
In
lusion/Ex
lusion MeetsMeasure and Conquer:Exa
t algorithms for
ounting dominatingsets
Johan M. M. van RooijJesper NederlofThomas C. van Dijk
Te
hni
al Report UU-CS-2008-043November 2008Department of Information and Computing S
ien
esUtre
ht University, Utre
ht, The Netherlandswww.
s.uu.nl

ISSN: 0924-3275

Department of Information and Computing S
ien
esUtre
ht UniversityP.O. Box 80.0893508 TB Utre
htThe Netherlands

In
lusion/Ex
lusion Meets Measure and Conquer:Exa
t algorithms for
ounting dominating setsJohan M. M. van Rooij Jesper Nederlof Thomas C. van DijkAbstra
tWe look at the prin
iple of in
lusion/ex
lusion from a bran
hing perspe
tive. More spe
i�-
ally, we
ombine traditional bran
hing with in
lusion/ex
lusion based bran
hing and analysesu
h algorithms by means of measure and
onquer. This bran
hing is
ombined with pathde
omposition te
hniques on sparse instan
es, and some redu
tion rules.We
onsider the standard set
over formulation of dominating set and present an algo-rithm that
ounts the number of dominating sets of ea
h
ardinality in O(1.5048n) time.This algorithm
omputes mu
h more information than the previous fastest de
ision algorithmfor minimum dominating set in slightly less time. For
ounting the number of minimumdominating sets, our algorithm signi�
antly improves previous results.When restri
ted to c-dense graphs,
ir
le graphs, 4-
hordal graphs or weakly
hordalgraphs, our
ombination of bran
hing with in
lusion/ex
lusion leads to signi�
antly faster
ounting and de
ision algorithms than the previously fastest algorithms for dominating set.All results
an be extended to
ounting (minimum) weighted dominating sets when thesize of the set of possible weight sums is polynomially bounded.1 Introdu
tionThe �eld of exa
t exponential time algorithms has been an area of growing interest over the lastfew years. Many te
hniques have been developed or redis
overed, and various surveys on the �eldhave been written [12, 18, 24, 26℄.Most notable among these new or redis
overed te
hniques are measure and
onquer [11, 13℄and in
lusion/ex
lusion [2, 6, 19℄. Both te
hniques have been demonstrated on the Set Coverproblem in early stages: measure and
onquer was introdu
ed on a set
over formulation ofMinimum Dominating Set, and in [6℄ in
lusion/ex
lusion was used for
ounting set
overingsand set partitionings.The best known shape of in
lusion/ex
lusion is a sum over some powerset (for examples, see[6, 4, 19℄). However, the fundamental bran
hing perspe
tive from [2℄ is more dire
t and powerful.In this paper, we will apply this bran
hing perspe
tive to set
over instan
es obtained from theset
over formulation of dominating set that has been used to introdu
e measure and
onquer [11℄.In this setting, we use a traditional bran
hing rule to bran
h on a set, or an appli
ation ofin
lusion/ex
lusion to bran
h on an element. The sole appli
ation of either one of these strategiesgives a typi
al exhaustive sear
h or the aforementioned shape of in
lusion/ex
lusion sum, respe
-tively. We use both bran
hing strategies in unity obtaining a mixed bran
h and redu
e algorithmthat
an be analysed using measure and
onquer.Until 2004, no exa
t algorithm forMinimum Dominating Set beating the trivial O(2nnO(1))was known. In that year, three algorithms were published: Fomin et al. obtained an O(1.9379n)time algorithm [15℄, Randerath and S
hiermeyer an O(1.8999n) time algorithm [22℄, and Grandonian O(1.8019n) time algorithm [17℄. One year later, the algorithm of Grandoni was analysed usingmeasure and
onquer giving a bound of O(1.5137n) on the running time [11℄. This was laterimproved by Van Rooij and Bodlaender [25℄ to O(1.5063n).When generalised to
ounting minimum dominating sets, there is an algorithm by Fomin etal. running in time O(1.5535n) [10℄. This algorithm
ombines traditional bran
hing with dynami
1

