
Improving Type Error Messages for Generic
Java

Nabil el Boustani

Jurriaan Hage

Technical Report UU-CS-2008-038

October 2008

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl



ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands



Abstract

Since version 1.5, generics (parametric polymorphism) are part of the Java language. How-
ever, adding parametric polymorphism to a language that is built on inclusion polymorphism
can be confusing to a novice programmer, because the typing rules are suddenly different and,
in the case of Generic Java, quite complex. Indeed, the main Java compilers, Eclipse’s ejc
compiler and Sun’s javac, do not even accept the same set of programs. Moreover, experience
with these compilers shows that the error messages provided by them leave more than a little
to be desired.

To alleviate the latter problem, we describe how to adapt the type inference process of
Java to obtain better error diagnostics for generic method invocations. The extension has
been implemented into the Jastad extensible Java compiler.

1



1 Introduction

Since the introduction of generics in Java, the programmers who seek to actually use this powerful
feature may have discovered that production strength compilers such as Eclipse’s ejc and Sun’s
javac, do not always carefully explain why a given generic method invocation fails to type check.

Consider the code and the corresponding error messages in Figure 1. Both ejc and javac only
claim that there is no method declared with the signature foo(Map<Number,Integer>). However,
they do not explain why the foo method that is declared does not match with the invocation.
Our message, on the other hand, does make such an attempt.

<T> void foo(Map<T,T> a){
Map<Number, Integer> m1 = ...;
foo(m1);

javac:
Listing1.java:6: <T>foo(java.util.Map<T,T>) in
Listing1 cannot be applied to Map<Number,Integer>

foo(m1);

ejc:
1. ERROR in Listing1.java (at line 6)

foo(m1);
The method foo(Map<T,T>) ... is not applicable
for the arguments (Map<Number,Integer>)

ours:
Listing1.java:6
Method <T>foo(Map<T, T>) of type Listing1 is
not applicable for the argument of type
(Map<Number, Integer>), because:
[*] The type variable T is invariant, but the types:
- Integer in Map<Number, Integer> on 5:9(5:21)
- Number in Map<Number, Integer> on 5:9(5:13)
are not the same type.

Figure 1: A code fragment with a type equality conflict and the three error messages that result.

Coming from a background of improving type error messages for polymorphic functional lan-
guages such as Haskell, we were interested to see whether the same ideas could be applied here. (In
the functional programming world Java’s notion of genericity is called parametric polymorphism;
we shall continue to use the term generics.)

As it turns out, some ideas could be reused, but there large differences as well. The type
checking process of Java is substantially different from the Hindley-Milner type system for the
polymorphic lambda-calculus on which strongly typed functional languages are based [9]. One
big difference is that in the functional programming world there is quite a difference between the
elegant, declarative specification of the polymorphic lambda-calculus and the implementation of
the inferencer [1]. In the case of Java, the type system and the type checking process are the same:
the Java Language Specification [4] (henceforth referred to as JLS) specifies the set of type correct
programs as those programs that are designated as such by the type checking algorithm. Since
its publication, there has been more than one indication that the current JLS is not ideal: Smith
and Cartwright show that type inference in Generic Java is neither sound nor complete [10]. It
is important to realize that type inference is not the same as type checking: type inference, in
the case of Java, refers to the facility that tries to come up with suitable instantiations for type
variables that occur in the program. There is also a type checking phase that will verify that these
choices are correct, and ultimately decides whether the program is type correct.

2



As Smith and Cartwright point out, incompleteness can usually be dealt with by adding type
information to the program. An even more telling sign of the complexity of the JLS, might be
that during our investigation we found that the two most important compilers, Sun’s javac and
Eclipse’s ejc, do not always agree on the type correctness of Generic Java programs.

Some of the complications in the JLS, however, seem unavoidable. Java already contains
subtyping, i.e., the fact that you can bind an object of type T to an identifier of type S if T is
a subtype of S. Indeed, as we shall reiterate in Section 2, some of the design choices in the JLS
were meant specifically to retain expressiveness and some backwards compatibility in a language
that has both generics and subtyping. In turn, these choices have made type checking process,
and indirectly, type error diagnosis even more complicated.

In this paper we describe an extension to the type checking process as specified by the JLS.
Its goal is to provide better feedback for method invocations that involve generics, a particularly
important and complex part of the language. The essence of the approach, one that worked for
us in the context of functional languages, is to hold on to more information about the program,
and to hold on to it longer. The original operational description in the JLS retains information
only long enough to make the yes or no decision. For example, it throws all information about
the possible types to which a type variable may be instantiated, after it has randomly chosen one
of these.

A second principle of our approach is to leave the type checking process as implemented in the
compiler exactly as it was, and implement an extension to the process that is only invoked when
an error has occurred in a particular method invocation that involves generics. In this way, we are
sure not to change the set of accepted programs. In view of the complexity of the original type
checking process, we believe that any change to the original process is a danger by itself.

The work described here is part of the master thesis project of the first author [3]. The second
part of the thesis deals with heuristics that have been implemented on top of the development
in this paper, in order to further improve diagnostics by also providing hints for correcting the
mistake. For reasons of space we have decided to report on this subject in a separate paper.

The paper is structured as follows. In Section 2 we reiterate some of the essential elements
of the Generics extension in Java, and introduce some basic notations. Section 3 then provides
quite a number of examples of type error messages constructed by our extension, together with
the messages provided by ejc and javac. In Section 4 we explain in some detail the type checking
process as specified by the JLS, and discuss our extension to that process in Section 5. In Section 6
we shortly describe our implementation, and Section 7 reflects, concludes and gives directions for
future work. Regarding the missing section on Relate Work: we simply could not find any work
on improving type error messages for Generic Java. Therefore we have restricted ourselves to
mentioning related work when the need for it comes up.

