Inclusion /Exclusion Meets
Measure and Conquer:

Exact algorithms for counting dominating
sets

Johan M. M. van Rooy

Jesper Nederlof
Thomas C. van Dyk

Technical Report UU-CS-2008-043
November 2008

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl



ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089

3508 TB Utrecht
The Netherlands



Inclusion /Exclusion Meets Measure and Conquer:
Exact algorithms for counting dominating sets

Johan M. M. van Rooij Jesper Nederlof Thomas C. van Dijk

Abstract

We look at the principle of inclusion/exclusion from a branching perspective. More specifi-
cally, we combine traditional branching with inclusion/exclusion based branching and analyse
such algorithms by means of measure and conquer. This branching is combined with path
decomposition techniques on sparse instances, and some reduction rules.

We consider the standard set cover formulation of dominating set and present an algo-
rithm that counts the number of dominating sets of each cardinality in O(1.5048™) time.
This algorithm computes much more information than the previous fastest decision algorithm
for minimum dominating set in slightly less time. For counting the number of minimum
dominating sets, our algorithm significantly improves previous results.

When restricted to c-dense graphs, circle graphs, 4-chordal graphs or weakly chordal
graphs, our combination of branching with inclusion/exclusion leads to significantly faster
counting and decision algorithms than the previously fastest algorithms for dominating set.

All results can be extended to counting (minimum) weighted dominating sets when the
size of the set of possible weight sums is polynomially bounded.

1 Introduction

The field of exact exponential time algorithms has been an area of growing interest over the last
few years. Many techniques have been developed or rediscovered, and various surveys on the field
have been written [12, 18, 24, 26].

Most notable among these new or rediscovered techniques are measure and conquer [11, 13]
and inclusion/exclusion [2, 6, 19]. Both techniques have been demonstrated on the SET COVER
problem in early stages: measure and conquer was introduced on a set cover formulation of
MINIMUM DOMINATING SET, and in [6] inclusion/exclusion was used for counting set coverings
and set partitionings.

The best known shape of inclusion/exclusion is a sum over some powerset (for examples, see
[6, 4, 19]). However, the fundamental branching perspective from [2] is more direct and powerful.
In this paper, we will apply this branching perspective to set cover instances obtained from the
set cover formulation of dominating set that has been used to introduce measure and conquer [11].

In this setting, we use a traditional branching rule to branch on a set, or an application of
inclusion/exclusion to branch on an element. The sole application of either one of these strategies
gives a typical exhaustive search or the aforementioned shape of inclusion/exclusion sum, respec-
tively. We use both branching strategies in unity obtaining a mized branch and reduce algorithm
that can be analysed using measure and conquer.

Until 2004, no exact algorithm for MINIMUM DOMINATING SET beating the trivial O(27n®())
was known. In that year, three algorithms were published: Fomin et al. obtained an O(1.9379™)
time algorithm [15|, Randerath and Schiermeyer an O(1.8999™) time algorithm [22], and Grandoni
an O(1.8019™) time algorithm [17]. One year later, the algorithm of Grandoni was analysed using
measure and conquer giving a bound of O(1.5137™") on the running time [11]. This was later
improved by Van Rooij and Bodlaender [25] to O(1.5063™).

When generalised to counting minimum dominating sets, there is an algorithm by Fomin et
al. running in time O(1.5535™) [10]. This algorithm combines traditional branching with dynamic



programming over path decompositions: an approach we will follow for our own algorithm as
well. Related to this is a result by Bjorklund and Husfeldt showing that the number of minimum
dominating sets in a cubic graph can be counted in O(1.3161™) [4] using inclusion/exclusion in
combination with dynamic programming over path decompositions. Although these combinations
are known, there are, to our knowledge, no existing algorithms combining measure and conquer
with inclusion/exclusion.

Our algorithm is even more general. It counts the number of dominating sets in an n-vertex
graph of each size 0 < k < n, with an upper bound on the running time of O(1.5048™). This is
slightly faster than even the current fastest algorithm that computes a minimum dominating set.
Thus, we also obtain the currently fastest algorithm for computing a minimum dominating set.

Gaspers et al. [16] show that algorithms for the set cover formulation of dominating set
can be combined with dynamic programming over tree decompositions to obtain faster running
times for the dominating set problem restricted to some graph classes. These classes are c-dense
graphs, chordal graphs, circle graphs, 4-chordal graphs and weakly chordal graphs. We show that
our mixed branching approach with inclusion/exclusion branches works even better on four of
these graph classes; we not only improve these results because we have a faster algorithm for the
underlying set cover problem, but more significantly improve these results by exploiting vertices
of high degree twice by using both techniques. Moreover, we also count the number of dominating
sets of each size, in contrast to the previous results that compute a single minimum dominating
set.

Our paper is organised in the following way. We begin by introducing the problems and ter-
minology in Section 2. Thereafter, we will discuss how to use inclusion/exclusion to branch in
Section 3. Then a description of the algorithm and its reduction rules is presented in Section 4,
followed by a measure and conquer analysis in Section 5, and an analysis of the dynamic program-
ming over path decompositions in Section 6. We conclude with the consideration of the special
graph classes in Section 7.

2 Preliminaries

We consider the counting variant of the MiINIMUM DOMINATING SET problem on an n-vertex
graph G = (V, E).

#MINIMUM DOMINATING SET
Instance: A graph G = (V, E).
Question: How many minimum dominating sets exist for G, i.e., how many subsets V! C V
with |V’| minimal such that for all w € V\V’ there is a v € V' for which
(u,v) € E?

We solve the #MINIMUM DOMINATING SET problem by considering dominating sets of all sizes
and solve #k-DOMINATING SET for all 0 < xk < n.

#k-DOMINATING SET
Instance: A graph G = (V, E) and a positive integer k.
Question: How many dominating sets of size x exist for G, i.e., how many subsets V! C V
with |V’| = k such that for all u € V\V” there is a v € V' for which (u,v) € E?

We use different perspectives on this problem. These will give us additional insight into the
structure of the problem. We will often switch between these different perspectives throughout
the presentation of our algorithm.

As is common in contemporary work on dominating set algorithms, we formulate the problem
as a SET COVER problem [17]. In our case, this means formulating #k-DOMINATING SET as
#k-SET COVER.



#k-SET COVER
Instance: A collection S of subsets of a finite universe U and a positive integer «.
Question: How many set covers for U of size k does S contain, i.e., how many subsets
S’ C S with |S’'| = k such that every element of U belongs to at least one
member of §’.

Transforming #x-DOMINATING SET to #x-SET COVER is straightforward: for every vertex in
the dominating set instance introduce both an element in ¢ (‘every vertex has to be dominated’)
and a set in S containing the elements corresponding to the vertices in its closed neighbourhood
(‘a vertex dominates itself and all its neighbours’). We often speak of a set cover instance S over
the universe &/ without specifying ¢, in that case, it is defined implicitly by & through ¢ = US.
Using this perspective, we do not speak of the degree of a vertex but of the cardinality |S| of a set
S and the frequency of an element e.

