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Abstract

This paper describes an in-code approach to auto-
matic algebraic-based software testing and a number
of useful design patterns for doing it. The approach
uses algebras as testable views on a system. These
views form test interfaces which are highly automat-
able. Specifications are expressed in terms of arioms
of the algebras. We use the testing tool T2 to pro-
vide automation. T2 works with in-code specifications;
these are specifications written directly in a program-
ming language. Because in-code specifications do not
need any additional skill to master, they are more likely
to be adopted by engineers on the field. Because they
need no additional tools to parse and to keep them in-
sync with the implementation, they are much cheaper
to maintain. So, for real uses they have a good chance
to scale up.

1 Introduction

Traditionally people are recommended to write their
specifications in specification languages like UML or Z.
Our previous paper [24] deviated from this tradition by
favoring in-code specifications; we believe them to be a
scalable alternative for specifying and testing software.
In-code specifications are specifications written directly
in a programming language; in our case, we write them
in Java.

Despite many research efforts in specification lan-
guages, and despite all their nice features, in a produc-
tion setup writing specifications in those languages is
problematical in several ways:

1. We cannot automatically synchronize the specifi-
cations with the code that implements them. If
they are not in-sync, the tests we generate from
them will crash. Keeping them in-sync manually
is not going to scale up.
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2. It introduces dependency on e.g. UML or Z tools,
whose support base is typically a lot smaller than
e.g. that of Java. Understandably, companies
questioning the continuity of a tool, will refuse to
take the risk of using them.

3. It is hard to get programmers that know those
languages.

In-code specifications do not have all the problems
mentioned above.

The fact that we write our specifications in Java does
not make them second class. They are still declarative
(i.e. they specify 'what’ a program should do rather
than "how’ it does it). They are formal, and they are
very powerful (we have the entire Java’s expressivity at
our disposal). However, they are less abstract than e.g.
their Z counterparts. To some extent this shortcoming
is still acceptable, but there exist a real danger that we
will end up with specifications that are heavily clut-
tered with low level details so that it becomes difficult
to make judgement as to whether they still reflect our
intentions. Fortunately, there is still a solution for this:
use algebraic specifications.

An algebraic specification is a specification of a pro-
gram in the form of an algebra. They have been around
for sometime [14] 251 [6] [TT]. Algebraic specifications are
typically abstract, clean and ideal to be implemented as
in-code. Several tools that support systematic or au-
tomatic testing of algebraic specifications are DAIST
[12], Daistish [I5], and the quite recent CASCAT [16].
In this paper we will describe an in-code approach for
automated testing based on algebraic specifications.
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The figure above globally shows the various compo-
nents of our approach. Given a system under test we
first construct one or more test interfaces that reflect
how we can interact with the system during testing.
The specifications we want to test are written in-code,
and are expressed in terms of the elements provided
by the test interfaces. Test interfaces as well as spec-
ifications are algebras that play different roles as will
be explained later. T2l [24] [3] is our home grown tool
for automates testing of Java classes. The tool is fully
automatic and supports in-code specifications. Fur-
thermore, it has many strong features like being fast,
versatile, having a sophisticated coverage utility, etc.

Our approach is slightly different than the typical
algebraic approaches [I4] [6] [[T], [I6]. Rather than using
an algebra solely as an instrument of specification we
also use it as an instrument for providing a testable in-
terface to a system. Although the difference is subtle,
for automated testing it makes an impact. Many sys-
tems are designed without taking their testability into
account, and not surprisingly, we often end up with a
system that are difficult to test. Automating the test-
ing of such a system is hard. So, we are forced to do
it manually, which is expensive. When asked to in-
corporate testability into their design, engineers need
a framework with which testability goals can be con-
cretely expressed. Algebras give them such a frame-
work.

Through an example of testing a Reversi applet, we

will show how the approach concretely works, and at
the same time demonstrate its strength. We will also
show the design pattern we use, e.g. to conveniently
organize our specifications and to abstractly express
coverage requirement.
Contribution. While algebraic testing itself is not
new, this paper offers a new insight regarding how to
deploy algebraic system testing in a setup that will
actually work in practice, and will scale up. We believe
that this insight will benefit practitioners.