programming over path de
ompositions: an approa
h we will follow for our own algorithm aswell. Related to this is a result by Björklund and Husfeldt showing that the number of minimumdominating sets in a
ubi
 graph
an be
ounted in O(1.3161n) [4℄ using in
lusion/ex
lusion in
ombination with dynami
 programming over path de
ompositions. Although these
ombinationsare known, there are, to our knowledge, no existing algorithms
ombining measure and
onquerwith in
lusion/ex
lusion.Our algorithm is even more general. It
ounts the number of dominating sets in an n-vertexgraph of ea
h size 0 ≤ κ ≤ n, with an upper bound on the running time of O(1.5048n). This isslightly faster than even the
urrent fastest algorithm that
omputes a minimum dominating set.Thus, we also obtain the
urrently fastest algorithm for
omputing a minimum dominating set.Gaspers et al. [16℄ show that algorithms for the set
over formulation of dominating set
an be
ombined with dynami
 programming over tree de
ompositions to obtain faster runningtimes for the dominating set problem restri
ted to some graph
lasses. These
lasses are c-densegraphs,
hordal graphs,
ir
le graphs, 4-
hordal graphs and weakly
hordal graphs. We show thatour mixed bran
hing approa
h with in
lusion/ex
lusion bran
hes works even better on four ofthese graph
lasses; we not only improve these results be
ause we have a faster algorithm for theunderlying set
over problem, but more signi�
antly improve these results by exploiting verti
esof high degree twi
e by using both te
hniques. Moreover, we also
ount the number of dominatingsets of ea
h size, in
ontrast to the previous results that
ompute a single minimum dominatingset.Our paper is organised in the following way. We begin by introdu
ing the problems and ter-minology in Se
tion 2. Thereafter, we will dis
uss how to use in
lusion/ex
lusion to bran
h inSe
tion 3. Then a des
ription of the algorithm and its redu
tion rules is presented in Se
tion 4,followed by a measure and
onquer analysis in Se
tion 5, and an analysis of the dynami
 program-ming over path de
ompositions in Se
tion 6. We
on
lude with the
onsideration of the spe
ialgraph
lasses in Se
tion 7.2 PreliminariesWe
onsider the
ounting variant of the Minimum Dominating Set problem on an n-vertexgraph G = (V, E).#Minimum Dominating SetInstan
e: A graph G = (V, E).Question: Howmany minimum dominating sets exist for G, i.e., how many subsets V ′ ⊆ Vwith |V ′| minimal su
h that for all u ∈ V \V ′ there is a v ∈ V ′ for whi
h
(u, v) ∈ E?We solve the #Minimum Dominating Set problem by
onsidering dominating sets of all sizesand solve #κ-Dominating Set for all 0 ≤ κ ≤ n.#κ-Dominating SetInstan
e: A graph G = (V, E) and a positive integer κ.Question: How many dominating sets of size κ exist for G, i.e., how many subsets V ′ ⊆ Vwith |V ′| = κ su
h that for all u ∈ V \V ′ there is a v ∈ V ′ for whi
h (u, v) ∈ E?We use di�erent perspe
tives on this problem. These will give us additional insight into thestru
ture of the problem. We will often swit
h between these di�erent perspe
tives throughoutthe presentation of our algorithm.As is
ommon in
ontemporary work on dominating set algorithms, we formulate the problemas a Set Cover problem [17℄. In our
ase, this means formulating #κ-Dominating Set as#κ-Set Cover.

2

#κ-Set CoverInstan
e: A
olle
tion S of subsets of a �nite universe U and a positive integer κ.Question: How many set
overs for U of size κ does S
ontain, i.e., how many subsets
S′ ⊆ S with |S′| = κ su
h that every element of U belongs to at least onemember of S′.Transforming #κ-Dominating Set to #κ-Set Cover is straightforward: for every vertex inthe dominating set instan
e introdu
e both an element in U (`every vertex has to be dominated')and a set in S
ontaining the elements
orresponding to the verti
es in its
losed neighbourhood(`a vertex dominates itself and all its neighbours'). We often speak of a set
over instan
e S overthe universe U without spe
ifying U , in that
ase, it is de�ned impli
itly by S through U = ∪S.Using this perspe
tive, we do not speak of the degree of a vertex but of the
ardinality |S| of a set