In this paper, however, we deviate from this standard formulation by considering S to be a
multiset of sets. Our multiset notation is derived directly from standard set notation. We use
S™ e § if we want to stress that the multiplicity of S in S is m, and use set(S) for the underlying
set of S. When quantifying over S, we will always consider a set S € S its multiplicity number of
times, thus [{S € S}| = |S|. Mostly, we want reason about the underlying set of S, but we will
also need the multiplicities. Not to confuse both, we define the frequency of an element freq(e) to
be the number of distinct sets in which an element e occurs. In addition, we use #(e) if we want
to include set multiplicities; this represents the total number of sets in which an element e occurs.
Similarly, we let |S| be the number of distinct sets in S, ignoring set multiplicities, while we let
#(S) be the total number of sets in S, respecting multiplicities.

Furthermore, let S[e] be the collection of sets in S containing the element e, and let U[S’] be
the subset of the universe & with elements from &’ C S (U[S'] = US’). Finally, we use &' C § if
S’ CSand & # S, and we use {0°} = 0 while {#'} = {0}.

In order to express the size of a set cover instance, the dimension of a set cover instance
is defined as dim(S,U) = |S| + |U|. Hence a dominating set instance on an n-vertex graph is
transformed to a set cover instance of dimension d < 2n.

Following [10], the third (and final) way we look at the problem allows us to use strong
techniques from graph theory on set cover instances.

Definition (Incidence graph) Given a set cover instance S over the universe U, the incidence
graph Gg of S is the bipartite graph with red vertices Vreq = S and blue vertices Vpiye = U.
Vertices S € Vgeq and u € Vpyye are adjacent if and only if u € S.

Now consider a solution to a SET COVER instance. This corresponds to a subset V’ of the red
vertices Vgeq of the incidence graph such that all blue vertices are dominated (adjacent to a red
vertex in V'). We call such a set a red/blue dominating set.

#r-RED/BLUE DOMINATING SET
Instance: A graph G = (Vgea U VBiue, E) and a positive integer s
Question: How many red/blue dominating sets of size x exist for G, i.e., how many subsets
V' C Vgeq with |V'] < k such that for all u € Vi, there is a v € V' for which
(u,v) € E.

Observe that #k-SET COVER is equal to #k-RED/BLUE DOMINATING SET on the correspond-
ing incidence graph.

Having introduced the problem, we need some additional notation. Let V/ C V' be a subset of
the vertices of G; we denote the subgraph induced by V' by G[V’]. Furthermore, we denote the
maximum degree of a graph G by A(G).

Let n; and mo be lists of numbers of equal length [. We define n; + ny and ny — no by
piecewise addition and subtraction. We denote the numbers in the list ny by [n1]o up to [n1];—1.
Furthermore, we add an element e to the front or back of a list by using the notations (e; n1) and
(n1; e), respectively. When using this notation, we write (n1; ¢™) when adding the element e to
the back of the list m times.



3 Inclusion/Exclusion Based Branching

We will begin by showing that one can look at Inclusion/Exclusion from a branching perspective,
see also [3]. In this way, we can Inclusion/Exclusion branch on an element in a SET COVER
instance in the same way as one would normally branch on a set.

The canonical branching rule for SET COVER is branching on a set. Sets are optional in a
solution: either a set is in the solution or it not. In both branches, the problem is simplified. If we
discard the set, we decrease the number of sets. If we take the set, we decrease the number of sets
and in addition, this set covers all its elements and those elements can therefore be removed from
the instance, decreasing the number of elements as well. The minimum set cover for the instance
is either the one returned by the discard branch or the one returned by the take branch with the
branch set added to it.

The counting problem can also be handled by branching steps of this type because the total
number of solutions is the sum of both branches. We can do this because sets are optional in
a solution. The branch on a set can be denoted as adding the number of solutions where it is
required to take the set to the number of solution where it is forbidden to take the set:

OPTIONAL = REQUIRED + FORBIDDEN

If we are counting k-set covers and we branch to take a set (that is, in the ‘required’ branch), then
we should count (k — 1)-set covers in that branch. In the ‘forbidden’ branch, we do not decrease
K.

We now consider branching on an element [3]. Such a branching step is unusual, and may ap-
pear strange at first sight, as elements are not optional. Inspired by Inclusion/Exclusion techniques
and because we count the number of solutions, we can, however, rearrange the above formula to
give:

REQUIRED = OPTIONAL — FORBIDDEN

That is, the number of ways to cover a certain element is equal to the number of ways to optionally
cover it, minus the number of ways to not cover it. This is interesting because this branching rule
also simplifies the instance in both branches. If we choose to make it optional to cover a certain
element, we can remove that element from every set it occurs in, reducing the size of sets. If
we choose the element forbidden, then we have to remove every set in which the element occurs,
which is an even greater reduction in size. We have not selected a set to be in the cover in both
branches, so in both branches we are looking for x-set covers.

Consider a branching algorithm without reduction rules and without employing branch-and-
bound. If the branching rule is based on an optional property of the problem, as is typically the
case, the algorithm is an exhaustive search. A similar concept exists for an algorithm in which
branching is based on a required property, which we call inclusion/exclusion based branching or
simply IE-branching: without reduction rules, this is an inclusion/exclusion algorithm.

To see this, let ¢/, be the number of set covers of cardinality , and let a(X) be the number
of sets in S that do not include any element of X. Consider the branching tree after exhaustively
applying IE-branchings. In each subproblem in this tree, each element is either optional, or
forbidden. We look at the contribution of a leaf to the total number computed when X is the
set of forbidden elements in this leaf. Notice that the 2/Y! leaves represent the subsets X C U.
A minus sign is added for each time we have entered a forbidden branch, so the contribution
of this branch will be (—1)/X! times (“*)). This last number equals the number of set covers of
cardinality x where it is optional to cover each element not in X and forbidden to cover an element
in X. All together, this gives us the following expression for ¢/ :

AN
XCu "
Bjorklund et al. [6] give the following expression for c:

o= 3 (~)la(x)"

xcu



These expressions are identical except for the fact that the formula of Bjorklund et al. counts the
number of set covers ¢, where they allow a single set to be picked multiple times.

Consider the effect of the branching rules on the incidence graph. A branch where we take a
set does exactly the same operation on the graph as a branch where we forbid an element, only the
former is on a red vertex while the latter is on a blue vertex. The same relation holds between a
branch where we discard a set and a branch where we make an element optional: both branching
types are symmetric to each other. This symmetry is not complete, however, because for other
purposes the red and blue vertices are not equivalent. That is, blue vertices must be dominated
by red vertices, which leads to different reduction rules depending on the colour of a vertex.