2 The case study : reversi

The example that we will use is a Java applet appli-
cation implementing a reversi game. Originally this is
a programming assignment for our first year students.
It is a simple application, yet still sufficiently challeng-
ing.
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It is a simple two-players game played on a NxN
board. The players take turns to put a piece of their
own color on the board. We have red and blue pieces.
A summary of the game rules are below, see e.g. Wike-
pedia for a more detailed explanation.

R1 When it is a player’s turn, he or she places a new
piece p of his color ¢ on the board. This can only
be done on an empty square s and if p forms at
least one ’enclosing line’. Two pieces p and g of
the same color form a line if they lie on the same
row, column, or diagonal. This line is enclosing
if all pieces between p and ¢ are of the opposite
color, and if there is at least one such piece.

R2 After the piece p (of color ¢) is placed, the color of
all enclosed pieces are switched to c.

R3 If a player cannot place a piece, the turn is given
to the other player.

R4 If neither player can’t place a piece the game ends.
The player with most pieces on the board wins;
else it is a draw.

The applet will furthermore implement a button for
a computer-assisted move. This will cause the com-
puter to calculate and do a move for whichever player
in turn. Our goal is to test if the application correctly
implement the above rules (this is comparable to test-
ing the business logic of an enterprise application).

3 The Test Interface design pattern

The figure below shows a design pattern, called Test
Interface pattern, that we use to organize our testeable
specifications.

Test Interface

SUT _|> operationl()

operation2()
obsFunctionl()
obsFunction2()

vi ews |1.. Specification 2

Specification 1

The SUT is the System Under Test. A test inter-
face is an algebra without axiom. It defines a set of
operations and observation functions and is linked to
the SUT via the relation views. Operations are able
to alter the state of the SUT and are thus what we use
to control the SUT as we later test it. An observation
function does not alter SUT’s state; instead it returns
a value that can be seen as an abstraction of the SUT’s
state at that moment. So, the set of observation func-
tions can be thought to map SUT’s domain of concrete
states to a domain of abstract states.


http://www.cs.uu.nl/wiki/WP/T2Framework

A specification is an algebra that refines a test in-
terface by adding axioms. This refinement relation is
imposed by the subclass relation in the design pattern.
In algebraic testing, axioms are used to express the cor-
rectness properties of the SUT. In our example they
would represent Reversi game rules. Rather than en-
coding the entire set of correctness properties in a single
large specification, it is better to split it up into several
specification classes.

In the design pattern, a specification does not have
a direct link to the SUT. This implies that the only
way we can express properties of the SUT in a speci-
fication is by writing them in terms of the observation
functions provided by the corresponding test interface.
This enforces the desired abstraction. However, one
has to keep in mind that this prevents us to test prop-
erties of the concrete states of the SUT since these are
not exposed by the observation functions.

The primary purpose of a test interface is to define
a testable interface for SUT. Having a testable inter-
face makes it possible to automate testing using tools
like T [24]. Notice that the above design pattern re-
quires the SUT to be a subclass of all test interfaces.
This relation can be seen as enforcing testability goals
for the SUT. This implies that simply by using the
design pattern designers can concretely express their
testability goals for the developers to implement.

Designers are free to decide the appropriate level
of abstraction of their test interface. They may even
decide to provide multiple test interfaces, e.g. one for
testing the business logic, and one for testing the GUI.
Notice that the design pattern allows this. Once this
decision is fixed, it is then the task of the developers
to implement the test interfaces.

The global architecture of the Reversi applet and
its test interface is shown in the UML diagram below.
We do not show the Java code as it would take up to
much space. All the source code can be downloaded
from [T2-websitel [3].

Testinterface

<<op>> move(s:Square)

<<op>> Al move(): Square

status(): Status

cnt (color:Status): int
pmoves(color:Status): List<Square>
enc(s:Square, c: Status): List<Squar e>

views 4
Applet Q_Reversi __[>M0useListener

Methods in the test interface marked with <op>
are operations; other methods are observation func-
tions. Two helper types are used: the type Square
represents positions on the board; the type Status rep-
resents various game states. Its possible values are:

{ RED, BLUE, REDWIN, BLUEWIN, DRAW }

The last three represents end-game situations with the
respective conclusion. RED and BLUE are not end-states,
and indicate that it is the turn of the respective color.
We will also use these values to represent the colors of
the pieces.