S and the frequen
y of an element e.In this paper, however, we deviate from this standard formulation by
onsidering S to be amultiset of sets. Our multiset notation is derived dire
tly from standard set notation. We use
Sm ∈ S if we want to stress that the multipli
ity of S in S is m, and use set(S) for the underlyingset of S. When quantifying over S, we will always
onsider a set S ∈ S its multipli
ity number oftimes, thus |{S ∈ S}| = |S|. Mostly, we want reason about the underlying set of S, but we willalso need the multipli
ities. Not to
onfuse both, we de�ne the frequen
y of an element freq(e) tobe the number of distin
t sets in whi
h an element e o

urs. In addition, we use #(e) if we wantto in
lude set multipli
ities; this represents the total number of sets in whi
h an element e o

urs.Similarly, we let |S| be the number of distin
t sets in S, ignoring set multipli
ities, while we let
#(S) be the total number of sets in S, respe
ting multipli
ities.Furthermore, let S[e] be the
olle
tion of sets in S
ontaining the element e, and let U [S′] bethe subset of the universe U with elements from S′ ⊆ S (U [S′] = ∪S′). Finally, we use S′ ⊂ S if
S′ ⊆ S and S′ 6= S, and we use {∅0} = ∅ while {∅1} = {∅}.In order to express the size of a set
over instan
e, the dimension of a set
over instan
eis de�ned as dim(S,U) = |S| + |U|. Hen
e a dominating set instan
e on an n-vertex graph istransformed to a set
over instan
e of dimension d ≤ 2n.Following [10℄, the third (and �nal) way we look at the problem allows us to use strongte
hniques from graph theory on set
over instan
es.De�nition (In
iden
e graph) Given a set
over instan
e S over the universe U , the in
iden
egraph GS of S is the bipartite graph with red verti
es VRed = S and blue verti
es VBlue = U .Verti
es S ∈ VRed and u ∈ VBlue are adja
ent if and only if u ∈ S.Now
onsider a solution to a Set Cover instan
e. This
orresponds to a subset V ′ of the redverti
es VRed of the in
iden
e graph su
h that all blue verti
es are dominated (adja
ent to a redvertex in V ′). We
all su
h a set a red/blue dominating set.#κ-Red/Blue Dominating SetInstan
e: A graph G = (VRed ∪· VBlue, E) and a positive integer κQuestion: How many red/blue dominating sets of size κ exist for G, i.e., how many subsets

V ′ ⊆ VRed with |V ′| ≤ κ su
h that for all u ∈ VBlue there is a v ∈ V ′ for whi
h
(u, v) ∈ E.Observe that #κ-Set Cover is equal to #κ-Red/Blue Dominating Set on the
orrespond-ing in
iden
e graph.Having introdu
ed the problem, we need some additional notation. Let V ′ ⊆ V be a subset ofthe verti
es of G; we denote the subgraph indu
ed by V ′ by G[V ′]. Furthermore, we denote themaximum degree of a graph G by ∆(G).Let n1 and n2 be lists of numbers of equal length l. We de�ne n1 + n2 and n1 − n2 bypie
ewise addition and subtra
tion. We denote the numbers in the list n1 by [n1]0 up to [n1]l−1.Furthermore, we add an element e to the front or ba
k of a list by using the notations (e; n1) and

(n1; e), respe
tively. When using this notation, we write (n1; em) when adding the element e tothe ba
k of the list m times. 3

3 In
lusion/Ex
lusion Based Bran
hingWe will begin by showing that one
an look at In
lusion/Ex
lusion from a bran
hing perspe
tive,see also [3℄. In this way, we
an In
lusion/Ex
lusion bran
h on an element in a Set Coverinstan
e in the same way as one would normally bran
h on a set.The
anoni
al bran
hing rule for Set Cover is bran
hing on a set. Sets are optional in asolution: either a set is in the solution or it not. In both bran
hes, the problem is simpli�ed. If wedis
ard the set, we de
rease the number of sets. If we take the set, we de
rease the number of setsand in addition, this set
overs all its elements and those elements
an therefore be removed fromthe instan
e, de
reasing the number of elements as well. The minimum set
over for the instan
eis either the one returned by the dis
ard bran
h or the one returned by the take bran
h with thebran
h set added to it.The
ounting problem
an also be handled by bran
hing steps of this type be
ause the totalnumber of solutions is the sum of both bran
hes. We
an do this be
ause sets are optional ina solution. The bran
h on a set
an be denoted as adding the number of solutions where it isrequired to take the set to the number of solution where it is forbidden to take the set:optional = required+ forbiddenIf we are
ounting κ-set
overs and we bran
h to take a set (that is, in the `required' bran
h), thenwe should
ount (κ − 1)-set
overs in that bran
h. In the `forbidden' bran
h, we do not de
rease
κ. We now
onsider bran
hing on an element [3℄. Su
h a bran
hing step is unusual, and may ap-pear strange at �rst sight, as elements are not optional. Inspired by In
lusion/Ex
lusion te
hniquesand be
ause we
ount the number of solutions, we
an, however, rearrange the above formula togive: required = optional− forbiddenThat is, the number of ways to
over a
ertain element is equal to the number of ways to optionally
over it, minus the number of ways to not
over it. This is interesting be
ause this bran
hing rulealso simpli�es the instan
e in both bran
hes. If we
hoose to make it optional to
over a
ertainelement, we
an remove that element from every set it o