4 An Algorithm for Counting Dominating Sets

We now give an algorithm (Algorithm 1) for the #x-DOMINATING SET problem. Our algorithm
works on the #x-SET COVER transformation of the problem and returns a list containing the
number of set covers of size x for each 0 < k¥ < n. It is a branch and reduce algorithm, branching
both on sets and on elements, following the methodology discussed in Section 3. This section will
be devoted to the description of this algorithm except for a subroutine that employs pathwidth
techniques. This subroutine is discussion in Section 6. We will start by describing two simple
subroutines often used by Algorithm 1, after which we will describe Algorithm 1 from top to
bottom.

The first subroutine eliminate-set(5,S) removes the set S and all its elements from S in
such a way that while S is removed any set that possibly turns into an empty set due to the
removal of the elements of S remains as an empty sets in S. If S has multiplicity greater than
one, then all copies of S are removed as well. Secondly, eliminate-element(e,S) removes the
element e and all sets in S containing e.

eliminate-set(S,S) = {S'\S | S’ € (S\ {S})}

eliminate-elem(e,S) =S\ {S€S|eec S}

We want to emphasise here that when any of these two subroutines are called, then not only the
the set S or the element e is removed, but also the elements or sets directly involved with it.

We are now ready for a complete, top to bottom, description of Algorithm 1. The algorithm
takes as input a multiset of sets S forming a SET COVER instance (S,U) over the universe Y = US,
and it returns a list of length #(S) + 1 containing for each x, 0 < k < #(S), the number of set
covers of size exactly k. Before branching or applying pathwidth techniques, the algorithm tries
to reduce the instance to a simpler instance in polynomial time. To this end, it employs a series
of reduction rules that form the first part of the algorithm. These will be described now.

Base Case

On some inputs, the set cover instance is completely reduced to a multiset of empty sets by the
reduction rules below. This is handled by our base case. In this case, there are no elements left
to cover and we have m (empty) sets left to choose from. Thus, the number of set covers of size
r equals (') which is returned for all 0 < x < m.

Unique Elements

Whenever there exists an element e of frequency one in U, the set S containing e must belong to
every set cover because otherwise e will not be covered. Therefore, the algorithm takes this set
and goes in recursion on the simplified instance returned by eliminate-set(S,S).

When there exists an element e which only occurs in a single set S from which there exist m
copies, the algorithm does something similar. At least one of these sets must belong to the set
cover, but regardless of the number of copies chosen in the cover, the same simplified subproblem
is generated by the call to eliminate-set(S5,S). Therefore, we can use the result of this one
recursive call to compute the number of set covers of size x as if we considered all possible number
of copies of S the algorithm could have taken. The algorithm does so by summing over all possible
number of sets i it could have taken, and for each such i, it computes the number of choices (T)



Algorithm 1 Count-SC(S,d)

Input: A multiset of sets S over the universe U = US.
Output: A list of length #(S) + 1 containing the number of set covers of (S,U) of each size

29:

0 <k <#(S).

//reduction rules

if § ={0™},m > 0 then //base case
return (7). (7)., (7)

else if Je € S™ € S : freq(e) = 1 then //unique elements
Niake — Count-SC(eliminate-set (5,S))
return (ng,n1,...,n4(s)), where:

Nk = 2?21111(:;7(??/{7#(8)+m) (T) [ntakelr—i
else if Je, e’ e U : Sle] C S[e’] then //subsumption
return Count-SC({S\{¢'} | S € S})
elseif ) CcC C S : {Sle]le € U[C]} =C then //connected components
Let C = S\C, n¢ = Count-SC(C), nz = Count-SC(C)
return Merge-Components(nc,ng)

: end if
: //implicit reduction rule!: identical sets

: //branching or path decomposition
: Let S™ € S be of maximum cardinality and not an exceptional case?

Let e € U be of maximum frequency, also not an exceptional case?

: Preference order P: S, < S5 < S¢ < Es < E¢ < S7 < E7 < E>g= S>3
: if S| and Efeq(e) are too small to be in P then //path decomposition

return Count-SC-PW(S)

: else if Egeq(e) is in the order P and Egeq(e) £ Sis) then //element branch

Noptional — Count—SC({S’\{e} | S’ e S})
N forbidden = (Count-SC(eliminate-elem(e,S)); O#(e))
return Noptional — M forbidden

: else //Sg| is in the order P and Sig| £ Efeq(e) //set branch

Ntqke = Count-SC(eliminate-set(S,S))
Ndiscard = (COUHt—SC (S\{Sm})7 Om)

return (ng,n1,...,ns)), where:
Nk = (Z?;lnm(:);?;?ﬁ_|s|+m) (T) [ntake]n—z) + [ndiscard]n
end if

! The multiset representation makes the identical set rule implicit. We emphasise that identical sets
created by branching are handled by multiplicity counters.

2 There are some exceptional combinations of cardinalities of sets and frequencies of elements on which
the algorithm will not branch. These will be handled by the path decomposition phase. For a complete
list of these cases see Overview 1.




times the number of set covers of size kK — i from the recursive call. See also, lines 5 and 6 of the
pseudo code.

Subsumption

If there exists an element e € U which occurs in every set (and possibly in more sets) in which
another element e’ € U occurs, then every set cover that covers e also covers ¢’. In this case, we
can remove €' from the current instance and obtain a simpler instance to which we recursively
apply our algorithm.

Connected Components

If the incidence graph contains multiple connected components, then we can solve the problem on
each component separately and merge the results. The subroutines Merge-Components(nc,ng)
performs this merging. Let C, C be two disjoint sets of connected component of S and let nc, nas
be the solutions to these two subproblems. In order to compute the number of set covers of size
x for C U C, this subroutine sums over all possible sizes i of set covers for C and multiplies this
number by the number of set covers for C of size x — i.

Merge-Components (n¢,n¢g) = (no, N1, - -, Ny cue))

min(k,#(C))
where: n, = Z [ncli x [nels—i
i=max(0,k—#(C))

Identical Sets

Remind that the unique elements rule also handles elements that occur only in multiple copies of
the same set. The idea behind this is that the same subproblem will be generated independent
of the number of these identical set we choose, and this will be used throughout the algorithm.
Therefore, we could say that our algorithm considers identical sets to be ’removed’ and uses
multiplicity counters it stead. By the notation and definition from Section 2, we will also not
count identical sets twice in the dimension of the problem. Hence, we have an implicit reduction
rule removing identical sets. This we use to our advantage in the analysis of the running time in
Section 5.

Having treated the reduction rules we now continue with the branching steps of the algorithm.

When no reduction rules are applicable, the algorithm chooses a set of maximum cardinality
from the sets in the instance that are not exceptional cases, and it chooses an element of maximum
frequency from the instance that is also not an exceptional case. We postpone the discussion of
these exceptional cases for a moment, and remark that this choice for maximum cardinality and
frequency resembles choosing more efficient branchings. This is so, since if an elements frequency is
larger, then more sets are excluded in the forbidden branch and more sets are reduced in cardinality
in the optional branch, and similar considerations exist for set branches.

