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Inlusion/Exlusion Meets Measure and Conquer:Exat algorithms for ounting dominating setsJohan M. M. van Rooij Jesper Nederlof Thomas C. van DijkAbstratWe look at the priniple of inlusion/exlusion from a branhing perspetive. More spei�-ally, we ombine traditional branhing with inlusion/exlusion based branhing and analysesuh algorithms by means of measure and onquer. This branhing is ombined with pathdeomposition tehniques on sparse instanes, and some redution rules.We onsider the standard set over formulation of dominating set and present an algo-rithm that ounts the number of dominating sets of eah ardinality in O(1.5048n) time.This algorithm omputes muh more information than the previous fastest deision algorithmfor minimum dominating set in slightly less time. For ounting the number of minimumdominating sets, our algorithm signi�antly improves previous results.When restrited to c-dense graphs, irle graphs, 4-hordal graphs or weakly hordalgraphs, our ombination of branhing with inlusion/exlusion leads to signi�antly fasterounting and deision algorithms than the previously fastest algorithms for dominating set.All results an be extended to ounting (minimum) weighted dominating sets when thesize of the set of possible weight sums is polynomially bounded.1 IntrodutionThe �eld of exat exponential time algorithms has been an area of growing interest over the lastfew years. Many tehniques have been developed or redisovered, and various surveys on the �eldhave been written [12, 18, 24, 26℄.Most notable among these new or redisovered tehniques are measure and onquer [11, 13℄and inlusion/exlusion [2, 6, 19℄. Both tehniques have been demonstrated on the Set Coverproblem in early stages: measure and onquer was introdued on a set over formulation ofMinimum Dominating Set, and in [6℄ inlusion/exlusion was used for ounting set overingsand set partitionings.The best known shape of inlusion/exlusion is a sum over some powerset (for examples, see[6, 4, 19℄). However, the fundamental branhing perspetive from [2℄ is more diret and powerful.In this paper, we will apply this branhing perspetive to set over instanes obtained from theset over formulation of dominating set that has been used to introdue measure and onquer [11℄.In this setting, we use a traditional branhing rule to branh on a set, or an appliation ofinlusion/exlusion to branh on an element. The sole appliation of either one of these strategiesgives a typial exhaustive searh or the aforementioned shape of inlusion/exlusion sum, respe-tively. We use both branhing strategies in unity obtaining a mixed branh and redue algorithmthat an be analysed using measure and onquer.Until 2004, no exat algorithm forMinimum Dominating Set beating the trivial O(2nnO(1))was known. In that year, three algorithms were published: Fomin et al. obtained an O(1.9379n)time algorithm [15℄, Randerath and Shiermeyer an O(1.8999n) time algorithm [22℄, and Grandonian O(1.8019n) time algorithm [17℄. One year later, the algorithm of Grandoni was analysed usingmeasure and onquer giving a bound of O(1.5137n) on the running time [11℄. This was laterimproved by Van Rooij and Bodlaender [25℄ to O(1.5063n).When generalised to ounting minimum dominating sets, there is an algorithm by Fomin etal. running in time O(1.5535n) [10℄. This algorithm ombines traditional branhing with dynami1



programming over path deompositions: an approah we will follow for our own algorithm aswell. Related to this is a result by Björklund and Husfeldt showing that the number of minimumdominating sets in a ubi graph an be ounted in O(1.3161n) [4℄ using inlusion/exlusion inombination with dynami programming over path deompositions. Although these ombinationsare known, there are, to our knowledge, no existing algorithms ombining measure and onquerwith inlusion/exlusion.Our algorithm is even more general. It ounts the number of dominating sets in an n-vertexgraph of eah size 0 ≤ κ ≤ n, with an upper bound on the running time of O(1.5048n). This isslightly faster than even the urrent fastest algorithm that omputes a minimum dominating set.Thus, we also obtain the urrently fastest algorithm for omputing a minimum dominating set.Gaspers et al. [16℄ show that algorithms for the set over formulation of dominating setan be ombined with dynami programming over tree deompositions to obtain faster runningtimes for the dominating set problem restrited to some graph lasses. These lasses are c-densegraphs, hordal graphs, irle graphs, 4-hordal graphs and weakly hordal graphs. We show thatour mixed branhing approah with inlusion/exlusion branhes works even better on four ofthese graph lasses; we not only improve these results beause we have a faster algorithm for theunderlying set over problem, but more signi�antly improve these results by exploiting vertiesof high degree twie by using both tehniques. Moreover, we also ount the number of dominatingsets of eah size, in ontrast to the previous results that ompute a single minimum dominatingset.Our paper is organised in the following way. We begin by introduing the problems and ter-minology in Setion 2. Thereafter, we will disuss how to use inlusion/exlusion to branh inSetion 3. Then a desription of the algorithm and its redution rules is presented in Setion 4,followed by a measure and onquer analysis in Setion 5, and an analysis of the dynami program-ming over path deompositions in Setion 6. We onlude with the onsideration of the speialgraph lasses in Setion 7.2 PreliminariesWe onsider the ounting variant of the Minimum Dominating Set problem on an n-vertexgraph G = (V, E).#Minimum Dominating SetInstane: A graph G = (V, E).Question: Howmany minimum dominating sets exist for G, i.e., how many subsets V ′ ⊆ Vwith |V ′| minimal suh that for all u ∈ V \V ′ there is a v ∈ V ′ for whih
(u, v) ∈ E?We solve the #Minimum Dominating Set problem by onsidering dominating sets of all sizesand solve #κ-Dominating Set for all 0 ≤ κ ≤ n.#κ-Dominating SetInstane: A graph G = (V, E) and a positive integer κ.Question: How many dominating sets of size κ exist for G, i.e., how many subsets V ′ ⊆ Vwith |V ′| = κ suh that for all u ∈ V \V ′ there is a v ∈ V ′ for whih (u, v) ∈ E?We use di�erent perspetives on this problem. These will give us additional insight into thestruture of the problem. We will often swith between these di�erent perspetives throughoutthe presentation of our algorithm.As is ommon in ontemporary work on dominating set algorithms, we formulate the problemas a Set Cover problem [17℄. In our ase, this means formulating #κ-Dominating Set as#κ-Set Cover.
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#κ-Set CoverInstane: A olletion S of subsets of a �nite universe U and a positive integer κ.Question: How many set overs for U of size κ does S ontain, i.e., how many subsets
S′ ⊆ S with |S′| = κ suh that every element of U belongs to at least onemember of S′.Transforming #κ-Dominating Set to #κ-Set Cover is straightforward: for every vertex inthe dominating set instane introdue both an element in U (`every vertex has to be dominated')and a set in S ontaining the elements orresponding to the verties in its losed neighbourhood(`a vertex dominates itself and all its neighbours'). We often speak of a set over instane S overthe universe U without speifying U , in that ase, it is de�ned impliitly by S through U = ∪S.Using this perspetive, we do not speak of the degree of a vertex but of the ardinality |S| of a set

