaller subproblems S(pi0 , di0 , pi1 , di1), S(pi1 , di1 , pi2 , di2), . . . , S(pih−1 , dih−1 , pih

, dih
),

where i0 = i and ih = j, which are all free and have errors of at most e + δ, and such that the
turning angles of their external vertices have an error of at most e + ε′.

Proof: If S(pi, di, pj , dj) is δ-free, the Lemma is clearly true. If not, there must exist a solution
R that is a δ-approximation of R∗, such that some vertex vh of R lies outside its imprecision
interval. We also know that R∗ respects the imprecision intervals, and has only interior vertices,
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Figure 11: Optimal terrain for max min angle.

since the subproblem is free. Now, by Corollary 1, we can continuously transform R towards R∗,
while the solution continuously improves. At some point, we will reach a terrain R′ that goes
through an endpoint ph of the hth interval. If R misses any other intervals, we just continue
the transformation until the last interval is hit. At this point, fix the cones in which R′ enters
and leaves ph. Let R′∗ be the solution we get from concatenating the optimal solutions of the
subproblems from i to h and from h to j. Then R′∗ is at least as good as R′, except at vertex vh,
where it might be ε′ worse. This means that R′∗ is a δ-approximation for R∗ except at vh. Now,
if the subproblems S(pi, di, ph, dh) and S(ph, dh, pj , dj) are both free, we are done. Otherwise, we
can split them into free subproblems again, possibly losing ε′ at each vertex where the split takes
place. £

It now follows that we can approximate the optimal terrain by considering only δ-free subproblems.

Corollary 2 If a free subproblem S(pi, di, pj , dj) of length m has an error e, it is either δ-
free, or there exists a sequence of smaller subproblems S(pi0 , di0 , pi1 , di1), S(pi1 , di1 , pi2 , di2), . . . ,
S(pih−1 , dih−1 , pih

, dih
), where i0 = i and ih = j, that are all δ-free and have errors of e+mδ, and

such that the turning angles of their external vertices have an error of at most e + (m− 1)δ + ε′.

Proof: By Lemma 7, we can split free subproblem that are not δ-free into smaller free subprob-
lems, such that their errors increase by at most δ. If these smaller subproblems are again not
δ-free, we can apply the lemma on these problems again. This iterates until all our subproblems
are δ-free, since the subproblems always become shorter and a subproblem of length two (without
any intermediate intervals) is trivially δ-free. In each iteration, the error can increase by at most
δ, and when the terrain is split at a vertex its error can increase by at most ε′. The corollary
follows. £

Now, consider T ∗F . We construct the terrain Tδ by replacing each free subproblem in T ∗F by a
sequence of δ-free subproblems, according to Corollary 2. The errors in Tδ may have gotten at
most 3kδ + ε′ worse than in T ∗F . By setting δ = ε′

3k , we get the approximation factor sought.

Theorem 1 Given an imprecise 1.5D terrain, a realization of the terrain that minimizes the
vector of turning angles lexicographically can be computed approximately within an error of ε in
O( n

ε4 log 1
ε ) time.

4 Maximizing the smallest turning angle

We can also try to maximize the smallest turning angle to try to make the terrain as rough as
possible. Figure 11(a) shows an example. As the figure shows, the optimal solution can use internal
vertices. In fact, there could be multiple consecutive internal vertices, such that they all keep each
other in balance, as in Figure 11(b). As in Section 3, computing the exact placements of the
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vertices of such a chain involves computing the inverse of a function like the one in Equation (∗).
Therefore, we will present an approximation algorithm.

As before, we do not only look at the worst angle in the terrain, but at the complete vector
of turning angles. For a terrain instance T , define V (T ) to be the vector of turning angles in
that instance, sorted from small to large. A solution T is said to be an ε-approximation of the
optimal solution T ∗ if its vector of angles V is at most ε smaller at every position, that is, if
Vi(T ) ≥ Vi(T ∗)− ε.

The main idea of the algorithm is very similar to the one in Section 3. Again, we use a value
ε′ = ε/4 and define k = d π

2ε′ e. We still define subproblems of the form S(pi, di, pj , dj), which we
solve for all combinations where j− i is not too large, and then use dynamic programming to glue
them together. However, several adaptations have to be made, because of the different nature of
the problem.

4.1 Properties of chains

We discuss some important properties of chains. Let T ∗ be the optimal terrain, and C∗ some
chain in T ∗. Some of the lemmata here are very similar to their counterparts in Section 3, but
some of the properties that were true there are not true in this case and vice versa.

Lemma 8 The leftmost and rightmost intervals of T ∗ are external.

Proof: If the leftmost (or rightmost) interval is not external, its vertex can be moved in both
directions, and one of them will necessarily increase the only angle affected by that vertex. There-
fore it can be taken to one of the extremes of its interval, without decreasing the smallest turning
angle. £

Lemma 9 C∗ has at most two subchains.