The algorithm needs to choose whether it is going to branch on a set or on an elements. For
this it uses the following preference order P.

P S4<55<56<E5<E6<S7<E7<E232828

In this ordering, S; < E; means that the algorithm prefers to branch on an element of frequency
j over branching on a set of cardinality i.

Notice that sets of cardinality at most three and elements of frequency at most four do not
occur in the preference order P. These cardinalities are considered to be too small and these
frequencies too low for efficient branching. Instances on which no efficient branching is possible
are handled by path decomposition techniques by calling Count-SC-PW(S).

The exceptional cases are described in Overview 1. These exceptional cases exist because in the
analysis in Sections 5 and 6 we often know the neighbourhood of a vertex representing a set or an
element in the incidence graph. Such neighbourhoods are important for the worst case behaviour of
the algorithm. And, for some neighbourhoods, despite the general rule imposed by the preference
order, it is more efficient to handle them by the path decomposition part of our algorithm than



There are exceptional cases of elements on which, despite the preference order, Algorithm 1 does
not branch. These cases represent local neighbourhoods of sets or elements which would increase
the running time of the algorithm when branched on, but can be handled by dynamic programming
on a path decomposition quite effectively. The exceptional cases are:

1. Elements of frequency five that occur in many sets of small cardinality. More specifically, if
we let a 5-tupple (s1, $2, $3, S4, S5, S¢) represent a frequency five element occurring s; times
in a cardinality ¢ set, then our special cases can be denoted as:

(la 47 07 0; 0; 0)'(07 5; 0; 0; 07 0)'(17 3; 17 07 07 0)'(0a 47 17 0; 0; 0)'(17 2; 2; 0; 07 0)
(Oa 37 27 Oa Oa 0)_(]—7 ]-a 3; Oa 07 0)_(07 2; 37 07 07 0)_(0a ]-7 47 Oa Oa 0)_(]—7 Oa 4; Oa 07 0)
(1a 37 07 ]-a Oa 0)_(07 4) Oa ]-a 07 0)_(]—7 2; ]-7 ]-7 07 0)_(0a 37 ]-7 ]-a Oa 0)_(]—7 ]-a 2; ]-a 07 0)
(1,0,3,1,0,0) - (1,2,0,2,0,0)-(1,3,0,0,1,0)-(1,2,1,0,1,0) - (1,3,0,0,0, 1)

» Ly Vo » Yy Ly Uy » Vo Yy by

» Yy by » Vs

2. Sets of cardinality four, five or six, that have one of the above elements contained in them.

Overview 1: Exceptional Cases for Algorithm 1

by branching. These neighbourhoods are our exceptional cases. How this influences the running
time of our algorithms will become more clear from the analyses in Sections 5 and 6.

We conclude the description of Algorithm 1 by some remarks on the pseudo code of the branch-
ing steps. In the branch where an element e is forbidden, a number of zeros is added to the list
containing the number of set covers of each size (line 23). This is done because the number of
set covers of size k for n — #(e) < k < n equals zero since no sets containing e may be chosen.
Also, we remark that when the algorithm branches on a set of multiplicity m, it sums over all
possible number of identical copies it can take in the cover (line 28). This works in the same way
as explained with the unique elements rule.

5 Measure and Conquer Analysis

We analyse Algorithm 1 using the measure and conquer methodology [11, 13]. To this end, we
introduce a non standard complexity measure k(S,U) on problem instances; we introduce weight
functions v, w : N — [0, 1] giving weight v(i) to an element of frequency ¢ and weight w(7) to a set
of cardinality ¢, respectively. This gives us the following complexity measure:

kSU)y= > w(S)+ Y vlfreq(e))

Seset(S) ecU

This measure is identical to the one used in [11, 25]. Notice that & is at most the dimension d of
the set cover instance, and hence if we prove the running time of the algorithm to be O(a*), we
have also proved a running time of O(a). For convenience, we let Av(i) = v(i) — v(i — 1) and
Aw(i) = w(i) —w(i — 1) be the complexity reductions gained by reducing the frequency of an
element or the cardinality of a set by one.

We start the analysis of the running time of Algorithm 1 by bounding the number of subprob-
lems generated by branching.

Lemma 1 Let Ny (k) be number of subproblems of measured complexity h generated by Algorithm
1 on an input of measured complezity k. Then:

Ny (k) < 1.22670%"

Proof. To correctly analyse the branching, we will use the following constraints on the weights:




1. v(0) =v(1) =w(0) =0 4. Av(i) > Av(i+1) foralli > 1
2. Av(i)>0foralli<1 5. Aw(i) > Aw(i+ 1) for all i > 1
3. Aw(i) >0foralli<1 6. 2Av(5) <wv(2)

First, we observe that we can set the weight of elements of frequency one and sets of cardinality
zero to zero because they are removed by the reduction rules or ignored in the branching phase,
respectively. Second, we do not want the complexity of our instance to increase when decreasing
the frequency of an element or the cardinality of a set, therefore weights must be increasing. This
covers restrictions 1-3. Restrictions 4-6 will be explained during the analysis below.

Consider branching on an element e contained in s; sets of cardinality ¢. In the branch where
e is optional, the element e is removed and all sets containing e are reduced in cardinality by one.
And, in the branch where e is forbidden, e is removed together with all sets containing e. The
removal of these sets also results in a reduction of the frequencies of all other elements in these sets.
This leads to two subproblems which are reduced in complexity by Akoptionar and Akforsidden
respectively.

Akoptionat = v(freq(e)) + Z siAw(i

Akforbidden = v(freq(e)) + Z siw(i) + Av(freq(e) Z (i—1)s
i=1

Here we bound each extra reduction of the frequency of an element because of the removal of a set
by Awv(freq(e)). This is correct because when we branch on an element, it is of highest frequency
and we have the constraints Av(i) > Av(i + 1) (Constraint 4), and this frequency is at least five
and 2Av(5) < v(2) (Constraint 6). Constraint 4 assures that each time we reduce the cardinality
of a set more than once, the values Aw(7) for ¢ < freq(e) are large enough, and Constraint 6 handles
the fact that an element can be completely removed if it occurs only in removed sets. Without this
constraint, we could have taken all the weight from this element already since v(1) = 0, leaving
none for its final occurrence.

Now consider branching on a set S containing e; elements of frequency i. As discussed in
Section 3, the behaviour is similar to an element branch, but with the roles of elements and sets
interchanged. In the branch where S is discarded, the set .S is removed and all its elements have
their frequency reduced by one. And, in the branch where we take S, the set S is removed together
with all its elements which leads to the reduction of the cardinalities of other sets. However, the
similarity ends when elements of frequency two are involved. After discarding S, these elements
will occur uniquely in the instance, and hence some set is included in the solution by the unique
elements rule. These elements cannot have their second occurrence in the same sets since that
would have triggered the subsumption rule before branching; we remove an additional set of
cardinality at least one for each such element.