2 An overview of Java Generics

For completeness we run through the essentials of the generics of Java. We assume the reader is
at least familiar with (the non-generic part of) Java. For more details, the reader can consult the
JLS [4].

Arguably, the main reason for introducing generics was to counter the large number of casts
needed to deal with collection classes, e.g., sets and vectors. Before generics, all collection classes
were defined so that any Object could be stored in them. However, this makes all collections
potentially heterogeneous and makes it necessary to explicitly downcast objects obtained from
such a collection. This is both cumbersome and potentially unsafe.

With generics, the programmer can specify upper bounds, besides Object, for the objects that
can be stored in a collection. For example, a List<Number> can store Numbers and objects of any
type that is a subclass of Number, such as Integer. If an object is retrieved from such a list,
then it can be stored as a Number without any type cast, and if the need arises it can be further
downcast to, say, Integer.

An important and maybe subtle point is that although Integer is a subclass of Number,

3



List<Integer> is not a subclass of List<Number. Indeed, this holds for all collection classes:
they are all invariant type constructors. When you think about it, this is not so strange: a
List<Integer> is not supposed to store Numbers, but if we assign it to a variable of type
List<Number> we cannot safely guarantee this. However, a value of type HashMap<Integer>
may be passed safely to a parameter of type Map<Integer>, because HashMap extends Map.

A consequence of the invariance restriction is that there is no type that denotes a list of any
kind of element. We still need such a type, for example to write a length method for lists. This
is why the wildcard was introduced: List<?> denotes a list for which nothing is known of the
element type. We can store a List<T> for any type T in a variable of such a type. The price to
be paid is that we cannot store anything into the list, and we can only read Objects from it. In
a way List<?> plays the same role in Generic Java that List<Object> played before generics.

The wild card introduces a problem by itself. If we would like to write a reverse function for
lists, we can easily do so for non-wild card types, and only for wild-card types if we do not mind
losing the knowledge that the input list and the output list have the same element type. In Java
this can, in some cases, be solved by wildcard capture conversion [11], in which case the compiler
can determine that although it may not know the concrete type at compile-time, it can be sure it
will do so at run-time. Wildcard capture conversion only works when wildcards are at top-level;
it will not apply to a type like List<List<?>>.

In many cases, we can be more precise in our estimation of the possible types that a certain
type variable or a wildcard may have. For that reasons bounds were introduced. For example T
extends Number expresses that the type inferred for T should be a subtype of Number. Similarly,
T super Number expresses the inverse relation. The same applies to wildcards. For example, the
declaration

void foo (Map<? extends Number, ? super Integer> mp)

expresses that the key type of an actual parameter should be a subtype of Number and that the
value type should be a supertype of Integer. Note however, that the fact that a wildcard ?
refers to both key and value type does not imply that the types are the same, or even related.
For example, we can pass a value of type Map<Double, Integer>, Map<Number, Number> or even
Map<Integer, Object> to foo.

In Generic Java, the raw type, e.g., a type constructor such as List without its type arguments,
is assignment compatible with all instantiations of the generic type. So, if you write List as a type
somewhere, the inferencer can decide to interpret it as List<T> for whatever T it finds suitable at
that point. This mixing of type constructor and type is used in dealing with legacy code.

2.1 Notation and terminology

We shortly introduce some notation uses throughout the paper.
Types essentially describe sets of values, e.g., integers and lists of employees. We use C <: D

to denote that the values of type C are also values of type D. In Java, this relation contains the
transitive closure of the extends relation between classes. For example, LineNumberReader <:
BufferedReader and BufferedReader <: Reader and therefore also LineNumberReader <: Reader.

When generics enter the picture, the situation becomes somewhat more complicated, formalized
by the notion of containment. For parameterized/generic types, C<S1, . . . ,Sn> <: D<T1, . . . ,Tn>
if and only if C <: D and for all 1 ≤ i ≤ n: Si ≤: Ti where

• T ≤: T,

• T ≤: ? extends T,

• T ≤: ? super T,

• ? extends T ≤: ? extends S, if T <: S,

• ? super T ≤: ? super S, if S <: T.

4



For any pair of classes and interfaces, say C and D, the intersection type of the two is denoted
by C & D. Since Java does not have multiple inheritance, typically at most one of the two is a
class name. Since & is an associative, commutative operator, we freely omit parentheses in large
type expressions, e.g., Object & Serializable & Comparable<?>.

The arity of a method is the number of arguments it takes. Note that in Java it is possible to
define methods that have a variable arity.

This is the arena in which type inference and type checking take place. In Section 4 we explain
in more detail how they work. But first some example type error messages to whet your appetite.

3 Examples

To illustrate what can be gained from the developments in this paper, we compare the messages
generated by our implementation with those generated by the standard compilers for Java, ejc
(versions 0.771, 3.3.0 (Linux) and 0.780 R33x, 3.3.1 (Windows)) and javac (version 1.6.0 03).

For reasons of space, we silently omit all the parts of the code that are not of interest to
explaining the type error messages and have taken the liberty to rewrite some output to make it
fit the width of a column. For example, javac invariably gives the complete name for a class, e.g.,
java.lang.Number; in the messages we provide, we have abbreviated this to Number.

The number of examples is relatively small, but Section 6 describes where to obtain programs
to generate many more examples of the messages we can provide, as part of the test set for our
implementation.