The operation move(s) in the above test interface
represents a (human) player move, trying to put a piece
in the square s. The operation AImove represents an
automated move by the computer for whichever color
is in turn. It will return the move, or null if a move is
not possible.

The observation function status returns the game
status.

The function cnt(c) returns the number of pieces of
color ¢ that are currently on board; pmoves(c) returns
a list of possible moves for the player with color c.

The observation function enc(s, ¢) is the most com-
plicated one. It returns a list z of squares, such that
for every t € z, s and ¢t would form an enclosing line if
we would put a piece of color ¢ on s (regardless of the
current color of s).

Helper methods

We also introduce a number of convenient helper meth-
ods for writing specifications:

e If s is a square and u is a list of squares,
s.member0f (u) checks if s is a member of u.

e If ¢ € {RED,BLUE} then c.opposite() will return
the opposite color. Else c.opposite() returns the
same c.

e A method subset(u,v) is added to the test inter-
face; it checks if all members of the list u are also
members of v.

e A method gameover() is added to the test inter-
face; it returns true if status() reports an end-
game situation.

4 Specifications and specification pat-
terns

For each of the Reversi game rules we will create
one subclass of our Test Interface to specify it. This
prevents the specifications from cluttering each other.
See the UML diagram below. Each class Ry is a speci-
fication capturing the corresponding rule Ry.
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R1 Testlnterface

-classinv(): boolean—[ move(s)

Al move()

R 2 status()
cnt (c)

R 3 pmoves(c)

enc(s,c)

R 4

-classinv(): boolean

Since, our test interface is an abstraction of the ac-
tual Reversi applet, we may not be able to fully capture
its game rules. Note, that this is a choice when defining
the Test Interface. For our example, we have chosen
that our test interface does not allow us to look into
the content of the squares in the game board. As a
consequence, we will not be able to fully capture e.g.
the part of rule R1 that states that we can only put
a piece on a square s if it is empty. However, we can
still weakly express this part of R1 by requiring that
s € pmoves(c) (where c is the color of the piece).

We will write our specifications (i.e. the axioms of
the algebra) in-code, that is we use plain Java to ex-
press them. This does mean that our axioms will look
different than the notations people are used to when
writing algebraic specifications, e.g. as in [14} 6L 1T, [16].
There are three patterns we use to express axioms in
Java. Below we will show examples of each:

1. An axiom that only concerns a single operation op
is expressed as a post-condition specification of op.

For example, suppose we have the following axiom:
7if the game 1is not over yet, then Almove() will
always place a piece.” This can be expressed by
adding the following post-condition specification
to AImove:

AImove () {

int N = cnt(RED) + cnt(BLUE) ;

boolean gameover = gameover() ;

... // original body of AImove

if (!gameover) assert cnt(RED)+cnt(BLUE)>N
}

Notice the use of assert to state the post-
condition. Normally, we will not actually write
the assertions directly in the code of AImove. This
will clutter it too much, since we have to do it for
every axiom. We will exploit inheritance and par-
tially override AImove to add the post-condition.
We will show an example later.

2. An axiom involving only observation functions is
expressed by a class invariant.

For example, suppose we have the following axiom:
7if the game is over, then no further move should
be possible.” This can be expressed by:

boolean classinv() {
if (gameover())
assert pmoves(RED) .isEmpty()
&& pmoves (BLUE) . isEmpty() ;
return true ;

}

A class invariant is a predicate specifying prop-
erties that have to hold initially, and after every
call to the operations of the test interface. It ab-
stractly express a validity constraint on the state
of the SUT. Ty automatically incorporates class
invariant checking when it generates tests.

Note: the above class invariant seemingly always
returns a true, but notice that it also checks as-
sertions; T5 considers a violation to an assertion
as a false.

3. An axiom involving multiple calls to operations is
expressed by a dedicated method. We will show
an example of this later.