This leads to the following values for Akgiscard, Aktake:

Akdiscu,rd = |S| + Z elA’U + 62’(1}(1)

Akiare = w(|S]) Zel )+ Aw(|S)) iz—l
=2

Here we use Constraint 5 (Aw(i) > Aw(i + 1)) to bound the additional reduction in complexity
due to the reduction in cardinalities of sets after covering and removing elements. This is almost
similar to the analysis of branching on elements.

Recall from the statement of Lemma 1 that N, (k) is the number of subproblems of measured
complexity h generated to solve a problem instance of measured complexity k. By the above



considerations we have:
Nh(k) S Nh (k - Akoptional) + Nh(k - Akforbidden)
Nh(k) S Nh(k - Akdiscard) + Nh(k - Akiﬁake)

with the appropriate values of Akoptionar and Akyforpiaden for every possible element branch, and
the appropriate values Akg;scarqg and Akiqre for every possible set branch. The solution of this
set of recurrence relations is a function of the form a*~" where « is the largest positive real root
of the corresponding set of equations:

1 J— afAkoptional + afAkforbidden 1 J— afAkdiscard _|_ oéfAktake

for all |S| =>"7, e; and all freq(e) = Y .=, s; agreeing with the preference order P except for the
exceptional cases in Overview 1 (see Section 4). Also, for each element branch s; < 1 since an
element cannot occur twice in a cardinality one set by the identical sets rule.

Notice that because we do not branch on the first kind of exceptional cases from Overview 1,
we must keep in mind that there is a second kind of exceptional cases created by the fact that we
only branch on local neighbourhoods respecting the preference order P. These are the second kind
of exceptional cases in Overview 1.

What remains is to choose weight functions that respect the constraints and minimise the
solution to the set of recurrence relations. We simplify this optimisation problem by noting that
the weight functions will converge to 1 at some point p resulting in:

wp)=v(@)=1 and Aw( +1)=Av(p'+1)=0 forallp >p

Therefore, the recurrence relations corresponding to |S| > p+1 and freq(e) > p+ 1 are dominated
by those corresponding to |S| > p and freq(e) = p, respectively. This leads to a large, but finite,
numerical optimisation problem (quasiconvex program [9]). We solve this by computer obtaining
an upper bound on the number of subproblems of measured complexity i generated. This upper
bound is 1.22670*" using the following set of weights:

il 1 2 3 1 5 6 >7
v(i) 0.409958 0.776286 0.982138 0.995507 1 1
w(i) | 0.367311 0.614495 0.767367 0.870084 0.972800 0.996358 1
This proves the lemma. ad

Notice that the above Measure and Conquer analysis is more difficult to perform compared to a
standard analysis. In particular, there are different preference orders, and for each preference order,
we obtain a new quasiconvex program. Moreover, for each such order, all possible combinations of
s; or e; need to be put to a test for whether they can be included in this analysis (representing cases
to branch on), or whether they can be excluded from the analysis and handled more efficiently
by dynamic programming on the path decomposition. The preference order and exceptional cases
used in Algorithm 1 appear to give the best bound on the running time. We found these by both
exhaustive search and trial and error by hand.

6 Path Decomposition Dynamic Programming

In this section we will discuss the subroutine Count-SC-PW(S). Algorithm 1 calls this subroutine
if an efficient branching is not possible, that is, there do not exist any large sets or high frequency
elements that are not in any of the exceptional cases in Overview 1. Note that it solves the
same problem as Algorithm 1, with extra information on the possible cardinalities of sets and
frequencies of elements. This subroutine uses dynamic programming on path decompositions. The
combination of pathwidth techniques combined with a measure and conquer analysis on branching
was introduced by Fomin et al. [10].
We will start by giving some terminology on path decompositions.

10



Definition (Path decomposition) A path decomposition of a graph G = (V, E) is a sequence
of bags (sets of vertices) X = (Xq,..., X,) such that:

o Ui Xi=V.
e for each (u,v) € E, there exists a X; such that {u,v} C X;.
o ifve X;and v e Xy thenv e X, foralli <j <k

The bag X is said to introduce v ¢ X, if X; = X;_1 U {v} and it is said to forget v € X,;_; if
X; = X1\ {v}. If for all 2 < i < r, X; either introduces or forgets a vertex, then X is called
a nice path decomposition. The width of X is maxj<i<, |X;| — 1 and the pathwidth pw(G) of G
is the minimum over the widths of all its path decompositions. It is easy to transform any path
decomposition into a nice path decomposition of equal width in polynomial time.

The subroutine Count-SC-PW(S) uses dynamic programming on a path decomposition on the
incidence graph Gs of our set cover instance S.

Proposition 2 Given Gs = (Vrea U VBiue, E) and a nice path decomposition X of Gs of width
at most p, the number of red/blue dominating sets for Gs of each size 0 < k < |Xpeq| can be
counted in O(2Pn°M) time.

Proof. Consider the standard dynamic programming algorithm computing the minimum
red/blue dominating set in Gs using the path decomposition X. A vertex in X; can have two
states: it is in the dominating set or not; and a blue vertex in X; can also have two states: it is
dominated or not. This algorithm runs in O(2°n°W).

Using the same structure, we construct a new dynamic programming algorithm computing for
each state of the vertices in X; and for each 0 < k < |VReq| the number of red /blue dominating sets
on G[(U;<;<; Xj)] of size x that agree with these states on X;. This increases the (exponential)
number of states by only a linear factor. Since each state can still be computed in polynomial
time using the dynamic program, the new algorithm also runs in O(2°n®M). a

What remains is to prove that we can compute a path decomposition of suitably bounded
pathwidth on the input graphs of Count-SC-PW(S) in polynomial time. To this end, we use the
following result by Fomin et al. [10].

Proposition 3 ([10]) For any e > 0, there exists and integer n. such that for every graph G with
n > ne vertices,

(G)<1 +1 +13 +23 n n

W —ng+-ng+—ns+-—ng+n n

PWE) = gle T gm Tgghe T pre T e e

where n; is the number of vertices of degree i in G for any i € {3,...,6} and n>7 is the number
of vertices of degree at least 7. Moreover, a path decomposition of the corresponding width can be
constructed in polynomial time.

Remark 4. If our graph Gs has a vertex of degree d with ¢ degree one neighbours, then this
vertex can be considered to be a degree d — i vertex in Proposition 3. Namely, if we remove all
degree one vertices from Gs and then compute its path decomposition, then we can reintroduce
these vertices by inserting consecutive introduce and forget bags in the decomposition, increasing
its pathwidth by at most one.

Now we are ready to prove a bound on the running time of Count-SC-PW(S).