S and the frequeny of an element e.In this paper, however, we deviate from this standard formulation by onsidering S to be amultiset of sets. Our multiset notation is derived diretly from standard set notation. We use
Sm ∈ S if we want to stress that the multipliity of S in S is m, and use set(S) for the underlyingset of S. When quantifying over S, we will always onsider a set S ∈ S its multipliity number oftimes, thus |{S ∈ S}| = |S|. Mostly, we want reason about the underlying set of S, but we willalso need the multipliities. Not to onfuse both, we de�ne the frequeny of an element freq(e) tobe the number of distint sets in whih an element e ours. In addition, we use #(e) if we wantto inlude set multipliities; this represents the total number of sets in whih an element e ours.Similarly, we let |S| be the number of distint sets in S, ignoring set multipliities, while we let
#(S) be the total number of sets in S, respeting multipliities.Furthermore, let S[e] be the olletion of sets in S ontaining the element e, and let U [S′] bethe subset of the universe U with elements from S′ ⊆ S (U [S′] = ∪S′). Finally, we use S′ ⊂ S if
S′ ⊆ S and S′ 6= S, and we use {∅0} = ∅ while {∅1} = {∅}.In order to express the size of a set over instane, the dimension of a set over instaneis de�ned as dim(S,U) = |S| + |U|. Hene a dominating set instane on an n-vertex graph istransformed to a set over instane of dimension d ≤ 2n.Following [10℄, the third (and �nal) way we look at the problem allows us to use strongtehniques from graph theory on set over instanes.De�nition (Inidene graph) Given a set over instane S over the universe U , the inidenegraph GS of S is the bipartite graph with red verties VRed = S and blue verties VBlue = U .Verties S ∈ VRed and u ∈ VBlue are adjaent if and only if u ∈ S.Now onsider a solution to a Set Cover instane. This orresponds to a subset V ′ of the redverties VRed of the inidene graph suh that all blue verties are dominated (adjaent to a redvertex in V ′). We all suh a set a red/blue dominating set.#κ-Red/Blue Dominating SetInstane: A graph G = (VRed ∪· VBlue, E) and a positive integer κQuestion: How many red/blue dominating sets of size κ exist for G, i.e., how many subsets

V ′ ⊆ VRed with |V ′| ≤ κ suh that for all u ∈ VBlue there is a v ∈ V ′ for whih
(u, v) ∈ E.Observe that #κ-Set Cover is equal to #κ-Red/Blue Dominating Set on the orrespond-ing inidene graph.Having introdued the problem, we need some additional notation. Let V ′ ⊆ V be a subset ofthe verties of G; we denote the subgraph indued by V ′ by G[V ′]. Furthermore, we denote themaximum degree of a graph G by ∆(G).Let n1 and n2 be lists of numbers of equal length l. We de�ne n1 + n2 and n1 − n2 bypieewise addition and subtration. We denote the numbers in the list n1 by [n1]0 up to [n1]l−1.Furthermore, we add an element e to the front or bak of a list by using the notations (e; n1) and

(n1; e), respetively. When using this notation, we write (n1; em) when adding the element e tothe bak of the list m times. 3



3 Inlusion/Exlusion Based BranhingWe will begin by showing that one an look at Inlusion/Exlusion from a branhing perspetive,see also [3℄. In this way, we an Inlusion/Exlusion branh on an element in a Set Coverinstane in the same way as one would normally branh on a set.The anonial branhing rule for Set Cover is branhing on a set. Sets are optional in asolution: either a set is in the solution or it not. In both branhes, the problem is simpli�ed. If wedisard the set, we derease the number of sets. If we take the set, we derease the number of setsand in addition, this set overs all its elements and those elements an therefore be removed fromthe instane, dereasing the number of elements as well. The minimum set over for the instaneis either the one returned by the disard branh or the one returned by the take branh with thebranh set added to it.The ounting problem an also be handled by branhing steps of this type beause the totalnumber of solutions is the sum of both branhes. We an do this beause sets are optional ina solution. The branh on a set an be denoted as adding the number of solutions where it isrequired to take the set to the number of solution where it is forbidden to take the set:optional = required+ forbiddenIf we are ounting κ-set overs and we branh to take a set (that is, in the `required' branh), thenwe should ount (κ − 1)-set overs in that branh. In the `forbidden' branh, we do not derease
κ. We now onsider branhing on an element [3℄. Suh a branhing step is unusual, and may ap-pear strange at �rst sight, as elements are not optional. Inspired by Inlusion/Exlusion tehniquesand beause we ount the number of solutions, we an, however, rearrange the above formula togive: required = optional− forbiddenThat is, the number of ways to over a ertain element is equal to the number of ways to optionallyover it, minus the number of ways to not over it. This is interesting beause this branhing rulealso simpli�es the instane in both branhes. If we hoose to make it optional to over a ertainelement, we an remove that element from every set it ours in, reduing the size of sets. Ifwe hoose the element forbidden, then we have to remove every set in whih the element ours,whih is an even greater redution in size. We have not seleted a set to be in the over in bothbranhes, so in both branhes we are looking for κ-set overs.Consider a branhing algorithm without redution rules and without employing branh-and-bound. If the branhing rule is based on an optional property of the problem, as is typially thease, the algorithm is an exhaustive searh. A similar onept exists for an algorithm in whihbranhing is based on a required property, whih we all inlusion/exlusion based branhing orsimply IE-branhing : without redution rules, this is an inlusion/exlusion algorithm.To see this, let c′κ be the number of set overs of ardinality κ, and let a(X) be the numberof sets in S that do not inlude any element of X . Consider the branhing tree after exhaustivelyapplying IE-branhings. In eah subproblem in this tree, eah element is either optional, orforbidden. We look at the ontribution of a leaf to the total number omputed when X is theset of forbidden elements in this leaf. Notie that the 2|U| leaves represent the subsets X ⊆ U .A minus sign is added for eah time we have entered a forbidden branh, so the ontributionof this branh will be (−1)|X| times (

a(X)
κ

). This last number equals the number of set overs ofardinality κ where it is optional to over eah element not in X and forbidden to over an elementin X . All together, this gives us the following expression for c′κ:
c′κ =