4.1 Capturing rule R1

The class R1 contains three axioms that together
capture rule R1. Consider this first one below, ex-
pressed as the post-condition of the method move:

void move(Square s) {
Status c = status() ;
Status d = c.opposite()
List<Square> old_movesc
List<Square> old_movesd
int oldnc = cnt(c) ;

pmoves(c) ;
pmoves(d) ;

super.move(s) ;

if (! gameover() && ! s.memberOf (old_movesc))
assert subset(old_movesc,pmoves(c))
&& subset(old_movesd,pmoves(d)) ;

if (s.memberOf(old_movesc))
assert ! s.memberOf (pmoves(c))
&& ! s.memberOf (pmoves(d))

&& assert cnt(c)>oldnc ;

Note that this is the move method of the class R1.
Inside it calls super.move, which belongs to the test
interface. The latter is the one that does the actual
work. So, functionally the above move does exactly
the same as super.move. Its main role is actually to
specify a post-condition for super.move. This scheme
allows us to separate the specification of each axiom
from the actual code of the operations, and from each
other. Without such a separation the resulting code
will be too cluttered.



There are several post-conditions specified above.
The first post-condition indirectly says that we will
only put a piece on the square s if we are allowed to
do so, which is abstractly captured by the condition
s.member0f (movesc). The second one indirectly says
that if s is an allowed move, then after the move it will
be occupied. Due to the chosen abstraction we will not
be able to verify if the new piece will be of the right
color (c¢). The third post-condition weakly express this
by requiring that after the move we should have more
pieces of color ¢ than what we had before the move.

We will need an analogous 'axiom’ for the operation
ATImove. This is not shown due to limited space.

The last part of R1 also requires that we only put
a new piece if we can form an enclosing line. This is
expressed by the following class invariant of R1, saying
that if s is a possible move, then its enclosing-set is not
empty:

boolean classinv() {

for (Square s : pmoves(RED))
assert !enc(s,RED).isEmpty() ;
for (Square s : pmoves(BLUE))

assert !enc(s,BLUE).isEmpty() ;
return true ;

4.2 Capturing rule R2

In this section we will discuss how we capture R2,
the code for the other rules are in the Appendix.

R2 requires that after a move, all enclosed pieces
change color. Again, due to the chosen abstraction
we cannot fully express this. However, we can weakly
express this by requiring that the enclosing set of the
new piece is empty, which should indeed be the case
if we flip the color of all enclosed pieces (note that
the reverse is not necessarily true). This property can
be easily captured with post-conditions for move and
AImove. That of AImove is shown below (note that it
is part of the subclass R2).

Square AImove() {
Status ¢ = status() ;
Square s = super.AImove() ;
if (s != null) assert enc(s,c).isEmpty() ;
return s ;

}
4.3 Axiom for multiple operations

For the game rules of Reversi we do not need an
axiom that involves multiple calls to operations. How-
ever, to show an example suppose we want to express
an axiom stating that if we do:

move(s); move(s)

the second move will have no effect. We will capture
"having no effect’” as a requirement that states that the
moves that were possible before the second move will
still be possible afterwards.

We can capture this in Java by defining a separate
method where we execute the above sequence of calls,
and implement the appropriate checks:

axiom_movemove (Square s) {
super.move(s) ;
List<Square> redMoves = pmoves(RED) ;
List<Square> blueMoves = pmoves(BLUE) ;
super.move(s) ;
assert subset(redMoves, pmoves(RED)) ;
assert subset(blueMoves, pmoves(BLUE)) ;

5 Automatically testing specifications

Since each specification is a class on its own, we can
directly test them with 75. In this section we will only
briefly explain how 75 works, for more details see e.g.
24 5, 23],

Given a target class C, T can generate tests in the
form of sequences of calls to C’s methods. More pre-
cisely, each sequence starts by creating an instance of
C called target object. This is done by calling a con-
structor of C. Then at each step along the sequence, a
method of C' is called. This method either targets the
target object, or receives the target object as a param-
eter. So, each step basically tries to do a side effect on
the target object.

T works with in-code specifications written in Java.
A specification is coded as assert statements, either
directly in the method being specified, or in a separate
specification method. Furthermore, we can also specify
a class invariant.

A class invariant is predicate specified in a boolean
method named classinv —we have seen several exam-
ples before. It specifies properties that every instance
of C' must satisfy initially (when it is created), and af-
ter every call to a method of C'. T, will insert a call
to the class invariant of C' (and thus checking it) after
every test step it generates. A violation is reported if
the class invariant returns a false, or if it violates some
assertion inside it.

Assertions are checked on the fly (rather than e.g.
by first generating Junit tests), which makes T» fast.
Depending on the complexity of C, it can inject thou-
sands of tests per second. We can fully specify which
methods of C are to be included in the testing.