urs in, redu
ing the size of sets. Ifwe
hoose the element forbidden, then we have to remove every set in whi
h the element o

urs,whi
h is an even greater redu
tion in size. We have not sele
ted a set to be in the
over in bothbran
hes, so in both bran
hes we are looking for κ-set
overs.Consider a bran
hing algorithm without redu
tion rules and without employing bran
h-and-bound. If the bran
hing rule is based on an optional property of the problem, as is typi
ally the
ase, the algorithm is an exhaustive sear
h. A similar
on
ept exists for an algorithm in whi
hbran
hing is based on a required property, whi
h we
all in
lusion/ex
lusion based bran
hing orsimply IE-bran
hing : without redu
tion rules, this is an in
lusion/ex
lusion algorithm.To see this, let c′κ be the number of set
overs of
ardinality κ, and let a(X) be the numberof sets in S that do not in
lude any element of X . Consider the bran
hing tree after exhaustivelyapplying IE-bran
hings. In ea
h subproblem in this tree, ea
h element is either optional, orforbidden. We look at the
ontribution of a leaf to the total number
omputed when X is theset of forbidden elements in this leaf. Noti
e that the 2|U| leaves represent the subsets X ⊆ U .A minus sign is added for ea
h time we have entered a forbidden bran
h, so the
ontributionof this bran
h will be (−1)|X| times (

a(X)
κ

). This last number equals the number of set
overs of
ardinality κ where it is optional to
over ea
h element not in X and forbidden to
over an elementin X . All together, this gives us the following expression for c′κ:
c′κ =

∑

X⊆U
(−1)|X|

(

a(X)

κ

)Björklund et al. [6℄ give the following expression for cκ:
cκ =

∑

X⊆U
(−1)|X|a(X)κ 4

These expressions are identi
al ex
ept for the fa
t that the formula of Björklund et al.
ounts thenumber of set
overs cκ where they allow a single set to be pi
ked multiple times.Consider the e�e
t of the bran
hing rules on the in
iden
e graph. A bran
h where we take aset does exa
tly the same operation on the graph as a bran
h where we forbid an element, only theformer is on a red vertex while the latter is on a blue vertex. The same relation holds between abran
h where we dis
ard a set and a bran
h where we make an element optional: both bran
hingtypes are symmetri
 to ea
h other. This symmetry is not
omplete, however, be
ause for otherpurposes the red and blue verti
es are not equivalent. That is, blue verti
es must be dominatedby red verti
es, whi
h leads to di�erent redu
tion rules depending on the
olour of a vertex.4 An Algorithm for Counting Dominating SetsWe now give an algorithm (Algorithm 1) for the #κ-Dominating Set problem. Our algorithmworks on the #κ-Set Cover transformation of the problem and returns a list
ontaining thenumber of set
overs of size κ for ea
h 0 ≤ κ ≤ n. It is a bran
h and redu
e algorithm, bran
hingboth on sets and on elements, following the methodology dis
ussed in Se
tion 3. This se
tion willbe devoted to the des
ription of this algorithm ex
ept for a subroutine that employs pathwidthte
hniques. This subroutine is dis
ussion in Se
tion 6. We will start by des
ribing two simplesubroutines often used by Algorithm 1, after whi
h we will des
ribe Algorithm 1 from top tobottom.The �rst subroutine eliminate-set(S,S) removes the set S and all its elements from S insu
h a way that while S is removed any set that possibly turns into an empty set due to theremoval of the elements of S remains as an empty sets in S. If S has multipli
ity greater thanone, then all
opies of S are removed as well. Se
ondly, eliminate-element(e,S) removes theelement e and all sets in S
ontaining e.eliminate-set(S,S)= {S′\S | S′ ∈ (S \ {S})}eliminate-elem(e,S) = S \ {S ∈ S | e ∈ S}We want to emphasise here that when any of these two subroutines are
alled, then not only thethe set S or the element e is removed, but also the elements or sets dire
tly involved with it.We are now ready for a
omplete, top to bottom, des
ription of Algorithm 1. The algorithmtakes as input a multiset of sets S forming a set
over instan
e (S,U) over the universe U = ∪S,and it returns a list of length #(S) + 1
ontaining for ea
h κ, 0 ≤ κ ≤ #(S), the number of set
overs of size exa
tly κ. Before bran
hing or applying pathwidth te
hniques, the algorithm triesto redu
e the instan
e to a simpler instan
e in polynomial time. To this end, it employs a seriesof redu
tion rules that form the �rst part of the algorithm. These will be des
ribed now.Base CaseOn some inputs, the set
over instan
e is
ompletely redu
ed to a multiset of empty sets by theredu
tion rules below. This is handled by our base
ase. In this
ase, there are no elements leftto
over and we have m (empty) sets left to
hoose from. Thus, the number of set
overs of size
κ equals (