Proof: This lemma is the similar to Lemma 1, and almost the same proof still holds. Suppose
that the direction of curvature changes more than once along a chain, and all vertices are allowed
to move in either direction. Then take a part of consecutive vertices that all bend left (resp. right),
while the neighbors bend right (resp. left). In Figure 6, such a part is marked by gray vertices. If
we move this part as a whole down (resp. up), the only turning angles that change are the ones
at the outermost vertices of this part and their neighbors. But clearly, if we move the part in the
right direction, these angles only become larger. This contradicts the assumption that C∗ was
part of the terrain with the optimal vector of turning angles. £

Note that Lemma 9 implies that a chain can have at most one saddle edge.

Lemma 10 All vertices of C∗ have the same turning angle, except possibly for one of the saddle
vertices, which can have a larger angle.

Proof: All vertices are internal, so we can move them up or down by a small amount. We will
show that if the lemma is false, we can move some vertices an infinitesimally small amount such
that the value of the solution increases. First we will show that each subchain only has vertices
with the same turning angle, except for one of the saddle vertices which may have a larger angle.

Let P ∗ be such a subchain. Suppose that not all vertices have the same turning angle, and let θ be
the smallest turning angle that occurs in P ∗. Then there must exist a vertex v that is not a saddle
vertex and that has an angle larger than θ, and at least one neighbor w with an angle of θ. If v is
left-turning, then so are its neighbors (since it is not a saddle vertex), so we can move v up by a
small amount, which makes its angle smaller but the angles of its neighbors larger. Now w has a
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Figure 12: (a) Example of a chain comprised of two subchains, where e is the saddle edge.
Black/white vertices have turning exactly α0, while gray vertices have a larger angle. (b) Ex-
ample in which the saddle edge e is the first edge of the chain, forcing x2 to have an angle larger
than the one of the other vertices (in an optimal solution).

larger angle, so the number of vertices with angle θ has decreased. Therefore the lexicographical
value of P ∗ has increased, which contradicts its optimality. Symmetrically, if v is right-turning,
we can move it downwards a little bit.

Now suppose that C∗ has two subchains with different turning angles: say without loss of generality
that it first has a left-turning subchain with angles of θ, and then a right-turning subchain with
angles of φ > θ. If we increase the turning angle of the first chain a little bit, but keep the first
vertex of the subchain (the external vertex) where it is, the last vertex of the subchain (the saddle
vertex) will move upwards. However, if we decrease the turning angle of the second chain a little
bit, keeping the last vertex of the subchain (the external vertex) where it is, the first vertex of the
subchain (the other saddle vertex) will also move upwards. If we balance the changes so that the
saddle vertices both move up by the same amount, the turning angles at the saddle vertices do
not change.

Notice that the only vertices that might not be possible to move up (or down, in the case of a
right-turning chain) are saddle vertices, and, by Lemma 8, there can be at most one saddle edge in
the chain. Typically, such an edge will connect a left-turning subchain to a right-turning subchain
(or the other way around). However, it could happen that the saddle edge is the first or last edge
of the chain, in which case one of the saddle vertices will not be able to be moved up and can
finish with an angle larger than the other vertices. See Figure 12 for an example. £

Also, we can again formulate a corollary analogous to Corollary 1.

Corollary 3 Any chain C can be morphed into the optimal chain C∗

Lemma 11 Suppose C∗ consists of more than 2k vertices. Then there is another solution C that
starts and ends in the same location and direction as C∗, has only external vertices, and such that
C is an ε′-approximation of C∗.

Proof: We know from Lemma 9 that C∗ contains at most 2 subchains. By Lemma 10, we know
that all vertices have the same turning angle θ, except for at most one saddle vertex v that may
have a turning angle of φ > θ. But since the terrain is x-monotone, in total, the turning angle of
each subchain cannot exceed π. Therefore, the turning angle at each vertex (that is, θ) is at most
π
k < ε′. Clearly, the turning angles in C cannot be smaller than 0, so are always in the correct
range for an ε-approximation, except possibly for vertex v. However, if we maximize the angle
at v by moving it up as far as possible and its neighbors down, or the other way around, it will
clearly have an angle of at least φ. Then we can place all remaining vertices anywhere we like. £
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Figure 13: (a) This value of θ is not feasible. (b) This value of θ is feasible. The dashed line shows
a connection between two consecutive vertices of the two outer chains, which realizes a terrain
with smallest angle θ.

Finally, for this problem we need to introduce one more concept. A realization of an imprecise
terrain is said to be locally optimal if its smallest angle cannot be increased by moving a single
vertex over an infinitesimally small distance. The algorithm described in the next section will
compute such a locally optimal solution.