Lemma 5 Count-SC-PH(S) runs in time O(1.2226F) when applied to a set cover instance of
measured complexity k.

Proof. We will now prove an upper bound on the pathwidth of graphs input to Count-SC-PW(S)
of measured complexity k. To this end we formulate a linear program in which all variables have

11



the domain [0,00). In a simpler form, this was also done by Fomin et al. [10]. From this paper,
we take the first part of the linear program:

ma; z = 1n —l—ln + —n +§n such that:
* N T LT '

6
o= Y wiz + Y o)y (1)
6 5
> i = o (2)

=1 1=2

In this linear program, z; and y; represent the number of sets of cardinality ¢ and elements of
frequency ¢ per unit of measured complexity in a worst case instance, respectively. Notice that
a subproblem on which Count-SC-PW(S) is called can have sets of cardinality at most six, from
which the cardinalities four, five and six only occur as exceptional cases (Overview 1), and elements
of frequency at most five. Constraint 1 guarantees that these z; and yi use exactly one unit of
measured complexity. And, Constraint 2 guarantees that both partitions of the bipartite incidence
graph have an equal number of edges.

The objective function, however, is formulated in terms of the variables n;. It represents the
maximum pathwidth z of a graph per unit of measured complexity using Proposition 3. The
variables n; represent the number of vertices of degree i in the input graph per unit of measured
complexity. Following Remark 6, n; is the number of sets of cardinality ¢ plus the number of
elements of frequency ¢ that have no cardinality one set occurrence and the number of elements of
frequency 7+ 1 that do occur in a cardinality one set. These size one sets will use measure and not
increase the pathwidth, so we can assume that they will only exist if involved in an exceptional
case. More precisely, if we let C be the set of exceptional frequency five element cases defined
in Overview 1, and let ¢; be the number of occurrences in a cardinality ¢ set for exceptional case
c € C, then we can introduce the variables p. for the number of occurrences of each exceptional
case ¢ € C per unit of measured complexity. This gives us to following additional constraints to
the linear program:

ns = Ts + Z DPec (5)

ceC,c1=0
ng = T3 + 3
3 3T Y3 ( ) ne = ¢ (6)
Ng = T4 +Yys+ Z Pe (4) Ys = ch (7)
ceC,c1>0 ceC

The next thing to do is to add additional constraints justified by the exceptional cases. Observe
that whenever p. > 0 for some ¢ € C, then there exist further restrictions on the instance because
we know the cardinalities of the sets in which these exceptional element occur. We lower bound
the number of sets of cardinalities one, two and three in the instance using Constraint 8. And, we
upper bound the number of sets of cardinality four, five and six by using that there can be at most
one such set per exceptional frequency five element contained in it. This is done in Constraint 9.

Ci

T > —De fori e {1,2,3} (8)
ceC v

r; < Zcipc fori e {4,5,6} (9)
ceC

The solution to this linear program is z = 0.28991 with all variables equal to zero, except:

z1 = 0.267603 3 = 0.267603 4 = 0.267603
ya = 0.200703 ys = 0.267603 ng = 0.267603
ng = 0.735910 p(1)073)170y0) = 0.267603

12



As a result the dynamic program on this path decomposition runs in time (9(2an0(1)) which
equals 0(1.2226%). We complete the proof by noting that although Proposition 3 only applies to
graphs of size at least n, the result holds because we can fix € to be small enough to disapear in
the rounding of the running time and consider all smaller graphs than n. to be handled in constant
time. a

Combining Lemma 1 and Lemma 5 gives our main result.

Theorem 6 Algorithm 1 computes the number of dominating sets of all sizes 0 < k <n in ann
vertex graph G in O(1.5048™) when it is applied to a set cover formulation of this problem.

Proof. Let T(k) be the time used on a problem of measured complexity k, and let Hj be the
set of all possible complexities of subproblems of a problem of complexity £. Then by Lemma 1
and Lemma 5:

T(k)< Y Nup(k)-1.2226" < >~ 1.22670" " 1.2226" < >~ 1.22670
heHy, heHy, heHy,

Since |Hj| is polynomially bounded because we only use a finite number of weights, Algorithm 1
runs in time O(1.22670¢), where d is the dimension of the set cover problem instance. Using the
standard set cover formulation of dominating set, this gives a running time of 0(1.22670%") <
O(1.5048™). a

7 Algorithms for Dominating Set Restricted to Some Graph
Classes

The algorithm, given and analysed in Sections 4-6, not only gives the currently fastest algorithm
to compute the number of dominating sets of given sizes, but also is the currently fastest algorithm
for the minimum dominating set problem. However, the improvement over the previous fastest
minimum dominating set algorithm [25] is only small. When we consider the dominating set
problem on specific graph classes, we get a much larger improvement with our approach.

Gaspers et al. consider exact algorithms for the dominating set problem on special graph
classes on which this problem is still NP-complete [16]. They consider c-dense graphs, circle
graphs, chordal graphs, 4-chordal graphs, and weakly chordal graphs. They show that if we
restrict ourselves to such a graph class, then there are either many vertices of high degree allowing
more efficient branching, or the graph has low treewidth allowing us to efficiently solve the problem
by dynamic programming over a tree decomposition. In this section, we will show that by using
our two branching rules we need less vertices of high degree to obtain the same effect with more
effective branching, further improving the results on four of these graph classes.

We begin by showing that having many vertices of high degree is beneficial to the running time
of an algorithm in our approach. Combining the results of Section 4-6 with a result from Gaspers
et al. [16], we directly obtain:

Proposition 7 ([16], Theorem 6) Let t > 0 be a fized integer, and let G; be a class of graphs
with for all G = (V,E) € Gy: [{v €V : d(v) >t—2}| >t. Then there is a O(1.22670*"~) time
algorithm to solve the minimum dominating set problem on graphs in G;.

We will now give and prove a stronger variant of this proposition.

Lemma 8 Lett > 0 be a fized integer, and let G; be a class of graphs with for all G = (V, E) € G;:
{v e V : d(v) > t—2} > it. Then there is a O(1.22670*"~") time algorithm to solve the
minimum dominating set problem on graphs in G;.

Proof. Let H be the set of vertices of degree at least ¢t — 2 from the statement of the lemma,
and consider the set cover formulation of the dominating set problem.

13



Let S be a set corresponding to a vertex in H. We branch on this set and consider the branch
in which we take this set in the set cover: the set is removed and all its elements are covered
and hence removed also. These are at least ¢ — 1 elements, and therefore this branch results in a
problem of dimension at most 2n — ¢. Only a single set is removed in the other branch, in which
case we repeat this process and branch on the next set represented by another vertex in H. This
gives us %t problem instances of dimension at most 2n — ¢ and one problem instance of dimension
2n — %t because here %t sets are removed.