m

κ

) whi
h is returned for all 0 ≤ κ ≤ m.Unique ElementsWhenever there exists an element e of frequen
y one in U , the set S
ontaining e must belong toevery set
over be
ause otherwise e will not be
overed. Therefore, the algorithm takes this setand goes in re
ursion on the simpli�ed instan
e returned by eliminate-set(S,S).When there exists an element e whi
h only o

urs in a single set S from whi
h there exist m
opies, the algorithm does something similar. At least one of these sets must belong to the set
over, but regardless of the number of
opies
hosen in the
over, the same simpli�ed subproblemis generated by the
all to eliminate-set(S,S). Therefore, we
an use the result of this onere
ursive
all to
ompute the number of set
overs of size κ as if we
onsidered all possible numberof
opies of S the algorithm
ould have taken. The algorithm does so by summing over all possiblenumber of sets i it
ould have taken, and for ea
h su
h i, it
omputes the number of
hoi
es (

m
i

)5

Algorithm 1 Count-SC(S,d)Input: A multiset of sets S over the universe U = ∪S.Output: A list of length #(S) + 1
ontaining the number of set
overs of (S,U) of ea
h size
0 ≤ κ ≤ #(S).1: //redu
tion rules2: if S = {∅m}, m ≥ 0 then //base
ase3: return (

(

m
0

)

,
(

m
1

)

, . . . ,
(

m
m

)

)4: else if ∃e ∈ Sm ∈ S : freq(e) = 1 then //unique elements5: ntake = Count-SC(eliminate-set(S,S))6: return (n0, n1, . . . , n#(S)), where:
nκ =

∑min(κ,m)
i=max(1,κ−#(S)+m)

(

m

i

)

[ntake]κ−i7: else if ∃e, e′ ∈ U : S[e] ⊆ S[e′] then //subsumption8: return Count-SC({S\{e′} | S ∈ S})9: else if ∃∅ ⊂ C ⊂ S : {S[e]|e ∈ U [C]} = C then //
onne
ted
omponents10: Let C̄ = S\C, nC = Count-SC(C), nC̄ = Count-SC(C̄)11: return Merge-Components(nC,nC̄)12: end if13: //impli
it redu
tion rule1: identi
al sets14:15: //bran
hing or path de
omposition16: Let Sm ∈ S be of maximum
ardinality and not an ex
eptional
ase217: Let e ∈ U be of maximum frequen
y, also not an ex
eptional
ase218: Preferen
e order P: S4 < S5 < S6 < E5 < E6 < S7 < E7 < E≥8 = S≥819: if S|S| and Efreq(e) are too small to be in P then //path de
omposition20: return Count-SC-PW(S)21: else if Efreq(e) is in the order P and Efreq(e) 6< S|S| then //element bran
h22: noptional = Count-SC({S′\{e} | S′ ∈ S})23: nforbidden = (Count-SC(eliminate-elem(e,S)); 0#(e))24: return noptional − nforbidden25: else //S|S| is in the order P and S|S| 6< Efreq(e) //set bran
h26: ntake = Count-SC(eliminate-set(S,S))27: ndiscard = (Count-SC(S\{Sm}); 0m)28: return (n0, n1, . . . , n|S|), where:
nκ =