∑

X⊆U
(−1)|X|

(

a(X)

κ

)Björklund et al. [6℄ give the following expression for cκ:
cκ =

∑

X⊆U
(−1)|X|a(X)κ 4



These expressions are idential exept for the fat that the formula of Björklund et al. ounts thenumber of set overs cκ where they allow a single set to be piked multiple times.Consider the e�et of the branhing rules on the inidene graph. A branh where we take aset does exatly the same operation on the graph as a branh where we forbid an element, only theformer is on a red vertex while the latter is on a blue vertex. The same relation holds between abranh where we disard a set and a branh where we make an element optional: both branhingtypes are symmetri to eah other. This symmetry is not omplete, however, beause for otherpurposes the red and blue verties are not equivalent. That is, blue verties must be dominatedby red verties, whih leads to di�erent redution rules depending on the olour of a vertex.4 An Algorithm for Counting Dominating SetsWe now give an algorithm (Algorithm 1) for the #κ-Dominating Set problem. Our algorithmworks on the #κ-Set Cover transformation of the problem and returns a list ontaining thenumber of set overs of size κ for eah 0 ≤ κ ≤ n. It is a branh and redue algorithm, branhingboth on sets and on elements, following the methodology disussed in Setion 3. This setion willbe devoted to the desription of this algorithm exept for a subroutine that employs pathwidthtehniques. This subroutine is disussion in Setion 6. We will start by desribing two simplesubroutines often used by Algorithm 1, after whih we will desribe Algorithm 1 from top tobottom.The �rst subroutine eliminate-set(S,S) removes the set S and all its elements from S insuh a way that while S is removed any set that possibly turns into an empty set due to theremoval of the elements of S remains as an empty sets in S. If S has multipliity greater thanone, then all opies of S are removed as well. Seondly, eliminate-element(e,S) removes theelement e and all sets in S ontaining e.eliminate-set(S,S)= {S′\S | S′ ∈ (S \ {S})}eliminate-elem(e,S) = S \ {S ∈ S | e ∈ S}We want to emphasise here that when any of these two subroutines are alled, then not only thethe set S or the element e is removed, but also the elements or sets diretly involved with it.We are now ready for a omplete, top to bottom, desription of Algorithm 1. The algorithmtakes as input a multiset of sets S forming a set over instane (S,U) over the universe U = ∪S,and it returns a list of length #(S) + 1 ontaining for eah κ, 0 ≤ κ ≤ #(S), the number of setovers of size exatly κ. Before branhing or applying pathwidth tehniques, the algorithm triesto redue the instane to a simpler instane in polynomial time. To this end, it employs a seriesof redution rules that form the �rst part of the algorithm. These will be desribed now.Base CaseOn some inputs, the set over instane is ompletely redued to a multiset of empty sets by theredution rules below. This is handled by our base ase. In this ase, there are no elements leftto over and we have m (empty) sets left to hoose from. Thus, the number of set overs of size
κ equals (

m

κ

) whih is returned for all 0 ≤ κ ≤ m.Unique ElementsWhenever there exists an element e of frequeny one in U , the set S ontaining e must belong toevery set over beause otherwise e will not be overed. Therefore, the algorithm takes this setand goes in reursion on the simpli�ed instane returned by eliminate-set(S,S).When there exists an element e whih only ours in a single set S from whih there exist mopies, the algorithm does something similar. At least one of these sets must belong to the setover, but regardless of the number of opies hosen in the over, the same simpli�ed subproblemis generated by the all to eliminate-set(S,S). Therefore, we an use the result of this onereursive all to ompute the number of set overs of size κ as if we onsidered all possible numberof opies of S the algorithm ould have taken. The algorithm does so by summing over all possiblenumber of sets i it ould have taken, and for eah suh i, it omputes the number of hoies (

m
i

)5



Algorithm 1 Count-SC(S,d)Input: A multiset of sets S over the universe U = ∪S.Output: A list of length #(S) + 1 ontaining the number of set overs of (S,U) of eah size
0 ≤ κ ≤ #(S).1: //redution rules2: if S = {∅m}, m ≥ 0 then //base ase3: return (

(

m
0

)

,
(

m
1

)

, . . . ,
(

m
m

)

)4: else if ∃e ∈ Sm ∈ S : freq(e) = 1 then //unique elements5: ntake = Count-SC(eliminate-set(S,S))6: return (n0, n1, . . . , n#(S)), where:
nκ =

∑min(κ,m)
i=max(1,κ−#(S)+m)

(

m

i

)

[ntake]κ−i7: else if ∃e, e′ ∈ U : S[e] ⊆ S[e′] then //subsumption8: return Count-SC({S\{e′} | S ∈ S})9: else if ∃∅ ⊂ C ⊂ S : {S[e]|e ∈ U [C]} = C then //onneted omponents10: Let C̄ = S\C, nC = Count-SC(C), nC̄ = Count-SC(C̄)11: return Merge-Components(nC,nC̄)12: end if13: //impliit redution rule1: idential sets14:15: //branhing or path deomposition16: Let Sm ∈ S be of maximum ardinality and not an exeptional ase217: Let e ∈ U be of maximum frequeny, also not an exeptional ase218: Preferene order P: S4 < S5 < S6 < E5 < E6 < S7 < E7 < E≥8 = S≥819: if S|S| and Efreq(e) are too small to be in P then //path deomposition20: return Count-SC-PW(S)21: else if Efreq(e) is in the order P and Efreq(e) 6< S|S| then //element branh22: noptional = Count-SC({S′\{e} | S′ ∈ S})23: nforbidden = (Count-SC(eliminate-elem(e,S)); 0#(e))24: return noptional − nforbidden25: else //S|S| is in the order P and S|S| 6< Efreq(e) //set branh26: ntake = Count-SC(eliminate-set(S,S))27: ndiscard = (Count-SC(S\{Sm}); 0m)28: return (n0, n1, . . . , n|S|), where:
nκ =

(

∑min(κ,m)
i=max(1,κ−|S|+m)

(

m

i

)

[ntake]κ−i

)