In this latter instance, we use our new inclusion/exclusion based branching rule on the elements
corresponding to the vertices in H. These elements still have frequency at least %t — 1, since only
%t sets have been discarded until now. When branching on an element and forbidding it, a
subproblem of dimension at most 2n — ¢ is created because at least an additional element and
%t — 1 sets are removed in this branch. What remains is one subproblem generated in the branch
after discarding %t sets and making %t elements optional. Since all these sets and elements are
removed in these branches, this also gives us a problem of dimension 2n — .

The above procedure generates ¢ + 1 problems of dimension 2n — ¢, which can all be solved by
Algorithm 1 in O(1.22670?"~) time. These are only a linear number of instances giving us a total
running time of O(1.22670%"~%). O

Definition (c-dense graph) A graph G = (V, E) is said to be c-dense, if |E| > ¢ where ¢ a
constant with 0 < ¢ < %

If we combine our dominating set algorithm with the approach from Gaspers et al. [16], we
obtain an O (1.22670(1+V1_2°)"> algorithm that counts the number of dominating sets of each
size on a c-dense graph. Using Lemma 8 we improve upon this, as shown below. A graphical
comparison of both results can be found in Figure 1.

Corollary 9 The number of dominating sets of all sizes 0 < k < n in a c-dense graph can counted
in O (1.22670(%%\/9*160)")_

Proof. By a counting argument in [16], any graph has a set of high degree vertices that allow
application of Lemma 8 with parameter t if it has enough edges. For c-dense graphs this is when:

1/1 1 1
|E|ch22§<§t—l) (n—1)+§(n—§t+1) (t—3)

Ift < %(4 +3n) — %\/—Sn—i— 9n2 — 16¢n? then this is the case. By taking ¢ maximal in this
inequality and removing all factors that disappear in the big-O, we obtain a running time of

o (1.2267o<%+%¢m>n)_ :

Note that this results also gives the current fastest algorithm for minimum dominating set on
c-dense graphs.

We now consider circle graphs, chordal graphs, 4-chordal graphs, and weakly chordal graphs.
Let us first introduce these graph classes.

Definition (Circle graph) A circle graph is an intersection graph of chords in a circle: every
vertex represents a chord, and vertices are adjacent if the cords intersect.

Definition (Chordal graph) A graph is chordal if it has no chordless cycle.

Definition (4-Chordal graph) A graph is 4-chordal if it has no chordless cycle of length more
than four.

Definition (Weakly chordal graph) A graph G is weakly chordal if both G and its complement
are 4-chordal.

14



Base Exponent

1.50
1.45
1.40
1.35
1.30

1.25

: : : : c—Density of the Graph
0.1 0.2 0.3 0.4 0.5

The solid line represents the upper bound on the running time of our algorithm, and the dashed line
represents the upper bound obtained from [16] after plugging in our faster algorithm for dominating set.

Figure 1: Comparison of bounds on the running time on c-dense graphs.

On these graph classes Gaspers et al. [16] balance dynamic programming over tree decompo-
sitions to the many vertices of high degree approach.

Definition (Tree decomposition) A tree decomposition of a graph G = (V, E) is a tree T with
in each node a bag (set of vertices) X; such that:

* UXtET Xy =V.
e for each (u,v) € E, there exists a X; € T such that {u,v} C X;.

e for all Xl,XQ,Xg S T, if XQ is on the path from X1 to X3 in T, then Xl N Xg g XQ.

The width of a tree decomposition T' is maxy,cr |X;| — 1 and the treewidth tw(G) of G is the
minimum over the widths of all its tree decompositions.

Similar to path decompositions, a tree decomposition is a nice tree decomposition if it is a
binary tree and every non-leaf bag is either an introduce, forget or join bag. In this terminology,
the bag X; is said to introduce v if it equals its child plus the vertex v, and it is said to forget v if
it equals its child minus the vertex v. Additionally, the bag X joins its right child X, and its left
child X; if X, = X; = X;. Kloks [20] has shown that any tree decomposition can be transformed
into a nice tree decomposition of equal width in polynomial time.

A nice tree decomposition can, just as a nice path decomposion, be used for dynamic pro-
gramming. For more information on tree decompositions and dynamic programming over tree
decompositions see [7, 8]. A straightforward dynamic programming algorithm for dominating set
running in O(4*2°W) can be found in [1].

We use a faster algorithm for dominating set on graphs of bounded treewidth [23] using fast
subset convolutions [5].

Proposition 10 ([23]) Given an n-vertex graph G = (V, E) and nice tree decomposition T of G
of width t, the number of dominating sets in G of each size 0 < x < n can be counted in O(3n®1))
time.

The following lemma is based on [16] and gives our running times on the other graph classes.
Note that a graph class G is a hereditary graph class if all induced subgraphs of any graph G € G
are in G too.

Lemma 11 Let G be a hereditary class of graphs such that tw(G) < c¢A(G) for all G € G
and for which such tree decompositions can be computed in polynomial time. Then there is a

O (max (1.226702"”5,”,3(”%”/”)) time algorithm that counts the number of dominating sets

of each size in a graph G = (V,E). Both terms are balanced if: t' =
1/log4(1.22670).

4 _
STdracd where d =

15



Proof. Let X be the set of vertices of degree at least ¢'n. If |X| > %'n then we can apply
Lemma 8 with ¢ = ¢'n giving a running time of O(1.226702" "),
Otherwise |X| < $t'n and A(G[V \ X]) < ¢'n. Since G[V \ X] belongs to G we know that:

1 1
tw(G) < tw(G[V \ X]) + |X]| < cAG[V \ X]) + | X| < ct'n + 5t’n = (c+ 5) t'n
Now we can apply Proposition 10 giving us a running time of (’)(3(C+%)t/").
The balancing follows from basic calculations. ad

Proposition 12 ([16]) The following graph classes are hereditary graph classes with tw(G) <
c¢A(QG) for all G € G using the following values of c.

o Circle graphs (c = 4).
e /-Chordal graphs (c = 3).
o Weakly Chordal graphs (c =2).
The corresponding tree decomposition can be computed in polynomial time.

Corollary 13 There exist algorithms that count the number of dominating sets of each size in
a circle graph in time O(1.4806™), in a 4-chordal graph in O(1.4741™), and in a weakly chordal
graph in O(1.4629™).

Proof. Combine Lemma 11 and Proposition 12. a

As a final remark, we state that we could not use our two branching rules to improve the
result on chordal graphs beyond plugging in our faster algorithm for general dominating set. We
combine the approach of Gaspers et al. [16] with Theorem 6 and obtain the following proposition.

Proposition 14 There exist algorithms that count the number of dominating sets of each size in
a chordal graph in time O(1.37127).