(

∑min(κ,m)
i=max(1,κ−|S|+m)

(

m

i

)

[ntake]κ−i

)

+ [ndiscard]κ29: end if
1 The multiset representation makes the identi
al set rule impli
it. We emphasise that identi
al sets
reated by bran
hing are handled by multipli
ity
ounters.
2 There are some ex
eptional
ombinations of
ardinalities of sets and frequen
ies of elements on whi
hthe algorithm will not bran
h. These will be handled by the path de
omposition phase. For a
ompletelist of these
ases see Overview 1.

6

times the number of set
overs of size κ − i from the re
ursive
all. See also, lines 5 and 6 of thepseudo
ode.SubsumptionIf there exists an element e ∈ U whi
h o

urs in every set (and possibly in more sets) in whi
hanother element e′ ∈ U o

urs, then every set
over that
overs e also
overs e′. In this
ase, we
an remove e′ from the
urrent instan
e and obtain a simpler instan
e to whi
h we re
ursivelyapply our algorithm.Conne
ted ComponentsIf the in
iden
e graph
ontains multiple
onne
ted
omponents, then we
an solve the problem onea
h
omponent separately and merge the results. The subroutines Merge-Components(nC,nC̄)performs this merging. Let C, C̄ be two disjoint sets of
onne
ted
omponent of S and let nC , nC̄be the solutions to these two subproblems. In order to
ompute the number of set
overs of size
κ for C ∪ C̄, this subroutine sums over all possible sizes i of set
overs for C and multiplies thisnumber by the number of set
overs for C̄ of size κ − i.Merge-Components(nC,nC̄) = (n0, n1, . . . , n#(C∪C̄))where: nκ =

min(κ,#(C))
∑

i=max(0,κ−#(C̄))

[nC]i × [nC̄]κ−iIdenti
al SetsRemind that the unique elements rule also handles elements that o

ur only in multiple
opies ofthe same set. The idea behind this is that the same subproblem will be generated independentof the number of these identi
al set we
hoose, and this will be used throughout the algorithm.Therefore, we
ould say that our algorithm
onsiders identi
al sets to be 'removed' and usesmultipli
ity
ounters it stead. By the notation and de�nition from Se
tion 2, we will also not
ount identi
al sets twi
e in the dimension of the problem. Hen
e, we have an impli
it redu
tionrule removing identi
al sets. This we use to our advantage in the analysis of the running time inSe
tion 5.Having treated the redu
tion rules we now
ontinue with the bran
hing steps of the algorithm.When no redu
tion rules are appli
able, the algorithm
hooses a set of maximum
ardinalityfrom the sets in the instan
e that are not ex
eptional
ases, and it
hooses an element of maximumfrequen
y from the instan
e that is also not an ex
eptional
ase. We postpone the dis
ussion ofthese ex
eptional
ases for a moment, and remark that this
hoi
e for maximum
ardinality andfrequen
y resembles
hoosing more e�
ient bran
hings. This is so, sin
e if an elements frequen
y islarger, then more sets are ex
luded in the forbidden bran
h and more sets are redu
ed in
ardinalityin the optional bran
h, and similar
onsiderations exist for set bran
hes.The algorithm needs to
hoose whether it is going to bran
h on a set or on an elements. Forthis it uses the following preferen
e order P.
P : S4 < S5 < S6 < E5 < E6 < S7 < E7 < E≥8 = S≥8In this ordering, Si < Ej means that the algorithm prefers to bran
h on an element of frequen
y

j over bran
hing on a set of
ardinality i.Noti
e that sets of
ardinality at most three and elements of frequen
y at most four do noto

ur in the preferen
e order P. These
ardinalities are
onsidered to be too small and thesefrequen
ies too low for e�
ient bran
hing. Instan
es on whi
h no e�
ient bran
hing is possibleare handled by path de
omposition te
hniques by
alling Count-SC-PW(S).The ex
eptional
ases are des
ribed in Overview 1. These ex
eptional
ases exist be
ause in theanalysis in Se
tions 5 and 6 we often know the neighbourhood of a vertex representing a set or anelement in the in
iden
e graph. Su
h neighbourhoods are important for the worst
ase behaviour ofthe algorithm. And, for some neighbourhoods, despite the general rule imposed by the preferen
eorder, it is more e�
ient to handle them by the path de
omposition part of our algorithm than7