+ [ndiscard]κ29: end if
1 The multiset representation makes the idential set rule impliit. We emphasise that idential setsreated by branhing are handled by multipliity ounters.
2 There are some exeptional ombinations of ardinalities of sets and frequenies of elements on whihthe algorithm will not branh. These will be handled by the path deomposition phase. For a ompletelist of these ases see Overview 1.
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times the number of set overs of size κ − i from the reursive all. See also, lines 5 and 6 of thepseudo ode.SubsumptionIf there exists an element e ∈ U whih ours in every set (and possibly in more sets) in whihanother element e′ ∈ U ours, then every set over that overs e also overs e′. In this ase, wean remove e′ from the urrent instane and obtain a simpler instane to whih we reursivelyapply our algorithm.Conneted ComponentsIf the inidene graph ontains multiple onneted omponents, then we an solve the problem oneah omponent separately and merge the results. The subroutines Merge-Components(nC,nC̄)performs this merging. Let C, C̄ be two disjoint sets of onneted omponent of S and let nC , nC̄be the solutions to these two subproblems. In order to ompute the number of set overs of size
κ for C ∪ C̄, this subroutine sums over all possible sizes i of set overs for C and multiplies thisnumber by the number of set overs for C̄ of size κ − i.Merge-Components(nC,nC̄) = (n0, n1, . . . , n#(C∪C̄))where: nκ =

min(κ,#(C))
∑

i=max(0,κ−#(C̄))

[nC ]i × [nC̄ ]κ−iIdential SetsRemind that the unique elements rule also handles elements that our only in multiple opies ofthe same set. The idea behind this is that the same subproblem will be generated independentof the number of these idential set we hoose, and this will be used throughout the algorithm.Therefore, we ould say that our algorithm onsiders idential sets to be 'removed' and usesmultipliity ounters it stead. By the notation and de�nition from Setion 2, we will also notount idential sets twie in the dimension of the problem. Hene, we have an impliit redutionrule removing idential sets. This we use to our advantage in the analysis of the running time inSetion 5.Having treated the redution rules we now ontinue with the branhing steps of the algorithm.When no redution rules are appliable, the algorithm hooses a set of maximum ardinalityfrom the sets in the instane that are not exeptional ases, and it hooses an element of maximumfrequeny from the instane that is also not an exeptional ase. We postpone the disussion ofthese exeptional ases for a moment, and remark that this hoie for maximum ardinality andfrequeny resembles hoosing more e�ient branhings. This is so, sine if an elements frequeny islarger, then more sets are exluded in the forbidden branh and more sets are redued in ardinalityin the optional branh, and similar onsiderations exist for set branhes.The algorithm needs to hoose whether it is going to branh on a set or on an elements. Forthis it uses the following preferene order P.
P : S4 < S5 < S6 < E5 < E6 < S7 < E7 < E≥8 = S≥8In this ordering, Si < Ej means that the algorithm prefers to branh on an element of frequeny

j over branhing on a set of ardinality i.Notie that sets of ardinality at most three and elements of frequeny at most four do notour in the preferene order P. These ardinalities are onsidered to be too small and thesefrequenies too low for e�ient branhing. Instanes on whih no e�ient branhing is possibleare handled by path deomposition tehniques by alling Count-SC-PW(S).The exeptional ases are desribed in Overview 1. These exeptional ases exist beause in theanalysis in Setions 5 and 6 we often know the neighbourhood of a vertex representing a set or anelement in the inidene graph. Suh neighbourhoods are important for the worst ase behaviour ofthe algorithm. And, for some neighbourhoods, despite the general rule imposed by the prefereneorder, it is more e�ient to handle them by the path deomposition part of our algorithm than7



There are exeptional ases of elements on whih, despite the preferene order, Algorithm 1 doesnot branh. These ases represent loal neighbourhoods of sets or elements whih would inreasethe running time of the algorithm when branhed on, but an be handled by dynami programmingon a path deomposition quite e�etively. The exeptional ases are:1. Elements of frequeny �ve that our in many sets of small ardinality. More spei�ally, ifwe let a 5-tupple (s1, s2, s3, s4, s5, s6) represent a frequeny �ve element ourring si timesin a ardinality i set, then our speial ases an be denoted as:(1, 4, 0, 0, 0, 0) - (0, 5, 0, 0, 0, 0) - (1, 3, 1, 0, 0, 0) - (0, 4, 1, 0, 0, 0) - (1, 2, 2, 0, 0, 0)(0, 3, 2, 0, 0, 0) - (1, 1, 3, 0, 0, 0) - (0, 2, 3, 0, 0, 0) - (0, 1, 4, 0, 0, 0) - (1, 0, 4, 0, 0, 0)(1, 3, 0, 1, 0, 0) - (0, 4, 0, 1, 0, 0) - (1, 2, 1, 1, 0, 0) - (0, 3, 1, 1, 0, 0) - (1, 1, 2, 1, 0, 0)(1, 0, 3, 1, 0, 0) - (1, 2, 0, 2, 0, 0) - (1, 3, 0, 0, 1, 0) - (1, 2, 1, 0, 1, 0) - (1, 3, 0, 0, 0, 1)2. Sets of ardinality four, �ve or six, that have one of the above elements ontained in them.Overview 1: Exeptional Cases for Algorithm 1by branhing. These neighbourhoods are our exeptional ases. How this in�uenes the runningtime of our algorithms will beome more lear from the analyses in Setions 5 and 6.We onlude the desription of Algorithm 1 by some remarks on the pseudo ode of the branh-ing steps. In the branh where an element e is forbidden, a number of zeros is added to the listontaining the number of set overs of eah size (line 23). This is done beause the number ofset overs of size κ for n − #(e) ≤ κ ≤ n equals zero sine no sets ontaining e may be hosen.Also, we remark that when the algorithm branhes on a set of multipliity m, it sums over allpossible number of idential opies it an take in the over (line 28). This works in the same wayas explained with the unique elements rule.5 Measure and Conquer AnalysisWe analyse Algorithm 1 using the measure and onquer methodology [11, 13℄. To this end, weintrodue a non standard omplexity measure k(S,U) on problem instanes; we introdue weightfuntions v, w : N → [0, 1] giving weight v(i) to an element of frequeny i and weight w(i) to a setof ardinality i, respetively. This gives us the following omplexity measure:
k(S,U) =

∑

S∈set(S)

w(|S|) +
∑

e∈U
v(freq(e))This measure is idential to the one used in [11, 25℄. Notie that k is at most the dimension d ofthe set over instane, and hene if we prove the running time of the algorithm to be O(αk), wehave also proved a running time of O(αd). For onveniene, we let ∆v(i) = v(i) − v(i − 1) and