4.2 Solving the subproblems

Let S(pi, di, pj , dj) be as before: a subproblem defined on two fixed external vertices, and two
cones of directions. We will compute a locally optimal solution to the subproblem from Ii to Ij ,
under the assumption that all the intervals between Ii and Ij are internal.

When solving the subproblem, we ignore the imprecision intervals of the internal vertices. By
Lemma 10, the shape of the optimal solution inside a chain can consist of at most two subchains.
In order to find this solution after ignoring the intervals, however, we have to explicitly specify
that we only allow two subchains (otherwise, we would return a solution that zigzags up and down
arbitrarily far, yielding a turning angle of almost 180◦ at each vertex).

Again, because of algebraic difficulties we can only compute approximate solutions to the sub-
problems. We present a δ-approximation algorithm that runs in O((j − i) log 1

δ ) time.

Given a value θ, we ask the decision question: is there a solution terrain T , consisting of at most
two subchains, for this subproblem that uses only angles of θ or more? Now the decision algorithm
is very similar to the one in Section 3.2. We can choose whether the terrain starting from pi turns
left or right, and the same for pj , resulting in four different combinations. We test them all. For
each combination, we compute a subinterval of every vertical line that we can reach by making
turns of θ. Figure 13 shows two examples of the same subproblem for different values of θ.

To test feasibility, consider the outer curves of both horns. If they do not intersect, θ is not
feasible. If they do, we take two consecutive vertices in their common intersection, and connect
them. The terrain determined by the parts of the outer curves of the horns and this new saddle
edge has only turning angles of θ or more, and has exactly two subchains (one of which may in
fact be only a single edge, in some cases).

Lemma 12 Given a free subproblem S(pi, di, pj , dj), we can approximate the locally optimal so-
lution T ∗(pi, di, pj , dj) of this problem within a factor delta in O((j − i) log 1

δ ) time.
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4.3 Main algorithm

With these ingredients, the algorithm itself works exactly the same as in Section 3, except that
here we need no special treatment of the ends of the terrain, because of Lemma 8.

Each subproblem S(pi, di, pj , dj) is defined on two points and two directions. We now consider all
O(k3n) subproblems where j−i ≤ 2k. By Lemma 12, each subproblem can be approximated within
an error of δ in O(k log 1

δ ) time. We approximate all subproblems within a factor of δ = O(ε2), so
we spend O(nk4 log k) in total.

We discard any solutions that do not respect the imprecision intervals. Note that the solutions
computed for the subproblems may not return the best realization of the subproblem between
Ii and Ij , because it returns a locally optimal solution that does not use external vertices. This
means that it will be an optimal solution only if the optimal solution for that subproblem does
not use external vertices either. However, if the optimal solution really does use external vertices,
it will be found at some later step of the algorithm.

After solving all subproblems, we invoke dynamic programming again to compute the best con-
catenation of subproblems, processing them from left to right and computing for each position
(i, pi, di) the best solution so far by minimizing over all possible placements of the previous external
vertex.

4.4 Correctness analysis

Let T ∗ be the optimal terrain. As before, we will argue the existence of several other terrains,
each of which is a close approximation of T ∗ and has certain properties. By Lemma 11, we know
that there exists a different terrain TS that approximates T ∗ within ε′, such that all chains of TS

are at most 2k long. Let T ∗S be the optimal terrain among all terrains for which all chains are at
most 2k long. Then T ∗S is an ε′-approximation of T ∗.

The terrain T ∗S can be partitioned into short chains. For each external vertex in T ∗S , we divide its
circle of directions into 2k cones, and we locate its two outgoing edges in this cone set. We fix
these cones, and split the problem into subproblems. Let TC be the terrain we get by solving these
subproblems optimally. If TC has new external vertices, repeat. Eventually we reach a terrain TF

with the property that TF is a concatenation of optimally solved independent smaller subproblems
of length at most 2k. Let T ∗F be the optimal such terrain. Then T ∗F is an ε′-approximation of T ∗S .

Next, we will show that there exists a terrain Tδ that is a concatenation of δ-free subproblems,
which approximates T ∗F within 2ε′. Our algorithm encounters and approximately solves all δ-free
subproblems, so it will compute the optimal terrain T ∗δ of this form. T ∗δ then also approximates
T ∗F with 2ε′, and therefore T ∗ within ε. Next, let S(pi, di, pj , dj) be a free subproblem, and let R∗

be its optimal solution.

Note that Lemma 7 and Corollary 2 from Section 3.4 still hold in our current situation without
adaptation. Again, we construct the terrain Tδ by replacing each free subproblem in T ∗F by a
sequence of δ-free subproblems, according to Corollary 2. The errors in Tδ may have gotten at
most 2kδ + ε′ worse than in T ∗F . By setting δ = ε′

2k , we get the approximation factor sought.