Because we have already illustrated a type equality conflict in the introduction, we immediately
continue with an example of a subtyping conflict. Consider the code fragment and associated
messages in Figure 2. Such a conflict arises when an equality constraint determines the type
of a particular type variable, in this case T becomes equal to Integer, which then leads to an
inconsistency in the second parameter, because Number is not a subtype of Integer. Neither ejc
nor javac explain why the invocation does not match the declared type of bar; our message does
provide such an explanation.

It is quite easy, but not very interesting, to come up with a similar mistake to that in Figure 2,
but which involves super and not extend. A more interesting source of mistakes, and typical
for supertype constraints, are due to the inability to find a single type that extends two different
types. In the case of the code fragment in Figure 3, the return type of foo is void so it cannot be
used to instantiate T. The type T should then be computed by taking the largest type that extends
both Number and String. However, such a type does not exist, as our error message explains.
As usual, both ejc and javac simply complain that the invocation does not match the method.
In Section 3.1 we show that these compilers sometimes exhibit strange behaviour for this kind of
example.

We continue with some examples that involve a bound conflict, starting with Figure 4. Surpris-
ingly, javac gives exactly the same error messages as in Figure 1, although the reason why this par-
ticular invocation fails is completely different: it is illegal, because the type that the type variable
T should be instantiated with must be a subtype of Number. Since the type Comparable<Integer>
of the actual parameter is not a subtype of Number, the invocation is incorrect.

A second example of a bound error can be found in Figure 5. In this particular case the
error message of ejc is quite reasonable, although our message prefers not to resort to mentioning
an intersection type, which is an artifact constructed by the type inference phase. Surprisingly
maybe, javac crashes for this particular program due to an infinite number of calls to the least
upper bound function!

An example of a type error involving wildcards can be found in Figure 6. The code frag-
ment shows what might be a typical mistake on the part of a novice programmer: that the type
? extends Number equals ? extends Number which, if provable, would make the invocation
correct. However, this is not the case.

Our message follows the tenets of the manifesto of Yang et al [12] in that an error message
should never reveal anything internal to compiler. However, the error messages provided by ejc

5



<T> void bar(Map<T, ? extends T> a){
Map<Integer, Number> m2 = ...;
bar(m2);

javac:
Listing2.java:11: <T>bar(Map<T,? extends List<T>>)
in Listing2 cannot be applied to
(Map<Number, List<Integer>>)
bar(m2);

ejc:
1. ERROR in Listing2.java (at line 11)
bar(m2);

The method bar(Map<T,? extends List<T>>) in the
type Test is not applicable for the arguments
(Map<Number,List<Integer>>)

ours:
Listing2.java:6
Method <T>bar(Map<T, ? extends T>) of type Listing2
is not applicable for the argument of type
(Map<Integer, Number>), because:
[*] The type Number in Map<Integer, Number> on

5:9(5:22) is not a subtype of the inferred
type for T: Integer.

Figure 2: A code fragment with a subtyping conflict and the three corresponding type error
messages.

<T extends Number>
void foo(Map<? super T, ? super T> a)
...
Map<Number, String> m = ...
foo(m);

ours:
Test6.java:7
Method
<T extends Number>foo(Map<? super T, ? super T>)
of type Test6 is not applicable to the argument
of type (Map<Number, String>), because:
[*] The types Number in Map<Number, String> on
5:9(5:13) and String in Map<Number, String> on
5:9(5:21) do not share a common subtype.

Figure 3: A code fragment followed by our type error message.

6



class Listing3{
<T extends Number> void baz(List<T> a){
List<Comparable<Integer>> x = null;
baz(x);

javac:
Listing3.java:6: <T>baz(List<T>) in Test cannot be
applied to (List<Comparable<Integer>>)
baz(l);

ejc:
1. ERROR in Listing3.java (at line 6)
baz(l);

Bound mismatch: The generic method baz(List<T>) of
type Test is not applicable for the arguments
(List<Comparable<Integer>>). The inferred type
Comparable<Integer> is not a valid substitute
for the bounded parameter <T extends Number>

ours:
Listing3.java:6
Method <T extends Number>baz(List<T>) of type Listing3
is not applicable for the argument of type
(List<Comparable<Integer>>), because:
[*] The type Comparable<Integer> in

List<Comparable<Integer>> on 5:9(5:9) is not
a subtype of T’s upper bound Number
in ‘T extends Number‘.

Figure 4: A code fragment with a bound conflict followed by the three corresponding type error
messages.

7



< T extend Number> void foo(T a, T b){}
...
foo(1, false);

ejc:
1. ERROR in Test1.java (at line 12)
foo(1, false);

Bound mismatch: The generic method foo(T, T) of
type Test1 is not applicable for the arguments
(Integer, Boolean). The inferred type
Object&Comparable<?>&Serializable is not a valid
substitute for the bounded parameter
<T extends Number>

ours:
Test1.java:12
Method <T extends Number>foo(T, T) of type Test1
is not applicable to the arguments of type
(int, boolean), because:
[*] The type boolean of the expression ‘false’

on 12:16 is not a subtype of T’s upper bound
Number in ‘T extends Number‘.

Figure 5: Another code fragment with a bound error.

and javac, which explicitly refer to a captured wildcard. The message of javac states that it
cannot find a particular symbol, which is a bit stronger even than saying that the invocation does
not match any particular method signature.

3.1 Strange behaviour

In some cases we have observed that the compilers may behave strangely, or simply not according
to the JLS.