∆w(i) = w(i) − w(i − 1) be the omplexity redutions gained by reduing the frequeny of anelement or the ardinality of a set by one.We start the analysis of the running time of Algorithm 1 by bounding the number of subprob-lems generated by branhing.Lemma 1 Let Nh(k) be number of subproblems of measured omplexity h generated by Algorithm1 on an input of measured omplexity k. Then:
Nh(k) < 1.22670k−hProof. To orretly analyse the branhing, we will use the following onstraints on the weights:

8



1. v(0) = v(1) = w(0) = 02. ∆v(i) ≥ 0 for all i ≤ 13. ∆w(i) ≥ 0 for all i ≤ 1

4. ∆v(i) ≥ ∆v(i + 1) for all i ≥ 15. ∆w(i) ≥ ∆w(i + 1) for all i ≥ 16. 2∆v(5) ≤ v(2)First, we observe that we an set the weight of elements of frequeny one and sets of ardinalityzero to zero beause they are removed by the redution rules or ignored in the branhing phase,respetively. Seond, we do not want the omplexity of our instane to inrease when dereasingthe frequeny of an element or the ardinality of a set, therefore weights must be inreasing. Thisovers restritions 1-3. Restritions 4-6 will be explained during the analysis below.Consider branhing on an element e ontained in si sets of ardinality i. In the branh where
e is optional, the element e is removed and all sets ontaining e are redued in ardinality by one.And, in the branh where e is forbidden, e is removed together with all sets ontaining e. Theremoval of these sets also results in a redution of the frequenies of all other elements in these sets.This leads to two subproblems whih are redued in omplexity by ∆koptional and ∆kforbidden,respetively.

∆koptional = v(freq(e)) +

∞
∑

i=1

si∆w(i)

∆kforbidden = v(freq(e)) +
∞
∑

i=1

siw(i) + ∆v(freq(e)) ∞
∑

i=1

(i − 1)siHere we bound eah extra redution of the frequeny of an element beause of the removal of a setby ∆v(freq(e)). This is orret beause when we branh on an element, it is of highest frequenyand we have the onstraints ∆v(i) ≥ ∆v(i + 1) (Constraint 4), and this frequeny is at least �veand 2∆v(5) ≤ v(2) (Constraint 6). Constraint 4 assures that eah time we redue the ardinalityof a set more than one, the values ∆v(i) for i < freq(e) are large enough, and Constraint 6 handlesthe fat that an element an be ompletely removed if it ours only in removed sets. Without thisonstraint, we ould have taken all the weight from this element already sine v(1) = 0, leavingnone for its �nal ourrene.Now onsider branhing on a set S ontaining ei elements of frequeny i. As disussed inSetion 3, the behaviour is similar to an element branh, but with the roles of elements and setsinterhanged. In the branh where S is disarded, the set S is removed and all its elements havetheir frequeny redued by one. And, in the branh where we take S, the set S is removed togetherwith all its elements whih leads to the redution of the ardinalities of other sets. However, thesimilarity ends when elements of frequeny two are involved. After disarding S, these elementswill our uniquely in the instane, and hene some set is inluded in the solution by the uniqueelements rule. These elements annot have their seond ourrene in the same sets sine thatwould have triggered the subsumption rule before branhing; we remove an additional set ofardinality at least one for eah suh element.This leads to the following values for ∆kdiscard, ∆ktake:
∆kdiscard = w(|S|) +

∞
∑

i=2

ei∆v(i) + e2w(1)

∆ktake = w(|S|) +
∞
∑

i=2

eiv(i) + ∆w(|S|)
∞
∑

i=2

(i − 1)eiHere we use Constraint 5 (∆w(i) ≥ ∆w(i + 1)) to bound the additional redution in omplexitydue to the redution in ardinalities of sets after overing and removing elements. This is almostsimilar to the analysis of branhing on elements.Reall from the statement of Lemma 1 that Nh(k) is the number of subproblems of measuredomplexity h generated to solve a problem instane of measured omplexity k. By the above9



onsiderations we have:
Nh(k) ≤ Nh(k − ∆koptional) + Nh(k − ∆kforbidden)

Nh(k) ≤ Nh(k − ∆kdiscard) + Nh(k − ∆ktake)with the appropriate values of ∆koptional and ∆kforbidden for every possible element branh, andthe appropriate values ∆kdiscard and ∆ktake for every possible set branh. The solution of thisset of reurrene relations is a funtion of the form αk−h where α is the largest positive real rootof the orresponding set of equations:
1 = α−∆koptional + α−∆kforbidden 1 = α−∆kdiscard + α−∆ktakefor all |S| =

∑∞
i=2 ei and all freq(e) =

∑∞
i=1 si agreeing with the preferene order P exept for theexeptional ases in Overview 1 (see Setion 4). Also, for eah element branh s1 ≤ 1 sine anelement annot our twie in a ardinality one set by the idential sets rule.Notie that beause we do not branh on the �rst kind of exeptional ases from Overview 1,we must keep in mind that there is a seond kind of exeptional ases reated by the fat that weonly branh on loal neighbourhoods respeting the preferene order P. These are the seond kindof exeptional ases in Overview 1.What remains is to hoose weight funtions that respet the onstraints and minimise thesolution to the set of reurrene relations. We simplify this optimisation problem by noting thatthe weight funtions will onverge to 1 at some point p resulting in:

w(p′) = v(p′) = 1 and ∆w(p′ + 1) = ∆v(p′ + 1) = 0 for all p′ ≥ pTherefore, the reurrene relations orresponding to |S| > p+1 and freq(e) > p+1 are dominatedby those orresponding to |S| > p and freq(e) = p, respetively. This leads to a large, but �nite,numerial optimisation problem (quasionvex program [9℄). We solve this by omputer obtainingan upper bound on the number of subproblems of measured omplexity h generated. This upperbound is 1.22670k−h using the following set of weights:
i 1 2 3 4 5 6 ≥ 7

v(i) 0.409958 0.776286 0.982138 0.995507 1 1
w(i) 0.367311 0.614495 0.767367 0.870084 0.972800 0.996358 1This proves the lemma. ⊓⊔Notie that the above Measure and Conquer analysis is more di�ult to perform ompared to astandard analysis. In partiular, there are di�erent preferene orders, and for eah preferene order,we obtain a new quasionvex program. Moreover, for eah suh order, all possible ombinations of

si or ei need to be put to a test for whether they an be inluded in this analysis (representing asesto branh on), or whether they an be exluded from the analysis and handled more e�ientlyby dynami programming on the path deomposition. The preferene order and exeptional asesused in Algorithm 1 appear to give the best bound on the running time. We found these by bothexhaustive searh and trial and error by hand.6 Path Deomposition Dynami ProgrammingIn this setion we will disuss the subroutine Count-SC-PW(S). Algorithm 1 alls this subroutineif an e�ient branhing is not possible, that is, there do not exist any large sets or high frequenyelements that are not in any of the exeptional ases in Overview 1. Note that it solves thesame problem as Algorithm 1, with extra information on the possible ardinalities of sets andfrequenies of elements. This subroutine uses dynami programming on path deompositions. Theombination of pathwidth tehniques ombined with a measure and onquer analysis on branhingwas introdued by Fomin et al. [10℄.We will start by giving some terminology on path deompositions.10