Theorem 2 Given an imprecise 1.5D terrain, a realization of the terrain that minimizes the
vector of turning angles lexicographically can be computed approximately within an error of ε in
O( n

ε4 log 1
ε ) time.
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Figure 14: Optimal terrain for min total turning angle.

5 Minimizing the total turning angle

We now study a different measure, related also to smoothness, which can be optimized exactly.
We consider the problem of finding a realization of the imprecise terrain that minimizes the total
turning angle, defined as the sum of the absolute values of the turning angles at each vertex (except
for the first and last one). Given a realization of a terrain, we use ](ei, ej) to denote the total
turning angle between two edges ei and ej . We start by making the following observation.

Observation 1 The total turning angle of a left-turning (or right-turning) path between two ver-
tices depends only on the starting and ending directions, and is the turning angle between them.

In other words, the location of the vertices in between does not matter, as long as they make the
path be left-turning (or right turning). This implies that there will most likely be many equivalent
optimal solutions. An example is shown in Figure 15.

Moreover, the next lemma shows that if the leftmost and rightmost intervals would just be single
points, the shortest path between those points through the corridor between the polylines defined
by the upper and lower endpoints of the intervals (see Figure 16(a)) is an optimal solution.

Lemma 13 Let v1 and vn be the first and last vertices of an imprecise terrain. If the positions of
v1 and vn are fixed, then the shortest path from v1 to vn that stays inside the corridor induced by
the intervals I2 to In−1 minimizes the total turning angle.

Proof: Let ρ denote the shortest path from v1 to vn, as stated in the lemma. Consider the global
shape of ρ. It can be seen as consisting of an alternating sequence of consecutive right-turning

el

er

Figure 15: Illustration for Observation 1. Any right-turning path starting and ending with the
highlighted directions (thick arrows) will have the same total turning angle, namely ](el, er).
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Figure 16: (a) The shortest path (solid) through the corridor between the intervals (shaded)
minimizes the total turning angle when the endpoints are fixed. (b) When the endpoints are not
fixed, the optimal path (dashed) can differ from the shortest path (solid) in the parts from the
first vertex to the leftmost saddle edge (sl), and from the rightmost saddle edge (sr) to the last
vertex.

vertices and consecutive left-turning vertices, connected by saddle edges (if there are saddle groups,
we treat them as one saddle edge each).

The proof is based on observing that the angles between consecutive saddle edges in ρ cannot be
avoided: any path will incur those or worse angles. In other words, these turns (or turns with a
worse angle) are present in any realization of the terrain. The same applies to the angles between
the first vertex and first saddle edge, and between the last saddle edge and the last vertex. Since
the total angular change of ρ is exactly the sum of these angles, it follows that it must be optimal.
Details are given next.

First we observe that since ρ is the shortest path, each of its turns must be at external vertices:
a right turn must lie on the lower endpoint of its interval, and a left turn must lie on the upper
endpoint of its interval, otherwise there would be a shorter path. Now consider a saddle edge
sk = (vi, vi+1), together with the next saddle edge sk+1 = (vj−1, vj). Assume without loss of
generality that sk connects left-turning edges to right turning-edges. Then vi must be at the
upper endpoint of Ii and vi+1 at the lower endpoint of Ii+1.

We know from Observation 1 that any optimal path connecting sk to sk+1 incurs the same angular
change as ρ between these two edges, namely ](sk, sk+1). This is because a path between sk and
sk+1 that is part of an optimal realization cannot have bends between these two saddle edges: we
know from ρ that they can be avoided, and avoiding them would decrease the total turning angle.

It remains to verify that no path that leaves vi or enters vj in a different direction can have better
total angular change between vi and vj . Note that between sk and sk+1 the path is right-turning.
Any change (within the intervals) in the position of vi or vi+1 (that is, moving vi down or vi+1

up) increases the slope of sk, thus also ](sk, sk+1). Symmetrically, any change in the position of
vj−1 or vj decreases the slope of sk+1, increasing ](sk, sk+1).

We conclude that no path can have a total angular change smaller than the one of ρ between vi

and vj . Since this applies to every pair of consecutive saddle vertices (and to the paths between
the first vertex and first saddle edge, and between the last saddle edge and the last vertex), it
follows that any path must have at least the total turning angle of ρ. Therefore ρ has minimum
total angular change. £

When the leftmost and rightmost intervals are not fixed at single points but are intervals, we
need to make one additional observation. If we compute the shortest path from some point on
the leftmost interval to some point on the rightmost interval, it may contain some unnecessary
turns at the ends. We can identify the leftmost and rightmost saddle edges of the path, and note
that the minimum total turning angle would be achieved by just continuing in a straight line from
these segments, towards the leftmost and rightmost intervals —see Figure 16(b)— since then we
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Figure 17: The terrain maximizing the total turning angle.

make no extra turns. However, it can be that this is not possible.