Proof. Following [16], combine Algorithm 1 with a O(2!n®™) algorithm on chordal graphs of
treewidth ¢. O

8 Conclusion

In this paper we have show that we can use inclusion/exclusion based branching in combination
with traditional branching and analyse such an algorithm by means of measure and conquer. Since
the use of inclusion/exclusion restricts you to counting problems, which allow less reduction rules
than their decision counterparts, we shifted to pathwidth based techniques on sparse instances.
This combination resulted in an algorithm that computes the number of dominating sets of each
cardinality slightly faster than any previous algorithm that computes a single minimum dominating
set. Furthermore, we have shown that this leads to a significant speed up when restricted to some
graph classes, while we still compute much more information.

While the improvement of the running time for the studied problems are interesting, we believe
that the most important contribution of our paper is the novel combination of inclusion/exclusion
and branching with a measure and conquer analysis. This gives a nice way to get rid of the usual
0O(2"n°M) running times obtained by inclusion/exclusion algorithms when applied to general
graphs.

We note that we can use the same algorithm to the weighted versions of the problems as long
as the size of the set of possible weight sums ¥ is polynomially bounded. The only modification
necessary is to make the algorithms compute the number of set covers of each possible weight
w € Y at each step.

16



Our algorithms are highly dependent on the current best known upper bounds on the pathwidth
of bounded degree graphs [10, 14]. Any result that would improve these bounds would also improve
our algorithm.

We remark that we use dynamic programming over path decompositions, while tree decompo-
sitions are more general and would allow the same running times by using fast subset convolutions
to perform join operations [5, 23]. Kneis et al. [21] have some results on treewidth bounds for
bounded degree graphs, but weaker than the pathwidth results we use. We consider it to be an
important open problem to give stronger (or even tight) bounds on the treewidth or pathwidth of
bounded degree graphs for which decompositions can be computed efficiently.

For further research, we are looking at more problems to which our inclusion/exclusion meets
measure and conquer approach can be applied.

Acknowledgements

We would like to thank our advisor Hans L. Bodlaender for his enthusiasm for this research and
for useful comments on an earlier draft of this paper. We would also like to thank Alexey A.
Stepanov for useful discussions on [10].

References

[1] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed parameter
algorithms for dominating set and related problems on planar graphs. Algorithmica, 33:461—
493, 2002.

[2] E. T. Bax. Inclusion and exclusion algorithm for the hamiltonian path problem. Information
Processing Letters, 47(4):203-207, 1993.

[3] E. T. Bax. Recurrence-based reductions for inclusion and exclusion algorithms applied to #P
problems, 1996.

[4] A. Bjorklund and T. Husfeldt. Exact algorithms for exact satisfiability and number of perfect
matchings. Algorithmica, 52(2):226U249, 2008.

[5] A. Bjorklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Mo6bius: fast subset
convolution. In STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on Theory
of computing, pages 67-74, New York, NY, USA, 2007. ACM.

[6] A. Bjorklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-exclusion. STAM
Journal of Computing, Special Issue for FOCS 2006, to appear.

[7] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1-23, 1993.

[8] H. L. Bodlaender and A. M. C. A. Koster. Combinatorial optimization on graphs of bounded
treewidth. The Computer Journal, 51(3):255-269, 2008.

[9] D. Eppstein. Quasiconvex analysis of backtracking algorithms. In Proceedings of the 15th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, pages 781-790, 2004.

[10] F. V. Fomin, S. Gaspers, S. Saurabh, and A. A. Stepanov. On two techniques of combining
branching and treewidth. Algorithmica. Special issue of ISAAC 2006, to appear.

[11] F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: Domination — a case
study. In Proceedings of the 32nd International Colloquium on Automata, Languages and
Programming, ICALP 2005, pages 191-203. Springer Verlag, Lecture Notes in Computer
Science, vol. 3580, 2005.

[12] F. V. Fomin, F. Grandoni, and D. Kratsch. Some new techniques in design and analysis of
exact (exponential) algorithms. Bulletin of the EATCS, 87:47-77, 2005.

17



[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: a simple O(20-2887)

independent set algorithm. In Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2006, pages 18-25, 2006.

F. V. Fomin and K. Hgie. Pathwidth of cubic graphs and exact algorithms. Information
Processing Letters, 97:191-196, 2006.

F. V. Fomin, D. Kratsch, and G. J. Woeginger. Exact (exponential) algorithms for the dom-
inating set problem. In J. Hromkovic, M. Nagl, and B. Westfechtel, editors, Proceedings 30th
International Workshop on Graph-Theoretic Concepts in Computer Science WG’04, pages
245-256. Springer Verlag, Lecture Notes in Computer Science, vol. 3353, 2004.

S. Gaspers, D. Kratsch, and M. Liedloff. Exponential time algorithms for the minimum domi-
nating set problem on some graph classes. In L. Arge and R. Freivalds, editors, Proceedings of
the 10th Scandinavian Workshop on Algorithm Theory, SWAT 2006, pages 148-159. Springer
Verlag, Lecture Notes in Computer Science, vol. 4059, 2006.

F. Grandoni. A note on the complexity of minimum dominating set. J. Disc. Alg., 4:209-214,
2006.

K. Iwama. Worst-case upper bounds for ksat. Bulletin of the EATCS, 82:61-71, 2004.

R. M. Karp. Dynamic programming meets the principle of inclusion-exclusion. Operations
Research Letters, 1:49-51, 1982.

T. Kloks. Treewidth. Computations and Approzimations. Lecture Notes in Computer Science,
Vol. 842. Springer-Verlag, Berlin, 1994.

J. Kneis, D. Molle, S. Richter, and P. Rossmanith. Algorithms based on the treewidth of sparse
graphs. In Proceedings of the 31st International Workshop on Graph-Theoretic Concepts in
Computer Science (WG 2005), volume 3787 of LNCS, pages 385-396. Springer, 2005.

B. Randerath and I. Schiermeyer. Exact algorithms for minimum dominating set. Technical
Report zaik2005-501, Universitat zu Koln, Cologne, Germany, 2005.

P. Rossmanith. Using fast set convolutions to compute minimal dominating sets. Talk at
Dagstuhl Seminar 07281, Structure Theory and FPT Algorithmics for Graphs, Digraphs and
Hypergraphs, Juli 2007.

U. Schoning. Algorithmics in exponential time. In Proceedings of the 22nd International
Symposium on Theoretical Aspects of Computer Science (STACS 2005), pages 36—43. Springer
Verlag, Lecture Notes in Computer Science, vol. 3404, 2005.

J. M. M. van Rooij and H. L. Bodlaender. Design by measure and conquer — a faster exact
algorithm for dominating set. In S. Albers and P. Weil, editors, Proceedings of the 25th Annual
Symposium on Theoretical Aspects of Computer Science, STACS 2008, pages 657-668. IBFI
Schloss Dagstuhl, 2008.

G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. In Combinatorial
Optimization: “Fureka, you shrink”, pages 185-207, Berlin, 2003. Springer Lecture Notes in
Computer Science, vol. 2570.

18