De�nition (Path deomposition) A path deomposition of a graph G = (V, E) is a sequeneof bags (sets of verties) X = 〈X1, . . . , Xr〉 suh that:
• ⋃r

i=1 Xi = V .
• for eah (u, v) ∈ E, there exists a Xi suh that {u, v} ⊆ Xi.
• if v ∈ Xi and v ∈ Xk then v ∈ Xj, for all i ≤ j ≤ k.The bag Xi is said to introdue v /∈ Xi−1 if Xi = Xi−1 ∪ {v} and it is said to forget v ∈ Xi−1 if

Xi = Xi−1 \ {v}. If for all 2 ≤ i ≤ r, Xi either introdues or forgets a vertex, then X is alleda nie path deomposition. The width of X is max1≤i≤r |Xi| − 1 and the pathwidth pw(G) of Gis the minimum over the widths of all its path deompositions. It is easy to transform any pathdeomposition into a nie path deomposition of equal width in polynomial time.The subroutine Count-SC-PW(S) uses dynami programming on a path deomposition on theinidene graph GS of our set over instane S.Proposition 2 Given GS = (VRed ∪· VBlue, E) and a nie path deomposition X of GS of widthat most p, the number of red/blue dominating sets for GS of eah size 0 ≤ κ ≤ |XRed| an beounted in O(2pnO(1)) time.Proof. Consider the standard dynami programming algorithm omputing the minimumred/blue dominating set in GS using the path deomposition X . A vertex in Xi an have twostates: it is in the dominating set or not; and a blue vertex in Xi an also have two states: it isdominated or not. This algorithm runs in O(2pnO(1)).Using the same struture, we onstrut a new dynami programming algorithm omputing foreah state of the verties in Xi and for eah 0 ≤ κ ≤ |VRed| the number of red/blue dominating setson G[(
⋃

1≤j≤i Xj)] of size κ that agree with these states on Xi. This inreases the (exponential)number of states by only a linear fator. Sine eah state an still be omputed in polynomialtime using the dynami program, the new algorithm also runs in O(2pnO(1)). ⊓⊔What remains is to prove that we an ompute a path deomposition of suitably boundedpathwidth on the input graphs of Count-SC-PW(S) in polynomial time. To this end, we use thefollowing result by Fomin et al. [10℄.Proposition 3 ([10℄) For any ε > 0, there exists and integer nε suh that for every graph G with
n > nε verties,

pw(G) ≤ 1

6
n3 +

1

3
n4 +

13

30
n5 +

23

45
n6 + n≥7 + ǫnwhere ni is the number of verties of degree i in G for any i ∈ {3, . . . , 6} and n≥7 is the numberof verties of degree at least 7. Moreover, a path deomposition of the orresponding width an beonstruted in polynomial time.Remark 4. If our graph GS has a vertex of degree d with i degree one neighbours, then thisvertex an be onsidered to be a degree d − i vertex in Proposition 3. Namely, if we remove alldegree one verties from GS and then ompute its path deomposition, then we an reintroduethese verties by inserting onseutive introdue and forget bags in the deomposition, inreasingits pathwidth by at most one.Now we are ready to prove a bound on the running time of Count-SC-PW(S).Lemma 5 Count-SC-PW(S) runs in time O(1.2226k) when applied to a set over instane ofmeasured omplexity k.Proof. We will now prove an upper bound on the pathwidth of graphs input to Count-SC-PW(S)of measured omplexity k. To this end we formulate a linear program in whih all variables have11



the domain [0,∞). In a simpler form, this was also done by Fomin et al. [10℄. From this paper,we take the �rst part of the linear program:
max z =

1

6
n3 +

1

3
n4 +

13

30
n5 +

23

45
n6 suh that:

1 =

6
∑

i=1

w(i)xi +

5
∑

i=2

v(i)yi (1)
6

∑

i=1

ixi =

5
∑

i=2

iyi (2)In this linear program, xi and yi represent the number of sets of ardinality i and elements offrequeny i per unit of measured omplexity in a worst ase instane, respetively. Notie thata subproblem on whih Count-SC-PW(S) is alled an have sets of ardinality at most six, fromwhih the ardinalities four, �ve and six only our as exeptional ases (Overview 1), and elementsof frequeny at most �ve. Constraint 1 guarantees that these xk and yk use exatly one unit ofmeasured omplexity. And, Constraint 2 guarantees that both partitions of the bipartite inidenegraph have an equal number of edges.The objetive funtion, however, is formulated in terms of the variables ni. It represents themaximum pathwidth z of a graph per unit of measured omplexity using Proposition 3. Thevariables ni represent the number of verties of degree i in the input graph per unit of measuredomplexity. Following Remark 6, ni is the number of sets of ardinality i plus the number ofelements of frequeny i that have no ardinality one set ourrene and the number of elements offrequeny i+1 that do our in a ardinality one set. These size one sets will use measure and notinrease the pathwidth, so we an assume that they will only exist if involved in an exeptionalase. More preisely, if we let C be the set of exeptional frequeny �ve element ases de�nedin Overview 1, and let ci be the number of ourrenes in a ardinality i set for exeptional ase
c ∈ C, then we an introdue the variables pc for the number of ourrenes of eah exeptionalase c ∈ C per unit of measured omplexity. This gives us to following additional onstraints tothe linear program:

n3 = x3 + y3 (3)
n4 = x4 + y4 +

∑

c∈C,c1>0

pc (4) n5 = x5 +
∑

c∈C,c1=0

pc (5)
n6 = x6 (6)
y5 =

∑

c∈C

pc (7)The next thing to do is to add additional onstraints justi�ed by the exeptional ases. Observethat whenever pc > 0 for some c ∈ C, then there exist further restritions on the instane beausewe know the ardinalities of the sets in whih these exeptional element our. We lower boundthe number of sets of ardinalities one, two and three in the instane using Constraint 8. And, weupper bound the number of sets of ardinality four, �ve and six by using that there an be at mostone suh set per exeptional frequeny �ve element ontained in it. This is done in Constraint 9.
xi ≥