Take the rightmost saddle edge sr (the situation for the leftmost one is symmetric). Ideally, we
would like to replace the last part of the shortest path with the straight line segment extending sr

until the rightmost interval In, avoiding all turns between sr and In. However, this may produce
an invalid realization (violating some intervals), and some turns may be necessary. Observe that
necessary turns will be always in the same direction, because there is no other saddle edge to the
right of sr, hence the remaining edges are all right-turning or all left-turning.

To find the path from sr that minimizes the turning angle we can proceed by starting with an
angle of 0 with respect to sr (that is, starting with a line segment that is an extension of sr). Then
we go through the intervals from sr to In. Every time the current path is below (resp. above) the
current interval, we add the minimum turn needed to make it go through it. Once we reach the
last interval, we know the position of the rightmost vertex, but the path can still be outside the
corridor. To fix this, we do the same as before but going from In to sr, adapting the path when it
goes above (below) the current interval. The resulting path is inside the corridor and minimizes
the total angular change.

As for the running time of the algorithm, the shortest path can be computed in linear time [19].
The adaptations needed to fix the beginning and end of the path, as described in the previous
paragraph, can also be made in linear time. We obtain the following result.

Theorem 3 Given an imprecise 1.5D terrain, a realization of the terrain that minimizes the total
turning angle can be computed in O(n) time.

6 Maximizing the total turning angle

In this section with study another measure related to making the terrain as rough as possible:
maximizing the total turning angle. This measure turns out to be much easier to optimize than
the one considered in Section 4. We make the following simple observation.

Lemma 14 There is always a realization of an imprecise 1.5D terrain that maximizes the total
turning angle using only external vertices.

Proof: If we have a solution that uses some point on the interior of an interval, there is at least
one direction in which we can move the point such that the total turning angle does not decrease:
if it lies on a left-turning or right-turning chain, moving it will not change the total angle at all,
and if it does not, then it is always good to make the turn sharper, since this increases both its
own turning angle and that of (one of) its neighbors. See Figure 17 for an example. £

After making this observation, it is easy to verify that the problem can be solved in linear time.
We simply go over the terrain once, from left to right, and for each segment, defined by the
upper/lower endpoints of two consecutive intervals, we store the optimal solution to the left of
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Figure 18: A simple case of a terrain with constant slope change δ. The resulting function is
simpler than the one of Equation (∗).

that segment that uses it. There are 4n such segments, and computing a value involves matching
it with the two possible stored solutions immediately to the left of it and taking the best one. The
next lemma summarizes the result.

Theorem 4 Given an imprecise 1.5D terrain, a realization of the terrain that maximizes the total
turning angle can be computed in O(n) time.

7 Minimizing the maximum slope change

In Section 3, we gave an approximation algorithm for the problem of minimizing the maximum
turning angle in a realization of an imprecise 1.5D terrain. In this section, we show that we can
give an exact solution if we attempt to minimize the change in slope between successive edges
of a realization, rather than the change in angle between successive edges. The main difference
between the two problems is that the function that we minimize is much simpler in the former
problem than in the latter. This will allow us to give an exact algorithm for this problem.

To illustrate the difference, consider the following simpler subproblem, analogous to the one of
Section 3. Suppose we have a part of the optimal solution that consists of several consecutive
left-turning vertices with constant slope change of δ (for 0 ≤ δ). Suppose that the leftmost point
is fixed at the origin (and the previous point was on the negative x-axis), and the intervals are all
vertical lines with x-coordinates xi (for i = 1, 2, . . .). Figure 18 illustrates the situation.

Then the height yi at which the line at xi is crossed is a function of δ with the following shape:

yi(δ) = yi−1(δ) + (xi − xi−1)iδ = δ

i∑

j=1

(xj − xj−1) · j (∗∗)

Note that, as opposed to the case of Equation (∗), the inverse of Equation (∗∗) can be easily
computed, since the summation is independent of δ.

The broad outline of the technique we use is to find a solution to the feasibility problem of whether
there exists a realization of a given terrain with maximum slope change of δ. See Figure 19 for an
example. We then apply parametric search [21], which uses this solution as a subroutine.

7.1 Decision Algorithm

To determine whether a terrain can have a maximum slope change of δ while respecting the height
constraints, we study the problem in feature space. This means that we add a dimension, λ, to
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Figure 19: An example with four intervals, and a possible solution for δ = 1
4 .

each interval. This dimension represents the slope of the terrain. We define a set of rules for a
path in feature space. A path moves from point p1 = (x1, y1, λ1) to p2 = (x2, y2, λ1) at a slope of
λ1. It is then allowed to move to p3 = (x2, y2, λ2), where |λ2−λ1| ≤ δ. From there it continues in
the same manner until it reaches In or can no longer intersect an interval. As an example, the path
(0, 0), (1, 2), (3, 1) in an imprecise terrain becomes the path (0, 0, 2), (1, 2, 2), (1, 2,−0.5), (3, 1,−0.5)
in feature space.