In principle, 7% randomly generates the test se-
quences, and also the parameters needed to be passed
to the methods in the sequences. From our experi-
ence, this works quite well; there are also studies that



support this, e.g. [9]. However, there are cases where
pure random-based testing is simply ineffective. For
those cases Ty has a quite flexible framework for peo-
ple to plug-in custom object generators. Furthermore,
T5 also supports model-based testing. That is, it can
take a model and use it to direct the generation of the
test sequences.

T> makes testing really a fast and easy push-button
activity. In order to be able to say something about the
effectiveness of testing with 75 we need to look into the
coverage of the generated tests. In general we face two
issues: which coverage criteria to use? how to improve
this coverage with To 7 We will not discuss coverage
improvement within 75 here because it is outside the
scope of the paper. We limit ourselves saying that T,
has an extension that can search for more tests to im-
prove coverage. Interested reader is referred to [13]. In
the next section we will discuss the coverage criteria
we can use and how to define them.

6 Coverage criteria

There are plenty of tools available for measuring
code coverage. So, we could test all the specification
classes (R1...R4) with 75 and measure the code cov-
erage (i.e. which lines or which branches have been
covered). Not surprisingly, doing this will give us a
code coverage of only around 50%. Half of the code
in the Reversi applet (the SUT in this example) deals
with GUIs, which are not exposed by the test inter-
face we have chosen. While we can check the code line
by line to locate those uncovered lines that are really
part of the game logic (the aspect exposed by the test
interface), in a large industrial system this is not a
possibility. Code level coverage should be addressed at
the unit testing level, where people are committed to
inspect programs at the micro level.

At the system level we should focus more on abstract
coverage criteria. We already have our test interfaces
and the accompanying specifications. These define our
abstraction. A coverage criterion expressed in terms of
these abstractions will make a lot more sense.

As an example, imagine that the following cases in
the Reversi applet are considered to be fragile, and
therefore we want our tests to cover them:

[AC-req0] red wins, blue wins, it is a draw,
the game ends with a full board, and the game
ends with a non-full board.

This kind of requirement coverage criterion is ab-
stract. The catch here is that the engineers have to
specify what the (abstract) requirements are that they

want to cover, and they will need an instrument to do
S0.

6.1 Asbtract predicate coverage

Fortunately, in-code specifications gives us the in-
strument meant above. We can use them to explicitly
express our abstract coverage criterion in the form of
class invariant. Furthermore, with some extra effort
we can use code-level coverage tools to measure our
abstract level coverage.

Let us introduce some terms first. Each case in AC-
req0 (above) can be expressed by a predicate. E.g. the
case 'red wins’ can be expressed by the predicate:

status() == REDWIN

A predicate coverage requirement or PCR is a sequence
of conditional statements that encodes a requirement
to cover a set of combinations of predicates. More pre-
cisely it has this form in Java (in BNF):

PCR := {if (P) PCR [else PCR]}
| skip()

where P is a predicate; skip is just a method that
does nothing. Here is an example of such coverage
requirement:

if (status()==REDWIN) skip() ;
if (gameover() && cnt(RED)+cnt(BLUE)!=FULL) skip() ;

In itself this statement has no side effect, and thus no
computational purpose. We have a full predicate cov-
erage with respect to a given PCR if all possible execu-
tion paths through it are passed (by the executions of
SUT). Notice that each path corresponds to a certain
combination of the values of the predicates in the PCR.
E.g. in the above PCR, full coverage corresponds to all
four possible combinations of the values of the predi-
cates 'red wins’ and 'the game is over with a non-full
board’.

Note that a PCR is intended to capture an abstract
level coverage requirement; so, the induced concept of
predicate coverage is not really the same as the well
known concept of code-level predicate coverage.

Notice also that a PCR can be nested. This allows
specific combinations of coverage predicates to be in-
cluded, or excluded.

Recall now that after every step in the test sequences
it generates, Ty calls the class invariant to check the
state of the target object. We can exploit this: by
inserting a PCR in a class invariant we can use 75 to
measure the coverage of the tests generated by T5 with
respect to this PCR. Here is an example:



boolean classinv() {
PCR() ; // call the PCR here
// the normal part of class invariant

}

private void PCR() {

Status st = status() ;

int n = cnt(RED) + cnt(BLUE) ;

// specifying an PCR here:

if (st==REDWIN) skip() ;

if (st==BLUEWIN) skip() ;

if (st==DRAW) skip() ;

if (gameover()) if (n==FULL) skip() ;
}

The above formally express the requirement to cover
the cases listed in AC-req0. Even better: it actually
requires coverage over, in principle, all combinations of
those cases.