∑

c∈C

ci

i
pc for i ∈ {1, 2, 3} (8)

xi ≤
∑

c∈C
cipc for i ∈ {4, 5, 6} (9)The solution to this linear program is z = 0.28991 with all variables equal to zero, exept:

x1 = 0.267603 x3 = 0.267603 x4 = 0.267603
y4 = 0.200703 y5 = 0.267603 n3 = 0.267603
n4 = 0.735910 p(1,0,3,1,0,0) = 0.26760312



As a result the dynami program on this path deomposition runs in time O(2zknO(1)) whihequals O(1.2226k). We omplete the proof by noting that although Proposition 3 only applies tographs of size at least nǫ, the result holds beause we an �x ǫ to be small enough to disapear inthe rounding of the running time and onsider all smaller graphs than nǫ to be handled in onstanttime. ⊓⊔Combining Lemma 1 and Lemma 5 gives our main result.Theorem 6 Algorithm 1 omputes the number of dominating sets of all sizes 0 ≤ κ ≤ n in an nvertex graph G in O(1.5048n) when it is applied to a set over formulation of this problem.Proof. Let T (k) be the time used on a problem of measured omplexity k, and let Hk be theset of all possible omplexities of subproblems of a problem of omplexity k. Then by Lemma 1and Lemma 5:
T (k) ≤

∑

h∈Hk

Nh(k) · 1.2226h ≤
∑

h∈Hk

1.22670k−h · 1.2226h ≤
∑

h∈Hk

1.22670kSine |Hk| is polynomially bounded beause we only use a �nite number of weights, Algorithm 1runs in time O(1.22670d), where d is the dimension of the set over problem instane. Using thestandard set over formulation of dominating set, this gives a running time of O(1.226702n) <
O(1.5048n). ⊓⊔7 Algorithms for Dominating Set Restrited to Some GraphClassesThe algorithm, given and analysed in Setions 4-6, not only gives the urrently fastest algorithmto ompute the number of dominating sets of given sizes, but also is the urrently fastest algorithmfor the minimum dominating set problem. However, the improvement over the previous fastestminimum dominating set algorithm [25℄ is only small. When we onsider the dominating setproblem on spei� graph lasses, we get a muh larger improvement with our approah.Gaspers et al. onsider exat algorithms for the dominating set problem on speial graphlasses on whih this problem is still NP-omplete [16℄. They onsider c-dense graphs, irlegraphs, hordal graphs, 4-hordal graphs, and weakly hordal graphs. They show that if werestrit ourselves to suh a graph lass, then there are either many verties of high degree allowingmore e�ient branhing, or the graph has low treewidth allowing us to e�iently solve the problemby dynami programming over a tree deomposition. In this setion, we will show that by usingour two branhing rules we need less verties of high degree to obtain the same e�et with moree�etive branhing, further improving the results on four of these graph lasses.We begin by showing that having many verties of high degree is bene�ial to the running timeof an algorithm in our approah. Combining the results of Setion 4-6 with a result from Gasperset al. [16℄, we diretly obtain:Proposition 7 ([16℄, Theorem 6) Let t > 0 be a �xed integer, and let Gt be a lass of graphswith for all G = (V, E) ∈ Gt: |{v ∈ V : d(v) ≥ t − 2}| ≥ t. Then there is a O(1.226702n−t) timealgorithm to solve the minimum dominating set problem on graphs in Gt.We will now give and prove a stronger variant of this proposition.Lemma 8 Let t > 0 be a �xed integer, and let Gt be a lass of graphs with for all G = (V, E) ∈ Gt:
|{v ∈ V : d(v) ≥ t − 2}| ≥ 1

2 t. Then there is a O(1.226702n−t) time algorithm to solve theminimum dominating set problem on graphs in Gt.Proof. Let H be the set of verties of degree at least t − 2 from the statement of the lemma,and onsider the set over formulation of the dominating set problem.13



Let S be a set orresponding to a vertex in H . We branh on this set and onsider the branhin whih we take this set in the set over: the set is removed and all its elements are overedand hene removed also. These are at least t − 1 elements, and therefore this branh results in aproblem of dimension at most 2n − t. Only a single set is removed in the other branh, in whihase we repeat this proess and branh on the next set represented by another vertex in H . Thisgives us 1
2 t problem instanes of dimension at most 2n− t and one problem instane of dimension

2n − 1
2 t beause here 1

2 t sets are removed.In this latter instane, we use our new inlusion/exlusion based branhing rule on the elementsorresponding to the verties in H . These elements still have frequeny at least 1
2 t− 1, sine only

1
2 t sets have been disarded until now. When branhing on an element and forbidding it, asubproblem of dimension at most 2n − t is reated beause at least an additional element and
1
2 t− 1 sets are removed in this branh. What remains is one subproblem generated in the branhafter disarding 1

2 t sets and making 1
2 t elements optional. Sine all these sets and elements areremoved in these branhes, this also gives us a problem of dimension 2n − t.The above proedure generates t + 1 problems of dimension 2n− t, whih an all be solved byAlgorithm 1 in O(1.226702n−t) time. These are only a linear number of instanes giving us a totalrunning time of O(1.226702n−t). ⊓⊔De�nition (c-dense graph) A graph G = (V, E) is said to be c-dense, if |E| ≥ c where c aonstant with 0 < c < 1

2 .If we ombine our dominating set algorithm with the approah from Gaspers et al. [16℄, weobtain an O
(

1.22670(1+
√

1−2c)n
) algorithm that ounts the number of dominating sets of eahsize on a c-dense graph. Using Lemma 8 we improve upon this, as shown below. A graphialomparison of both results an be found in Figure 1.Corollary 9 The number of dominating sets of all sizes 0 ≤ κ ≤ n in a -dense graph an ountedin O

(

1.22670(1

2
+ 1

2

√
9−16c)n

).Proof. By a ounting argument in [16℄, any graph has a set of high degree verties that allowappliation of Lemma 8 with parameter t if it has enough edges. For c-dense graphs this is when:
|E| ≥ cn2 ≥ 1

2

(

1

2
t − 1

)

(n − 1) +
1

2

(

n − 1

2
t + 1

)

(t − 3)If t ≤ 1
2 (4 + 3n) − 1

2

√
−8n + 9n2 − 16cn2 then this is the ase. By taking t maximal in thisinequality and removing all fators that disappear in the big-O, we obtain a running time of