For every interval, except for the first and last, we consider two regions, called the entrance region
and the exit region. They represent all the paths that go through the interval. The entrance region
defines possible entry slopes (for the edge entering from the left), whereas the exit region possible
exit slopes (for the edge leaving on the right). The entrance region of an interval Ij is bounded
from above (resp. below) by a function g+

j (λ) (resp. g−j (λ)). For a given λ, [g+
j (λ), g−j (λ)] gives

the subinterval of Ij within which a path must enter Ij , if it does so with a slope of λ. Similarly,
the exit region of an interval Ij is bounded from above and below by functions f+

j (λ) and f−j (λ).
The meaning of these functions is analogous to the one of g+

j (λ) and g−j (λ).

For the first interval I1, only the exit region is defined. It is an infinite strip bounded by the
functions f+

1 (λ), which is a constant function with a y-value equal to the y-value of the top of the
first interval, and f−1 (λ), a constant function with a y-value equal to the y-value of the bottom
of the first interval. The regions of interval Ij are the regions of Ij−1 modified in the following
manner (see Figure 20):

• We define intermediate functions h+
j (λ) and h−j (λ) to be f+

j−1(λ)+λ(xj−xj−1) and f−j−1(λ)+
λ(xj − xj−1) respectively.

• We truncate h+
j (λ) and h−j (λ) so that their y-values do not go above the top or below the

bottom y-value of Ij . The resulting functions are g+
j (λ) and g+

j (λ). The region between
them is the entrance region of Ij .

• If the entrance region of Ij is not empty, then we treat it as a polygon P in the (λ, y)-plane.
We compute the Minkowski sum of P and a horizontal line segment that has length δ. This
amounts to moving the non-horizontal edges of P horizontally by a distance of δ away from
the interior of the polygon. After this, we define f+

j (λ) to be the segments of P that have
the interior of P below them and f−j (λ) to be the segments of P that have the interior of P
above them. The region between these two functions is the exit region of Ij .

Each dimension of a point p = (x, y, λ) inside the entrance region for an interval I corresponds to
one aspect of an incoming path. The x-coordinate of p corresponds to the x-coordinate of I, the
y-coordinate corresponds to the height of the path along I, and the λ-coordinate corresponds to
the slope of the previous segment of the path. A path thus travels from one interval to the next
at a slope (in the y-dimension) equal to its λ-coordinate. At each interval, the path can change
its λ-coordinate by at most δ.

Lemma 15 A path with maximum slope change δ exists if and only if the entrance region for
interval In is non-empty.
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Figure 20: The regions as they are computed in the process for δ = 1
4 . The figures are drawn in

the (λ, y)-plane. The dotted lines correspond to λ = 0. For each interval (except the first), three
regions are shown: the first one is an intermediate region used to construct the entrance region
(it is a sheared copy of the previous exit region). The second region is the entrance region. The
third one is the exit region: the entrance region expanded by a Minkowski sum with a horizontal
line segment of length δ.

Proof: Recall that the exit region of Ij is the same as its entrance region after being expanded
by the Minkowski sum with a horizontal line segment. See Figure 20. Note that for any point
p = (x, y, λ) in the exit region, p′ = (x, y, λ + µ) is in the entrance region for some −δ ≤ µ ≤ δ.

Assume that the entrance region for the interval In is non-empty and that pn = (xn, yn, λn) is
a point inside it. We describe a procedure for finding a path through the intervals that has a
maximum slope change of δ.

We begin at interval In. We then construct a line segment from pn to the interval In−1 that
has slope λn. Let the point where the line segment intersects the interval In−1 be pn−1 =
(xn−1, yn−1, λn). Note that yn−1 is easy to compute: it is yn − λn(xn − xn−1). Because of
the procedure for propagating the regions, the point p′ = (xn−1, yn−1, λn) is inside the exit region
for the interval In−1.

If the point (xn−1, yn−1, λn) is outside the entrance region of interval In−1, then we find−δ ≤ µ ≤ δ
such that p′′ = (xn−1, yn−1, λn+µ) is inside the entrance region, and set λn−1 to be λn+µ. We can
then recursively apply this procedure until we have found a path from In to I1 whose maximum
slope change is δ. This path is formed by the sequence of points (x1, y1), (x2, y2), . . . , (xn, yn).
See Figure 21.

To see that a path with maximum slope change δ exists only if the entrance region for the interval
In is non-empty, assume that the entrance region at some interval Ij is empty and that Ij is the
first such interval. This implies that the exit region for Ij−1 was propagated to a region that has
y-values that are either too high or too low and were thus truncated. This means that any path
whose maximum slope change is δ will either be above or below interval Ij if the path started at
I1 and respected all previous intervals. £
Thus, if the entrance region for interval In is non-empty, a path with maximum slope change δ
has been determined. We are then ready to apply parametric search1 in the standard manner.