However, recall that we have defined a PCR to be
fully covered if all execution paths through it have been
passed. This implies we need a path-based coverage tool
to measure it. Fortunately, T5 can do this too (whereas
most coverage tools out there can only measure line or
branch coverage). To be more precise, T» can measure
prime path coverage [4]. A prime pathis a path through
the control flow graph of a program. It is either: (1) a
maximal path from the graph’s entry node to one of its
exit nodes and such that it does not contain any cyle,
or (2) an elementary cycle in the graph. We have full
prime path coverage if executions of the program go
through all its prime paths. We will use this definition
again later.

Observant readers will point out that not all 24
paths (combinations of cases) in the above PCR are
feasible. This is true. E.g. the first three cases are
mutually exclusive. However, we do not always know
this when we write our coverage requirement. But after
running 75 we will know the cases that are left uncov-
ered. If after more test runs they are still uncovered,
we can take this as a cue to take a closer look at our
PCRs, and perhaps refine them.

Almost the same trick can be applied at the ax-
iom level. For example suppose we require the method
axiom movemove(s) implementing the axiom in Subsec-
tion [£3] to be covered on these cases:

s is an allowed move, the current color is RED,
respectively BLUE

We can express this by inserting a separate PCR special
for this method. See below:
axiom_movemove (Square s) {
PCR_movemove(s) ;

. // original code of axiom_movemove }

private PCR_movemove(Square s) {

Status ¢ = status() ;
if (s.memberO0f (pmoves(c))) skip() ;
if (c==RED) skip() else if (c==BLUE) skip() ; }

6.2 Scenarios coverage

In the Reversi game, it is possible that a player move
twice in a row. This happens, according to rule R3, if
the opponent cannot move in between. This scenario is
quite unique, so that we may want to explicitly require
that our tests should cover it. As before the questions
are: how do we express such a requirement, and how
do we measure the coverage?

Scenarios are also examples of abstract coverage re-
quirements which are very hard to express with code
level coverage, because the code that implement them
are scattered over multiple methods. Fortunately, a
little bit of creative programming can help us again
here.

A scenario is usually described in terms of a se-
quence of events. As such, it cannot be expressed
with PCR (previous subsection). To cast this more
generally, we will model a scenario as a (possibly non-
deterministic) FSM M whose transitions are labelled
with events. M has a single innitial state and a single
acceptance state.

Imagine that somehow M can observe various events
that happen in SUT as we test it. The scenario M is
covered if SUT can produce a sequence s of events
that passes the acceptance state. A stronger notion
of coverage is that of prime coverage: this happens if
SUT produces a set 2 of sequences of events, such that
every s € X passes through M’s acceptance state, and
such that X covers all prime paths through M. Prime
scenario coverage implies ordinary one.

The notion can be lifted if we have multiple scenarios
to cover. So, given a set M of scenarios, we have full
scenario coverage if every M € M is covered. We have
full prime-scenario coverage if we have prime coverage
for every M € M.

As an example, the FSM RR below specifies the
scenario where the red player ever moves twice in a
row. It has two events, which are determined the game
state (the value returned by the observation function
state()): either it indicates red is in turn, or otherwise.

RR state()!=RED

N N 2
( @ state()==RED state()==RED O

state()!=RED

Implicit in the diagram above is that every transition
should also observe another event A, that happens
when the number of pieces on board increases.



We can define an analogous FSM BB for blue.

RR is covered implies that the sequence ..., RED, RED
has occurred.  Prime coverage is stronger, as it
also implies that sequences ...,BLUE,...,RED,RED and
...,RED, BLUE, ...,RED,RED also occurred. Roughly,
prime coverage implies that all possible routes to the
acceptance state, modulo multiple iterations, are cov-
ered.