O
(

1.22670(1

2
+ 1

2

√
9−16c)n

). ⊓⊔Note that this results also gives the urrent fastest algorithm for minimum dominating set on
c-dense graphs.We now onsider irle graphs, hordal graphs, 4-hordal graphs, and weakly hordal graphs.Let us �rst introdue these graph lasses.De�nition (Cirle graph) A irle graph is an intersetion graph of hords in a irle: everyvertex represents a hord, and verties are adjaent if the ords interset.De�nition (Chordal graph) A graph is hordal if it has no hordless yle.De�nition (4-Chordal graph) A graph is 4-hordal if it has no hordless yle of length morethan four.De�nition (Weakly hordal graph) A graph G is weakly hordal if both G and its omplementare 4-hordal. 14



The solid line represents the upper bound on the running time of our algorithm, and the dashed linerepresents the upper bound obtained from [16℄ after plugging in our faster algorithm for dominating set.Figure 1: Comparison of bounds on the running time on c-dense graphs.On these graph lasses Gaspers et al. [16℄ balane dynami programming over tree deompo-sitions to the many verties of high degree approah.De�nition (Tree deomposition) A tree deomposition of a graph G = (V, E) is a tree T within eah node a bag (set of verties) Xt suh that:
• ⋃

Xt∈T Xt = V .
• for eah (u, v) ∈ E, there exists a Xt ∈ T suh that {u, v} ⊆ Xt.
• for all X1, X2, X3 ∈ T , if X2 is on the path from X1 to X3 in T , then X1 ∩ X3 ⊆ X2.The width of a tree deomposition T is maxXi∈T |Xi| − 1 and the treewidth tw(G) of G is theminimum over the widths of all its tree deompositions.Similar to path deompositions, a tree deomposition is a nie tree deomposition if it is abinary tree and every non-leaf bag is either an introdue, forget or join bag. In this terminology,the bag Xt is said to introdue v if it equals its hild plus the vertex v, and it is said to forget v ifit equals its hild minus the vertex v. Additionally, the bag Xt joins its right hild Xr and its lefthild Xl if Xr = Xl = Xt. Kloks [20℄ has shown that any tree deomposition an be transformedinto a nie tree deomposition of equal width in polynomial time.A nie tree deomposition an, just as a nie path deomposion, be used for dynami pro-gramming. For more information on tree deompositions and dynami programming over treedeompositions see [7, 8℄. A straightforward dynami programming algorithm for dominating setrunning in O(4tnO(1)) an be found in [1℄.We use a faster algorithm for dominating set on graphs of bounded treewidth [23℄ using fastsubset onvolutions [5℄.Proposition 10 ([23℄) Given an n-vertex graph G = (V, E) and nie tree deomposition T of Gof width t, the number of dominating sets in G of eah size 0 ≤ κ ≤ n an be ounted in O(3tnO(1))time.The following lemma is based on [16℄ and gives our running times on the other graph lasses.Note that a graph lass G is a hereditary graph lass if all indued subgraphs of any graph G ∈ Gare in G too.Lemma 11 Let G be a hereditary lass of graphs suh that tw(G) ≤ c∆(G) for all G ∈ Gand for whih suh tree deompositions an be omputed in polynomial time. Then there is a

O
(

max
(

1.226702n−t′n, 3(c+ 1

2
)t′n

)) time algorithm that ounts the number of dominating setsof eah size in a graph G = (V, E). Both terms are balaned if: t′ = 4
2+d+2cd

where d =
1/ log3(1.22670). 15



Proof. Let X be the set of verties of degree at least t′n. If |X | ≥ 1
2 t′n then we an applyLemma 8 with t = t′n giving a running time of O(1.226702n−t′n).Otherwise |X | ≤ 1

2 t′n and ∆(G[V \ X ]) < t′n. Sine G[V \ X ] belongs to G we know that:tw(G) ≤ tw(G[V \ X ]) + |X | ≤ c∆(G[V \ X ]) + |X | < ct′n +
1

2
t′n =

(

c +
1

2

)

t′nNow we an apply Proposition 10 giving us a running time of O(3(c+ 1

2
)t′n).The balaning follows from basi alulations. ⊓⊔Proposition 12 ([16℄) The following graph lasses are hereditary graph lasses with tw(G) ≤

c∆(G) for all G ∈ G using the following values of c.
• Cirle graphs (c = 4).
• 4-Chordal graphs (c = 3).
• Weakly Chordal graphs (c = 2).The orresponding tree deomposition an be omputed in polynomial time.Corollary 13 There exist algorithms that ount the number of dominating sets of eah size ina irle graph in time O(1.4806n), in a 4-hordal graph in O(1.4741n), and in a weakly hordalgraph in O(1.4629n).Proof. Combine Lemma 11 and Proposition 12. ⊓⊔As a �nal remark, we state that we ould not use our two branhing rules to improve theresult on hordal graphs beyond plugging in our faster algorithm for general dominating set. Weombine the approah of Gaspers et al. [16℄ with Theorem 6 and obtain the following proposition.Proposition 14 There exist algorithms that ount the number of dominating sets of eah size ina hordal graph in time O(1.3712n).Proof. Following [16℄, ombine Algorithm 1 with a O(2tnO(1)) algorithm on hordal graphs oftreewidth t. ⊓⊔8 ConlusionIn this paper we have show that we an use inlusion/exlusion based branhing in ombinationwith traditional branhing and analyse suh an algorithm by means of measure and onquer. Sinethe use of inlusion/exlusion restrits you to ounting problems, whih allow less redution rulesthan their deision ounterparts, we shifted to pathwidth based tehniques on sparse instanes.This ombination resulted in an algorithm that omputes the number of dominating sets of eahardinality slightly faster than any previous algorithm that omputes a single minimum dominatingset. Furthermore, we have shown that this leads to a signi�ant speed up when restrited to somegraph lasses, while we still ompute muh more information.While the improvement of the running time for the studied problems are interesting, we believethat the most important ontribution of our paper is the novel ombination of inlusion/exlusionand branhing with a measure and onquer analysis. This gives a nie way to get rid of the usual

O(2nnO(1)) running times obtained by inlusion/exlusion algorithms when applied to generalgraphs.We note that we an use the same algorithm to the weighted versions of the problems as longas the size of the set of possible weight sums Σ is polynomially bounded. The only modi�ationneessary is to make the algorithms ompute the number of set overs of eah possible weight
w ∈ Σ at eah step. 16
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