7.2 Time analysis

To compute the running time of the algorithm above, we must bound the running time taken
when propagating a region from one interval to another. From this information, finding the total

1We intentionally omit any details of parametric search. We simply use it as a black box that we apply to a
feasibility-testing algorithm and an instance of our problem. Interested readers can see [24] for a more extensive
treatment of the subject.
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Figure 21: A path with maximum slope change δ shown in the (a) (x, y) plane and (b) (x, λ)
plane.

running time is simple.

We begin with a lemma that characterizes the shape and complexity of an entrance region.

Lemma 16 The entrance and exit regions of interval Ij are convex polygons with complexity at
most 2j.

Proof: We prove by induction. We consider, for now, only the entrance region. The entrance
region of interval I2 is a convex polygon with complexity at most 4, so the proposition holds. We
now assume that the entrance region of interval Ik−1 is a convex polygon with complexity at most
2k − 2 and will proceed to prove that the entrance region of interval Ik is a convex polygon with
complexity at most 2k.

When the entrance region from interval Ik−1 is propagated to Ik, the edges that form the exit
region of interval Ik−1 are sheared, possibly truncated, and translated. In all of these operations,
all of the edges remain line segments. It is also clear that if the entrance region is convex, then at
most two new edges are added as a result of the truncations to the top and bottom functions.

From the above, it is easy to see that the entrance region at interval Ik is a polygon with complexity
at most 2k. It remains to show that the region is convex. Since Ik−1 is a convex region, the shear
transformation preserves this property. The clipping also does, since it is an intersection with a
convex set (the intersection of two halfplanes). Finally, the Minkowski sum of two convex polygons
is again convex, therefore the entrance region for Ik is convex.

Regarding the exit region, its convexity follows by construction. As for its complexity, we note
that the Minkowski sum only will create two new vertices if the clipping applied to produce the
entrance region did not create new vertices. Therefore the total number of vertices for the exit
region will increase, in any case, by at most two with respect to the previous exit region. £

Lemma 17 The time complexity of the feasibility algorithm is O(n2).

Proof: The feasibility-testing algorithm requires the regions to be propagated n times. Each
propagation takes O(n) time by Lemma 16. Therefore, the feasibility-testing algorithm takes
O(n2) time. £

Using this feasibility-testing algorithm with parametric search, we get an algorithm to solve our
original problem. Unfortunately, our feasibility-testing algorithm is inherently sequential, so we
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do not get the benefit of the speedup for parallel algorithms that parametric search gives. Thus
the running time is O(n4). Fortunately, we can solve the feasibility problem more efficiently, as
we show in the next section.

7.3 A faster algorithm

In the previous subsection, we described how the regions in the (λ, y) plane for each interval
propagate, and how to compute them incrementally. Since the complexity of one region can be
linear, we spent quadratic time in total. However, in the end we are only interested in whether
the last entrance region is empty or not. It is possible to save a linear factor by keeping track of
the region boundaries implicitly.

Consider the vertices of the polyline that describes the top boundary of the exit region of Ij , that
is, f+

j . When computing the exit region for Ij+1, these vertices undergo two transformations: a
shear and a translation. In the clipping step, vertices may be thrown away and/or new vertices
may be added, but the existing vertices do not move. In this subsection, we describe a scheme
where we do not explicitly perform the shears and translations on the vertices. Rather, we compute
one transformation T+ that is the composition of the sequence of the shears and translations. We
can then apply T+ to the original locations of the vertices to get their actual locations. Note that
T+ can be represented in constant space. The following follows from using affine transformations:

Observation 2 A sequence of shear and translation operations can be represented as a single
shear and a single translation.

Another observation that will make the description of the algorithm easier, is that f+ and f− are
monotonically increasing functions. The reason for this is that they start as horizontal lines, and
in each transformation step, they are either sheared by a positive factor (in which case the slopes
of the functions increase), or clipped (in which case a new horizontal part is added).

Observation 3 The functions f+
j and f−j that bound the exit region of Ij, are monotonically

increasing.

Now, we can describe the new algorithm. Suppose that we have processed Ij and we have computed
two lists of vertices L+

j and L−j , together with two transformations T+
j and T−j , such that applying

T+
j to L+

j gives a representation of f+
j and applying T−j to L−j gives a representation of f−j . Then

we proceed to Ij+1 as follows.

First, we need to apply the shear operation (y, λ) 7→ (y, λ + (xj+1 − xj)y) to the exit region; we
do this by composing T+

j and T−j with this transformation. This step takes constant time.