In an earlier example, we saw that the type inferencer computes the largest subtype of a pair
of types, and that such a type may not always exist. This is also the case for the program give in
Figure 7, in which T should be instantiated to the largest subtype of Integer and String, which
is not a valid type. Surprisingly, javac accepts the program, due to the fact that it ignores the
bound constraint when inferring a type for T. In fact, we found quite a few more programs similar,
but different from this one that javac accepts, but that should be rejected (see Listing 5.8 of [3]).

The ejc compiler also sometimes exhibits strange behaviour. Consider the code fragment in
Figure 8. The constraints generated for both method calls are the same according to the JLS
{T <: Number, T <: String} but the type error diagnosis for these very similar programs by ejc
is very different. This is due to how ejc resolves subtype constraints.

This is a typical, but not so pleasant phenomenon: the implementation of the type checking
process leaks through in the type error messages. Since programmers typically have no knowledge
how this is implemented, they are at a disadvantage when trying to interpret the messages. We
saw two examples of this earlier: the captured wildcards and the intersection types computed by
the inference process.

4 The Type Checking Process

To avoid any misunderstanding, we first explain our terminology for describing the process of
type checking. In this paper, the term type checking process refers to the complete process of

8



<T> void foo(Map<T, T> a){
Map<? extends Number, ? extends Number> m = null;
foo(m);

javac:
Test1.java:20: cannot find symbol
symbol : method bar(Map<capture#954 of ? extends Number,
capture#0 of ? extends Number>)
location: class Test1
foo(m);

ejc:
1. ERROR in Test1.java (at line 20)
foo(m);

The method bar(Map<T,T>) in the type Test1 is not
applicable for the arguments
(Map<capture#1-of ? extends Number,

capture#2-of ? extends Number>)

ours:
Listing4.java:6
Method <T>foo(Map<T, T>) of type Test1 is not
applicable for the argument of type
(Map<? extends Number, ? extends Number>), because:
[*] The type variable T is invariant,

but the type ‘? extends Number’ is not.

Figure 6: A code fragment with a wilcard equality error followed by the three corresponding type
error messages.

<T extends Number> void foo(List<? super T> a) {}
...
List<String> x = ...
foo(x);

Figure 7: A code fragment erroneously accepted by javac.

9



<T extends Number> void foo(Map<? super T, ? super T> a){}
...
Map<String, Number> m1 = ...;
foo(m1);
Map<Number, String> m2 = ...;
foo(m2);

ejc:
1. ERROR in Listing5.java (at line 10)
foo(m);

Bound mismatch: The generic method
foo(Map<? super T,? super T>) of type Listing5 is not
applicable for the arguments (Map<String,Number>).
The inferred type String is not a valid substitute
for the bounded parameter <T extends Number>

2. ERROR in Listing5.java (at line 12)
foo(m);

The method foo(Map<? super T,? super T>) in the type
Listing5 is not applicable for the arguments
(Map<Number,String>)

Figure 8: Two similar method calls as diagnosed by ejc.

determining the type correctness of a particular program fragment. In our particular case these
program fragments are always method invocations. The type checking process is depicted in
Figure 9.

It starts off by performing method resolution, which determines, for a given invocation, a set of
methods that the programmer may be invoking. We shall describe the complex process of method
resolution in some detail below.

The set of methods obtained by method resolution may contain a number of generic methods.
Pairing the concrete parameter types to the formal parameter types of a generic method:

<T, S> List<S> foo (Map<T, T> a,
List <? super S> b);

...
Map<Integer, Number> m = ...;
List<String> l = ...;
List<Integer> ret = foo(m, l);

results in a set of constraints

{Map<Integer, Number> <: Map<T, T>,
List<String> <: List<? super S>}.

that should hold for this invocation to type check.
The set of constraints is subsequently decomposed into atomic constraints between type vari-

ables on the one hand and types on the other. Although there are quite a few cases to be covered,
this part of the process is intuitively quite easy, so we give only the decomposition for the set of
constraints found for our example, and omit the details of Listings 3.1 to 3.3 in [3]

{T = Integer, T = Number, String :> S} .

The type checking process then proceeds by inferring the types of the generic variables, essen-
tially a process of finding a concrete type for each type variable. Although its name might imply

10



Figure 9: The type checking process

otherwise, the inference process has a surprising property: if multiple, conflicting instantiations
for a type variable are possible, then the inference process simply selects one, leaving it up to
the later type checking phase to decide that the instantiation is incorrect. The JLS states that
if a conflict exists, then it will indeed show up in the type checking phase at the end of the type
checking process. In the above example, a possible outcome of the inference phase is:

{T = Integer} .

In the presence of multiple supertype constraints, say

{Integer <: T, Double <: T} ,

this results in the instantiation of T to the least upper bound (lub) of the two, Number. However,
things are not always so simple: for {Integer <: T, String <: T}, the lub is

Object & Serializable & Comparable<? extends Object & Serializable &
Comparable<?>>,

because both Integer and String implement these interfaces. Note that in many compilers, not
only are these types computed by the inference process, they are sometimes also used in the type
error message displayed to the programmer. This contradicts one of the crucial properties that
we, and others [12], believe a type checking process should have: it should only refer to types or
expressions that part of the original source program. Without any information on how the lub
was computed, it can be very difficult for programmers to reconstruct what has happened and
why.

The counterpart of the least upper bound is the greatest lower bound (glb), which is used to
capture the most general type that extends both argument types (which may include classes and
interfaces). However, if all constraints that a type variable is involved in are of this kind and the
invocation occurs in an assignment context, then the JLS specifies that the context should be used
to determine to what type a type variable should be instantiated (if possible). This happens to
be the case in our example for S. Therefore, the constraint List<S> <: List<Integer> is added
to the constraint set. It decomposes into S = Integer. Together, the decomposed constraints are

{T = Integer, T = Number, S = Integer, String :> S} .