An FSM like the one above can be straight forwardly
expressed in Java. We are not going to show the code.
Below we only show, with a diagram, how scenarios are
integrated into our test interface:

Testinterface

(0
-scenar1 0_RR(): bool ean
-scenario_BB(): bool ean
+scenarios()

We add to the test interface the method
scenarioRR (and analogously scenario BB); it imple-
ments the FSM RR above. Calling this method will
move the FSM one step. We will additionally have
to extend the test interface with a variable that keeps
track the state of RR —this is not shown in the di-
agram above. The method will return true if RR
enters its acceptance state. The code of the method
scenarios is shown below:

void scenarios() {
if (scenario_RR()) skip() ;
if (scenario_BB()) skip() ; }

Ignore for now the conditionals above. Notice that
calling scenarios will advance both FSMs RR and
BB one step. What each FSM does is looking into
the state of our Reversi applet, and based on it it de-
termines the next state. All we need to do now is to
call scenarios after each step in the test sequences
generated by Tb. Again, class invariant gives us the
instrument. We know 75 calls it after every step; so
we can simply insert a call to scenarios() in the class
invariant (though this should the class invariants of the
specifications, rather than of the test interface itself).
So, e.g. we extend the class invariant of RT1 to:

boolean classinv() {
scenarios() ;
. // the other part of classinv }

Having done so, now we also have our instrument
to measure scenario coverage: we have a full scenario
coverage iff all 'then’ branches in the method scenario
are covered. This can be easily measured with existing
tools. Importantly, note that we can do all these by
relying only on Java, and tools around it.

Measuring full prime scenarios coverage is more
complicated. We have not been able to come up with a
nice solution yet (solutions we have so far requires too
much boiler plates to be placed in the Java code im-
plementing a scenario). The problem is technical; we
need to tweak our prima path library to make it more
generic.

7 Adaptive testing with test advice

Recall that the test interface for our Reversi applet
has an operation move(s). When T5 generate the test
sequences, it will have to generate values for s. We
may want to try the method on both legal and illegal
squares, but as there are more pieces on the board, it
will be more difficult to generate a legal s by relying
on a pure random procedure. E.g. in the case when we
only have 1 legal square left, the chance of randomly
guessing the right square on a board of NxN is just
1/N2.

Automated testing will be quite helpless here, unless
we help it. Typically we try to circumvent this prob-
lem by writing a custom data generator which is then
hooked into the testing tool. The problem with this
approach is that the generator is usually not adaptive.
An adaptive data generator uses knowledge about the
state of SUT to generate its data, and is therefore more
powerful. At least for our Reversi applet we need such
a generator. Because the test interface is in principle
the only way to get access to SUT, the straightfor-
ward way to implement an adaptive data generator is
by embedding it into the test interface. However, this
is undesirable either. A custom data generator is an
instrument for improving test performance, whereas a
test interface is an instrument for defining abstraction.
These are two very different roles, so they should not
just be clumped into one artifact.

Our solution is by writing a test advice. It is a piece
of program for calculating some part (or all) of test
data which will be weaved around a target operation in
the test interface, and will override some or all parame-
ters passed to the operation with values of its own. The
reader may already guess that we use Aspect Oriented
Programming (AOP) to do this wrapping (advice’ is a
term from AOP); more precisely we use AspectJ. The
important thing to note here is that an advice can be
written cleanly and separately.

For example, here is a test advice for our Reversi
test interface:

aspect TestAdvice {

before(TestInterface ti, Square s):



execution(void TestInterface.move(Square))
&& target(ti)
&& args(s) {

List<Square> moves = ti.pmoves(status()) ;
if (!moves.isEmpty) {
Square t = moves.get(0) ;
s.x =t.x ; s.y = t.y
}
}
}

After writing that advice, we can weave it to our
Reversi’s test interface using AspectJ compiler. Then
we test our specifications with 75. However, now the
advice will be activated whenever a test step calls
move(s). The above advice peeks into the set of
valid moves available at that moment and ’adaptively’
changes s to the first valid square.

Such an approach would also give us a way to cleanly
integrate known adaptive techniques like adaptive ran-
dom testing [§].