Next, we need to clip the region between two horizontal lines tj and bj . We walk over the lists
L+

j and L−j starting from the first vertex, and for each vertex v we apply T+
j (resp. T−j ) to it,

and check whether the resulting v′ lies below bj . If it does, we throw v away and proceed to the
next vertex. If it does not, we keep v. We create a new vertex where bj intersects the two lists, we
compute those vertices and then apply the inverse of T+

j (resp. T−j ) to make sure they are in the
same space as the remaining vertices. In the same way, we walk over L+

j and L−j starting from
the last vertex to clip against tj . This step takes constant time per vertex that is thrown away.

Finally, we translate the vertices describing the entrance region over a distance of δ in each
direction, to get the exit region. Since f+

j and f−j are monotonically increasing, this means all
vertices in L+

j move δ to the left, and all vertices in L−j move δ to the right. We apply these
translations to T+

j and T−j . This step also takes constant time.

Lemma 18 The time complexity of the feasibility testing algorithm is O(n).
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Proof: The second step takes constant time per vertex that is thrown away. Since each vertex
can be thrown away at most once, this is linear in total. For the rest, each step takes constant
time, so we spend linear time overall. £

7.4 Solving the original problem

Theorem 5 Given an imprecise 1.5D terrain, a realization that minimizes the maximum slope
change can be computed in O(n2) time.

Proof: By Lemma 18, the feasibility-testing algorithm takes O(n) time. We apply parametric
search with this algorithm. Since the feasibility test is inherently sequential, the parametric search
squares the running time of the feasibility-testing algorithm, resulting in total O(n2) time. £
Note that we could alternatively use the feasibility-testing algorithm to get an approximate solu-
tion. If we just do a binary search on δ, we can find an ε-approximation in O(n log 1

ε ) time.

8 Conclusions

We studied several measures to compute the smoothest or roughest possible 1.5D terrain, when
height information is imprecise. For optimizing the worst turning angle in the terrain (either
smallest or largest), we presented approximation algorithms that run in linear time. They find
a terrain where the worst turning angle is at most ε away from the one in the optimal terrain,
for any ε > 0. We highlight that the depth of the algorithms lies in the correctness analysis,
and not in the algorithms themselves, which are relatively simple and easy to implement. As a
supplement to these results, we also studied algorithms for optimizing the total turning angle, and
for minimizing the maximum slope change. We sketched two exact algorithms that also run in
linear time, and one that runs in quadratic time. These algorithms should also be fairly simple to
implement.

There are several other problems that are worth studying for our model of 1.5D imprecise terrains,
in addition to smoothness. One interesting topic is visibility or guarding. A problem already
studied for (precise) 1.5D terrains is placing a (small) set of guards such that they can see all the
terrain [5, 17]. Taking the problem to an imprecise setting gives rise to questions like finding a
small set of guards that is guaranteed to see all the terrain for any possible realization, or given a
set of guards, finding a realization that hides the maximum amount of terrain. Another interesting
topic is terrain simplification (e. g. [10]). For example, we may want to find a realization that can
be specified by the smallest number of vertices (that is, where many vertices are collinear and can
be removed).

The major open problem suggested by this work is to smooth 2.5D terrains, which are encountered
more often in practice. Such terrains pose challenges on two different levels. On the modeling level,
it is unclear how to define the problem correctly—it is difficult to define a smooth terrain in a way
that ensures that all the features are smooth. For example, even if all of the solid angles between
faces of the terrain are small, a peak that is quite sharp can be created at the intersection of three
or more faces. A promising approach involves using one of the definitions of discrete curvature
specifically defined for polyhedral surfaces, like for example, the mean or Gaussian Ccurvature
introduced by Mesmoudie et al. [22]. Even when the objective would be clear, though, designing
efficient algorithms is still challenging. For example, fitting a smooth terrain through a few known
fixed points, when the remaining points have no bounded intervals, is already a non-trivial task.
With the algorithms presented in this paper, we show that the 1.5-dimensional case is already
more challenging than it looks at first; one cannot expect the 2.5-dimensional case to be any
easier. At the same time, we hope that our solutions will provide the necessary insight required
to solve these problems eventually.
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A tool recently introduced in the analysis of terrains is the realistic terrain model proposed by
Moet et al. [23]. In this model, restrictions are placed on four properties of the triangles of a
terrain. These four properties are the minimum angle of each triangle, the ratio of the size of the
largest triangle to the size of the smallest triangle, the aspect ratio of the bounding rectangle of
the terrain, and the steepness of each triangle. In all cases, the properties are restricted to be a
constant. Most of these restrictions have to do with the underlying triangulation of the terrain.
However, the restriction that the steepness of any triangle in the terrain is bounded deals directly
with the heights of the vertices of the terrain. We wonder whether the first three restrictions make
the last any easier to satisfy in an uncertain terrain. That is, given an imprecise terrain whose
triangulation is “realistic”, can an algorithm set the heights of the vertices in such a way that the
steepness of the steepest triangle is minimized? This question, among many others, is interesting
to study in the context of imprecise terrains.
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