The inference process then instantiates S to Integer on the basis of the third constraint above;
T was already instantiated to Integer.

One may wonder what happens if a declared type variable is not constrained in any way. The
JLS specifies that the variable should then be instantiated to Object; this helps the JLS deal with
legacy code.

11



For reasons of space, we cannot give the full details of these processes. Full details for deal-
ing with equivalence constraints, subtype constraints and supertype constraints can be found in
Listing 3.5 of [3].

In the final step, it is determined whether the remaining constraints, which are by now all
equivalence and subtype relations between concrete types, are consistent. This part of the type
checking process we call the type checking phase.

It is important to realize that each invocation is considered in isolation. This even holds for
nested invocations foo(bar(x),y), where first the bar invocation will be considered in isolation
from its context. It can therefore well be that the bar invocation type checks, but that types
chosen by the inference phase turn out to be inconsistent with the enclosing call to foo. Or,
it may be that the call to bar is not valid due to a case of ambiguous method invocation, but
that on the basis of the type of foo, this ambiguity could have been resolved. By contrast, in
the polymorphic lambda-calculus type information from the encapsulating call would be used to
determine the proper instantiations for bar. This lack of propagation in Java has its advantages
— types are instantiated based on local information only and not through a long and complicated
sequence of unifications —, but may also surprise the programmer, particularly in the case of the
ambigious method invocation.

4.1 Method resolution

The process of method resolution is a complex one, due to such features as overloading, overriding
and visibility. It consists of three main steps. For a given method invocation,

i. determine the name of the method to be invoked, say mthd, and the class or interface that
receives the invocation. Java has five different methods of method invocation. Examples
respectively are a.byteValue(), this.Foo(), super.intVal(), Baz.super.intVal() and
Collections<String>.emptySet(). In the case of a.byteValue(), byteValue() is the
name of the method, and the receiver is the innermost class or interface that encloses the
method declaration (if indeed, byteValue is visible from the invocation site). Note that for
this case alone there are two additional variants: a. may be omitted, and a type name may
be used instead of a. For more details see the JLS.

ii. consider every method of the receiver in turn to find all possible accessible and applicable
method members. A method potential in the receiver is a candidate if and only if

• the names potential and mthd are the same,

• potential is accessible from the invocation site

• if potential is a variable arity method of arity, say n, then the number of arguments
passed to mthd must be greater than or equal to n− 1,

• if potential is a fixed arity method of arity n, then the number of arguments passed
to mthd must be equal to n,

• if the method invocation includes explicit type parameters, and potential is a generic
method, then the number of actual type parameters must equal the number of formal
type parameters.

Then the compiler tries to weed out potential methods by comparing actual to formal pa-
rameters. Due to the presence of subtyping, auto-boxing, and variable method methods, this
is quite a complicated process, consisting of three alternative decision procedures. A decision
procedure is only applied if all the preceding decision procedures eliminated all candidates.
Below, we assume the method invocation is mthd(A1, . . . , An).

(a) Identify methods mthd(F1, . . . , Fn), and in which only “weakening by subtyping” is
allowed to match actual argument types to formal argument types. In other words, for
all 1 ≤ i ≤ n:

12



Figure 10: The modified type checking process

• Ai <: Fi, or
• Ai is a raw type that can be parametrized into a type Ci so that Ci <: Fi.

If the method is generic, then all type variables in the Fi are bound to a concrete type
provided by the method invocation. If such type information is unavailable then type
inference, as described earlier, is used to find concrete types. The potential method is
then only applicable if all instantiated type variables are within their stated bounds.

(b) Similar to the previous case, but now in combination with (un)boxing.

(c) Similar to the previous case, but now allowing also variable arity methods. Details can
be found in the JLS.

If all the sets of candidates delivered by the three previous cases are empty, then no matching
method exists, and an error message is produced. Otherwise, we take the first non-empty
one, say S, and proceed to try and eliminate candidates until only one is left. For example,
we remove from S those methods for which a more specific signature in S exists, e.g., if both
mthd(List<T>) and mthd (List<Integer>) are in S, then the former is deleted. A similar,
but more complicated rule can be formulated for variable arity methods.

If for any pair of methods it cannot be decided which is the most specific, the compiler has a
few rules to deal with this, largely by preferring non-abstract over abstract methods, and, in
the absence of the former, an arbitrary abstract method with the most specific return type
is chosen.

If that still does not work, then an ambiguous method invocation error message is generated.

iii. In the third and final step, the method chosen in the previous step is screened for appropri-
ateness. For example, an instance method cannot be invoked from a static context.

As the reader can see, method resolution is indeed a complex, stepwise process. In our extension
of the type checking process, which we describe in the following section, we relax the restraints
somewhat to try and figure out which method the programmer might have been trying to call.

5 The Modified Type Checking Process

The overall architecture of our modified type checking process can be seen in Figure 10. The
structure of the process is not much different, only the phases themselves will change. It is
important to realize that this modified process is only invoked after the original process has found
a particular invocation to be type incorrect.