8 Conclusion

We have shown a system testing approach that com-
bines algebraic testing, in-code specifications, and the
use of the testing tool Ts.

e We beleive it to be a scalable approach to system
testing: the algebraic setup allows system proper-
ties to specified quite cleanly; the use of in-code
style means that our specifications will always be
in-sync with the implementation; and the use of
Ts gives us full test automation.

e It is suprisingly expressive. Not only that we can
express sophisticated functional properties, but we
can also express abstract coverage requirements
(and have a way to measure the abstract cover-
age). This is a very useful complement to the tra-
ditional code level coverage.

e In practice we often comes to a situation where
it is very difficult for an automated testing tool
to generate valid test data. This requires custom
algorithms to be written, but integrating these al-
gorithms are often very painful. As another point
about its expressivity, the approach allows such
a custom algorithm to be cleanly and separately
specified, to be weaved-in automatically during
the tests.

9 Related Works

‘We have choosen Java because we want to reach out
to its large community. It is however not the nicest lan-

guage to write in-code specifications. Eiffel [20] offers
more support for in-code. E.g. it has built-in con-
structs for specifying pre- and post-condtions. How-
ever the construct that is most missed in Java is old.
In Eiffel an expression like x == old x allows us to
compare the current value of x within a method to its
initial value (when as the method is entered). In Java
we have to manually write code that saves the value
of x to an help variable, e.g. as in the specification
in Subsection .1l This clutters specifications to some
degree.

Functional languages like Haskell or Clean also allow
in-code specifications to be nicely expressed [10] [17].
They have parametric polymorphism and higher or-
der functions that allow quantifications to be expressed
cleanly and compactly. However, we have set up our al-
gebraic approach object orietedly: we view an algebra
as a class with operations that perform side effects. So,
our approach will not map well to these languages. Al-
ternatively, one can consider Scala [22] that supports
both functional and object oriented programming in
one language.

In a way, the in-code specification approach tries
to achieve the same goal as executable specifications,
but it approaches the goal from the opposite direction.
Essentially, both approaches try to create a common
language for both programming and specifying. The
executable specification approach tries to get to this
goal by making specification languages executable, e.g.
as in Spec# [5] or xUML [19]. The in-code specifi-
cation approach tries to do it by making an ordinary
programming language able to express specifications.
An ideal common language would allow us to move ef-
fortlessly back and forth between implementations and
specifications. This would be very powerful, and many
benefits can be harvested from such a language. Un-
fortunately, so far no such language exists; though it is
probably just a matter of time.

Originally, algebraic specifications are used for spec-
ifying abstract data types [14]. Later they are proposed
for specifying software [25]. CASL [2I] and CafeOBJ
[11] are examples of modern specification languages
based on algebras. Examples of tools that support test-
ing of algebraic specifications are DAIST [12], Daistish
[15], and CASCAT [I6]. All these tools require spec-
ifications to be written in their own specification lan-
guages. DAIST and Daitish require test data to be
specified by hand, after that it automatically gener-
ate tests. Daitish targets object oriented programs.
CASCAT is fully automatic and targets component-
based programs like EJBs. With respect to these tools,
we are different because we rely on in-code specifica-
tions. Furthermore, we do not need a tool especially



tailored for algebraic testing. We use 75, which out
of the box is just a generic unit testing tool. We rely
instead on design patterns, firstly to setup an alge-
braic view towards a system, and secondly to lift a
unit-testing approach (73) to a system testing level. It
is crucial however, that the back-end testing tool can
do sequence-based testing. So tools like QuickCheck-
variants [I0] 2], TestEra/Korat [7], or Jtest [I] are not
very suitable. Eiffel’s AutoTest [I§] is an example of
another sequence-based testing tool.
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Implementation of other Reversi
rules

Rule R3 can be expressed by the following axioms:

void move(Square s) {
Status c = status() ;
Status d = c.opposite() ;
super .move(s) ;
if (! gameover() && pmoves(d).isEmpty())
assert status()==c ; }

Square AImove() {
Status c = status() ;
Status d = c.opposite() ;
super.AImove() ;
if (! gameover() && pmoves(d).isEmpty())
assert status()==c ; }

Rule R4 can be expressed by the following axiom:

boolean classinv() {
assert gameover ()
(pmoves (RED) . isEmpty ()
&& pmoves (BLUE) .isEmpty()) ;

if (status()==REDWIN) assert cnt(RED) > cnt(BLUE)
if (status()==BLUEWIN) assert cnt(RED) < cnt(BLUE)
if (status()==DRAW) assert cnt(RED) == cnt(BLUE) ;

return true ; }

H
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