13



1 class FooLib{
2 <T> void foo(Map<T, ? extends T> a){}
3
4 <T> void foo(Map<T, ? extends T> a,
5 Collection<? super T> b){}
6
7 <T> void foo(Map<T, ? extends T> a,
8 List<? super T> b){}
9

10 <T> void foo(HashMap<T, ? extends T> a,
11 List<? super T> b){}
12
13 <T> void foo(HashMap<T, ? extends T> a,
14 LinkedList<? super T> b){}
15
16 <T> void foo(HashMap<T, ? extends T> a,
17 Set<? super T> b){}
18 }
19 ...
20 UtilLib.foo(new HashMap<Integer, Integer>(),
21 new LinkedList<Number>());
22 UtilLib.foo(new HashMap<Double, Number>(),
23 new LinkedList<Integer>());
24 LinkedList<? extends Number> wl = ...;
25 UtilLib.foo(new HashMap<Number, Double>(), wl);

Figure 11: A utility class.

5.1 Weakened method resolution

First off, we define a weaker form of method resolution that allows more candidate methods to be
targeted by the method invocation. We are not interested in identifying a single method that is
being called, but want to consider multiple candidate methods side by side to see which method
the programmer most likely intended to call.

A major decision we have to make is how exactly we weaken method resolution. Since we
are interested in improving type error messages for generic invocations, we choose to drop generic
information from the invocation and the candidate methods, and perform our comparison between
the results. To be more precise, in the second step (ii) of method resolution we base our comparison
between the signatures on the raw types, instead of the generic types. Conversion to raw types
involves replacing type variables (and possible bounds) with Object and changing generic types
like List<Number> to the raw type List. The full specification of the process is given in pseudo
code in [3] (Listings 4.5-4.7), but are too large to include. We describe the process informally by
an example. Consider the code in Figure 11 where we define a many-times overloaded method
foo. We designate foo on line x by foox.

We consider the first invocation on line 20. The method foo2 does not qualify as a candidate
because it has the wrong number of parameters. All the other declarations have the right number
of parameters, so they are marked as candidates in step (i). Their signatures are converted into
their raw form, and we obtain

foo4(Map, Collection), foo7(Map, List), foo10(HashMap, List),
foo13(HashMap, LinkedList), foo16(HashMap, Set).

In the absence of primitive types and variable arity methods, the applicable methods can be
determined using subtyping only, i.e., we only need to look at case (a) of step (ii) in the method

14



class BarUtil{
static <T extends Number>void bar(T a, T b){}
static <T extends Integer>void bar(T a, T b){}

...
BarUtil.bar(’0’, 3.14);

Figure 12: A code fragment with two candidate methods.

<T> void foo(List<T> a, List<? super T> b){
...
List<Number> l1 = ...;
List<? extends Number> l2 = ...;
foo(l1, l2);

Figure 13: Inference succeeds, but checking fails.

resolution phase. The second parameter LinkedList in the invocation is not a subtype of the
generic interface type Set. Therefore, foo16 is disqualified as a candidate.

Next, our weak method resolution reduces the set of applicable of methods {foo4, foo7, foo10, foo13}
to a set of most specific methods. Comparing foo4 with foo7 results in the removal of foo4, be-
cause List <: Collection. Similarly, foo7 and foo10 are removed in favour of foo13. For the
second and third invocation in Figure 11 the same set of candicates is obtained.

In all cases, we ended up with a singleton set, but the our resulotion method does not demand
this, contrary to the original resolution method. For the code fragment of Figure 12, for example,
both declarations of bar pass method resolution.

5.2 Constraint generation

Constraint generation is our version of the phase of constraint decomposition. Recall that the
original type inference phase does not check for inconsistencies. Inconsistencies are discovered
later during the type checking phase. This choice leads to type error messages that cannot explain
very well what the problem is, because information has been lost between the type inferencing
and type checking phase.

Consider the code fragment in Figure 13. Here, the type parameter T is instantiated to Number,
because l1 is passed as the first argument. But unfortunately, List<? extends Number> is not
a subtype of List<? super Number>. In this situation, an implementation based on the JLS
will typically say that foo cannot be applied to the variables l1 and l2, but it cannot for example
explain to the programmer why the error occurred or how to fix it: it does not have enough
knowledge to do so.

In our extended version, we provide the constraints solver, introduced in detail below, with
more constraints that will ensure that a type is inferred only if all type constraints are satisfied
and no type-checking error will occur. To that purpose, the original constraints decomposition
algorithm is extended to generate additional constraints, which are left alone during decomposition.
For the example in Figure 13, the new constraints generation algorithm will collect the following
constraints:

{T = Number} d

{List<? extends Number> <: List<? super T>}

This is a general principle when improving type error messages: one of the operands, the sim-
plified one on the left, serves to easily decide type correctness, while the right operand provides the
type error construction process with additional information where the inconsistent type variables

15



Figure 14: The constraint solving phase

assignments came from. The constraint decomposition phase, only applied to the left operand of
d, is exactly the same as for the original process.

Coming back to the example of Figure 11, we generate constraints for the invocation of foo at
line 20 to type check. The only remaining candidate method is foo13, in which case we obtain

{T = Integer, Integer <: T, T <: Number} d ∅

For the second invocation we obtain

{T = Double, Number <: T, T <: Integer} d ∅

and for the third
{T = Number, Double <: T}d

{LinkedList<? extends Number> <: LinkedList<? super T>}

5.3 The constraint solving phase

In Figure 14 we summarize the constraint solving phase. In the pre-check for bounds, we check
that all types in the atomic constraints of a type parameter T satisfy the bounds of T. If not, a
type error message is generated for each failed check. Then it infers the instantiations for every
type variable, based on the decomposed constraints (the left operand of d). This either results in
a substitution or a list of type error messages, in case of failure. If there are still bounds for T left
unchecked, e.g., they involve also other type variables, then these bounds checks are performed
next. Finally, we verify that the non-atomic constraints (the right operand of d) are satisfied.

The reason for doing the pre-check is best illustrated by an example. Consider the following
set of constraints

{String <: T, Integer <: T, T <: Number} .

The original algorithm instantiates T to Object1, the lub of String and Number. Then it proceeds
to instantiate possible other type variables, and afterwards during type checking it finds that
Object is not a subtype of Number. Since the type checker does not have information available
about how T got its type, it can’t really say what went wrong. If on the other hand, the bound
had been checked immediately (or alternatively, information about the inference of T had been
retained), we would have found that String <: T is not consistent with T <: Number; and choosing
any type that is supertype of String is not going to help. In other words, for constraints of the
given form, it can be determined at an early stage that an inconstency will result, and a type error
message can be generated immediately.

A second modification we made is to tune the order in which type inference instantiates the type
variables. It is well-known that for the polymorphic lambda-calculus the different implementations

1Actually, the type is somewhat more complicated, but never mind that now.

16



<T, S extends T> void foo(Map<S, S> a, T a){
...
Map<Integer, String> m = ...;
foo(m, 1);

Figure 15: Order of inference matters.

of the type system solve constraints in different orders and that that influences the error message
the implementations provide [8, 6].

In our inference algorithm, type variables are considered separately, but because we involve the
bound constraints at an early stage, the inferred type for a particular type variable may impact
that of another. To illustrate, consider the code fragment in Figure 15.

If we first infer the type of S, then we cannot exploit the information that the bound S extends
T might give us. On the other hand, if we first infer T (to be Integer, obviously), then we obtain
an additional pre-check bound for S: S <: Integer. During the pre-check we can then establish
that the constraint S = Integer is consistent with the bound and S = String is not.

We have chosen the following method to order the type variables involved: a type variable U
depends on a type variable V, if V occurs in a bound for U. In our example, S depends on T. The
idea is then to first infer type variables on which many other type variables depend. The reasoning
is that an instance for such a type variable provides the most information, i.e., the largest number
of type variables can potentially profit. If we count dependencies transitively for the following
type parameter declaration

<T, S, R extends Map<S, T>, U extends Map<R,S>>

then we obtain 3 for T, 4 for S, 2 for R and 1 for U. Hence, type inference should start by inferring
S.

5.4 The inferencer

The large rounded rectangle in Figure 14 is the core of the constraint solving phase, where inference
takes place. The algorithm processes the type variables one at the time, in the order obtained in
the way described in the previous section.

Suppose we now deal with type variable T, and E, P and B contain the type equality, supertype
and subtype constraints involving T, respectively. Then Figure 16 gives the pseudocode to describe
the inference process.

We conclude this section by revisiting the running example of Figure 11.
For the first invocation we found

{T = Integer, Integer <: T, T <: Number} d ∅ .

In this case, there is a single equality constraint for T, so we infer T to be Integer and proceed to
verify the remaining constraints: the supertype and subtype constraints turn out to be satisfied
as well. Because the set of non-atomic constraints is empty, and therefore trivially satisfied, the
invocation on line 20 invokes the method on line 13 correctly and unambiguously.

For the second invocation we obtained

{T = Double, Number <: T, T <: Integer} d ∅ .

The type variable T is inferred to be Double, but in this case both subtype and supertype con-
straints fail to be satisfied. Hence an error message is generated.

Finally, for the third
{T = Number, Double <: T}d

{LinkedList<? extends Number> <: LinkedList<? super T>}
we infer T to be Number, and since Double <: Number, the constraints are satisfied. However, the
non-atomic constraint is not satisfied, so the method invocation fails to type check.

17



i f empty E then
i f empty P then

i f empty B then
set T = Object

else
set C = constraints from the context
i f T inferred on the basis of union(B,C)

set T = inferred type
else
generate error message

else
set A = { alpha | alpha <: T in P }
set T = lub(A)
i f B are satisfied then
okay

else
generate error message

else
i f all constraints in E of the form T = X then

set T = X
i f union(P, B) are satisfied then
okay

else
generate error message

else
generate error message

Figure 16: A pseudocode algorithm for type inference

18



Figure 17: Architecture of our extension to the JastAdd EJC

6 Implementation

We have implemented our work as an extension to the JastAdd Extensible Java Compiler (JastAdd
EJC) [2], which in turn was built on top of Jastad [5]. The latter is an attribute grammar com-
piler that allows to specify compiler semantics in an aspect-oriented way by means of declarative
attributes and semantic rules using ordinary Java code.

For the convenience of the weak method resolution, the ordering of type variables and the
computation of greatest lower bound, have been implemented using JastAdd. We have contributed
the module that we have developed for computing the greatest lower bound to the maintainers of
JastAdd EJC; it has been added to the repository.

The architecture of the resulting compiler can be found in Figure 17: the type checker sends a
method invocation which fails to type check to the weak method resolution which returns a set of
methods. The type checker then generates type constraints for the method invocation and each
method declaration using the constraint generation algorithm described in Section 5.

The type checker passes these constraints along to our constraint solver together with the
return type of a method declaration and the type of the lvalue if the invocation appears in an
assignment context. The constraint solver will then solve the constraints and return an error
message to the type checker if the constraints are unsatisfiable. The error messages returned by
the constraint solver are maintained and collected by a separate error manager. This is mainly to
facilitate a number of heuristics we have implemented to suggest fixes for the type error. Due to
reasons of space, we report on the heuristics in a separate paper.

Although we have not discussed anything but method invocation in the paper, our extension
already gives some limited support for constructor invocations.

6.1 Using the system

To use the system you need subversion (http://subversion.tigris.org/) and Ant (http://ant.apache.org).
Once you have these installed on your system, simply execute

svn co https://svn.cs.uu.nl:12443/repos/Swa5/project/

The README file that you obtain in the process explains how to proceed: run ant in the Java1.5Backend
directory, and afterwards proceed to the bin directory where the invocation java JavaCompiler
-help tells you how the compiler should be invoked. The subdirectory testing contains a large
number of example programs on which to try out the compiler. Most of these programs also
explain in comments which constraints are generated and how these are used to determine type
(in)correctness. Note that many error messages also suggest a problem fix using heuristics that
we have not discussed in this paper; feel free to ignore these. The developments in this paper are
responsible for the remainder of the error message. Have fun.

19



7 Conclusion, Reflection and Future Work

We have described how the type checking process of Generic Java can be extended to provide
more informative type error messages, particularly for method invocations that involve generics.
The main ideas are to keep track of more information and either to keep that information around
longer or to perform certain checks earlier to benefit from information still being around.

Another general idea that we have applied is that if you want to say something sensible about,
e.g., the methods a programmer might, erroneously, want to call, you should not dismiss eligible
methods soon in the type checking process. As a general rule, you should make the implementation
roomier, allowing for mistake and not judge and dismiss too soon.

We have illustrated our work by a number of examples and have made a download available
in which our work is implemented as an extension to the JastAdd Extensible Java Compiler.

There are plenty of directions for future work. The first is to perform a more global analysis
to come up with an even better estimate of what might be the mistake. For example, type
inference is highly compartmentalized in the JLS, but if a lack of understanding on the part of
the programmer of this particular fact is the reason for the mistake, we can only find out by going
beyond the compartments.

Furthermore, although we have weakened method resolution somewhat so that we may deter-
mine the method the programmer might have wanted to invoke, there are plenty variations left
unconsidered: why not also consider methods that are not visible or accessible and suggest to
modify the program so that they become visible and accessible. There is, in fact, a huge number
of possibilities here. To have some idea in which direction to look it would be really helpful to
know what kind of mistakes programmers make (if the mistake does not involve only generics).
Program logging systems like BlueJ might be able to help us there [7].

We would like to conclude with a number of lessons we have learnt during our investigation:

• The combination of subtyping and generics is a hard one.

• Programmers: beware of a lack of type information propagation, especially if you come from
a background of the polymorphic lambda-calculus.

• Compiler builders: be thankful for the lack of propagation, because it makes it easier to
explain type errors.

• Leave the (very complicated) type checking process intact. It avoids needing to prove that
the existing process was not changed in any essential way.

• Beware for mistakes in the implementation of the current JLS, even in industry-strength
compilers.

• The amount and complexity of our work suggests that the current JLS is not declarative
and intuitive enough to be used by (novice) programmers.

Smith and Cartwright [10] show how the Java JLS might be “fixed”. Although soundness
and completeness are obviously important issues, we believe that intuitiveness and elegance of the
type system is important too, particularly for a language that may well be the first programming
language novice programmers encounter. We therefore hope that any fix to the JLS will take those
properties into consideration as well.

Acknowledgments

We acknowledge the involvement of Martin Bravenboer during the early stages of this project.

References

[1] L. Damas and R. Milner. Principal type schemes for functional programs. In Principles of
Programming Languages (POPL ’82), pages 207–212, 1982.

20



[2] T. Ekman and G. Hedin. Jastadd extensible java compiler.
http://jastadd.cs.lth.se/web/extjava.

[3] N. el Boustani. Improving type error messages for generic java.
http://www.cs.uu.nl/wiki/Hage/MasterStudents.

[4] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language Specification. Addison-Wesley
Professional, third edition, July 2005.

[5] G. Hedin and E. Magnusson. The jastadd system - an aspect-oriented compiler
construction system. Science of Computer Programming, 47(1):37–58, April 2003.
http://www.cs.lth.se/ gorel/publications/2003-JastAdd-SCP-Preprint.pdf.

[6] B. Heeren. Top Quality Type Error Messages. PhD thesis, Universiteit Utrecht, The Nether-
lands, 2005. http://www.cs.uu.nl/people/bastiaan/phdthesis.

[7] M. C. Jadud. A first look at novice compilation behaviour using BlueJ. Computer Science
Education, 15(1):25 – 40, March 2005.

[8] O. Lee and K. Yi. A generalization of hybrid let-polymorphic type inference algorithms.
In Proceedings of the First Asian Workshop on Programming Languages and Systems, pages
79–88, National university of Singapore, Singapore, December 2000.

[9] R. Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17:348–375, 1978.

[10] D. Smith and R. Cartwright. Java type inference is broken: Can we fix it? In Proceedings of
the 23rd Conference on Object-oriented programming, systems, languages, and applications
(OOPSLA ’08), pages ??–??, 2008.

[11] M. Torgersen, C. Plesner Hansen, E. Ernst, P. von der Ahé, G. Bracha, and N. Gafter. Adding
wildcards to the Java programming language. In Proceedings of the 2004 ACM Symposium
on Applied Computing (SAC ’04), pages 1289–1296, New York, NY, USA, 2004. ACM Press.

[12] J. Yang. Explaining type errors by finding the sources of type conflicts. In Greg Michaelson,
Phil Trinder, and Hans-Wolfgang Loidl, editors, Trends in Functional Programming, pages
58–66. Intellect Books, 2000.

21