There are ex
eptional
ases of elements on whi
h, despite the preferen
e order, Algorithm 1 doesnot bran
h. These
ases represent lo
al neighbourhoods of sets or elements whi
h would in
reasethe running time of the algorithm when bran
hed on, but
an be handled by dynami
 programmingon a path de
omposition quite e�e
tively. The ex
eptional
ases are:1. Elements of frequen
y �ve that o

ur in many sets of small
ardinality. More spe
i�
ally, ifwe let a 5-tupple (s1, s2, s3, s4, s5, s6) represent a frequen
y �ve element o

urring si timesin a
ardinality i set, then our spe
ial
ases
an be denoted as:(1, 4, 0, 0, 0, 0) - (0, 5, 0, 0, 0, 0) - (1, 3, 1, 0, 0, 0) - (0, 4, 1, 0, 0, 0) - (1, 2, 2, 0, 0, 0)(0, 3, 2, 0, 0, 0) - (1, 1, 3, 0, 0, 0) - (0, 2, 3, 0, 0, 0) - (0, 1, 4, 0, 0, 0) - (1, 0, 4, 0, 0, 0)(1, 3, 0, 1, 0, 0) - (0, 4, 0, 1, 0, 0) - (1, 2, 1, 1, 0, 0) - (0, 3, 1, 1, 0, 0) - (1, 1, 2, 1, 0, 0)(1, 0, 3, 1, 0, 0) - (1, 2, 0, 2, 0, 0) - (1, 3, 0, 0, 1, 0) - (1, 2, 1, 0, 1, 0) - (1, 3, 0, 0, 0, 1)2. Sets of
ardinality four, �ve or six, that have one of the above elements
ontained in them.Overview 1: Ex
eptional Cases for Algorithm 1by bran
hing. These neighbourhoods are our ex
eptional
ases. How this in�uen
es the runningtime of our algorithms will be
ome more
lear from the analyses in Se
tions 5 and 6.We
on
lude the des
ription of Algorithm 1 by some remarks on the pseudo
ode of the bran
h-ing steps. In the bran
h where an element e is forbidden, a number of zeros is added to the list
ontaining the number of set
overs of ea
h size (line 23). This is done be
ause the number ofset
overs of size κ for n − #(e) ≤ κ ≤ n equals zero sin
e no sets
ontaining e may be
hosen.Also, we remark that when the algorithm bran
hes on a set of multipli
ity m, it sums over allpossible number of identi
al
opies it
an take in the
over (line 28). This works in the same wayas explained with the unique elements rule.5 Measure and Conquer AnalysisWe analyse Algorithm 1 using the measure and
onquer methodology [11, 13℄. To this end, weintrodu
e a non standard
omplexity measure k(S,U) on problem instan
es; we introdu
e weightfun
tions v, w : N → [0, 1] giving weight v(i) to an element of frequen
y i and weight w(i) to a setof
ardinality i, respe
tively. This gives us the following
omplexity measure:
k(S,U) =

∑

S∈set(S)

w(|S|) +
∑

e∈U
v(freq(e))This measure is identi
al to the one used in [11, 25℄. Noti
e that k is at most the dimension d ofthe set
over instan
e, and hen
e if we prove the running time of the algorithm to be O(αk), wehave also proved a running time of O(αd). For
onvenien
e, we let ∆v(i) = v(i) − v(i − 1) and

∆w(i) = w(i) − w(i − 1) be the
omplexity redu
tions gained by redu
ing the frequen
y of anelement or the
ardinality of a set by one.We start the analysis of the running time of Algorithm 1 by bounding the number of subprob-lems generated by bran
hing.Lemma 1 Let Nh(k) be number of subproblems of measured
omplexity h generated by Algorithm1 on an input of measured
omplexity k. Then:
Nh(k) < 1.22670k−hProof. To
orre
tly analyse the bran
hing, we will use the following
onstraints on the weights:

8

1. v(0) = v(1) = w(0) = 02. ∆v(i) ≥ 0 for all i ≤ 13. ∆w(i) ≥ 0 for all i ≤ 1

4. ∆v(i) ≥ ∆v(i + 1) for all i ≥ 15. ∆w(i) ≥ ∆w(i + 1) for all i ≥ 16. 2∆v(5) ≤ v(2)First, we observe that we
an set the weight of elements of frequen
y one and sets of
ardinalityzero to zero be
ause they are removed by the redu
tion rules or ignored in the bran
hing phase,respe
tively. Se
ond, we do not want the
omplexity of our instan
e to in
rease when de
reasingthe frequen
y of an element or the
ardinality of a set, therefore weights must be in
reasing. This
overs restri
tions 1-3. Restri
tions 4-6 will be explained during the analysis below.Consider bran
hing on an element e
ontained in si sets of
ardinality i. In the bran
h where
e is optional, the element e is removed and all sets
ontaining e are redu
ed in
ardinality by one.And, in the bran
h where e is forbidden, e is removed together with all sets
ontaining e. Theremoval of these sets also results in a redu
tion of the frequen
ies of all other elements in these sets.This leads to two subproblems whi
h are redu
ed in
omplexity by ∆koptional and ∆kforbidden,respe
tively.

∆koptional = v(freq(e)) +

∞
∑

i=1

si∆w(i)

∆kforbidden = v(freq(e)) +
∞
∑

i=1

siw(i) + ∆v(freq(e)) ∞
∑

i=1

(i − 1)siHere we bound ea
h extra redu
tion of the frequen
y of an element be
ause of the removal of a setby ∆v(freq(e)). This is
orre
t be
ause when we bran
h on an element, it is of highest frequen
yand we have the
onstraints ∆v(i) ≥ ∆v(i + 1) (Constraint 4), and this frequen
y is at least �veand 2∆v(5) ≤ v(2) (Constraint 6). Constraint 4 assures that ea
h time we redu
e the
ardinalityof a set more than on
e, the values ∆v(i) for i < freq(e) are large enough, and Constraint 6 handlesthe fa
t that an element
an be
ompletely removed if it o

urs only in removed sets. Without this
onstraint, we
ould have taken all the weight from this element already sin
e v(1) = 0, leavingnone for its �nal o

urren
e.Now
onsider bran
hing on a set S
ontaining ei elements of frequen
y i. As dis
ussed inSe
tion 3, the behaviour is similar to an element bran
h, but with the roles of elements and setsinter
hanged. In the bran
h where S is dis
arded, the set S is removed and all its elements havetheir frequen
y redu
ed by one. And, in the bran
h where we take S, the set S is removed togetherwith all its elements whi
h leads to the redu
tion of the
ardinalities of other sets. However, thesimilarity ends when elements of frequen
y two are involved. After dis
arding S, these elementswill o

ur uniquely in the instan
e, and hen
e some set is in
luded in the solution by the uniqueelements rule. These elements
annot have their se
ond o

urren
e in the same sets sin
e thatwould have triggered the subsumption rule before bran
hing; we remove an additional set of
ardinality at least one for ea
h su
h element.This leads to the following values for ∆kdiscard, ∆ktake:
∆kdiscard = w(|S|) +

∞
∑

i=2

ei∆v(i) + e2w(1)

∆ktake = w(|S|) +
∞
∑

i=2

eiv(i) + ∆w(|S|)
∞
∑

i=2

(i − 1)eiHere we use Constraint 5 (∆w(i) ≥ ∆w(i + 1)) to bound the additional redu
tion in
omplexitydue to the redu
tion in
ardinalities of sets after
overing and removing elements. This is almostsimilar to the analysis of bran
hing on elements.Re
all from the statement of Lemma 1 that Nh(k) is the number of subproblems of measured
omplexity h generated to solve a problem instan
e of measured
omplexity k. By the above9

onsiderations we have:
Nh(k) ≤ Nh(k − ∆koptional) + Nh(k − ∆kforbidden)

Nh(k) ≤ Nh(k − ∆kdiscard) + Nh(k − ∆ktake)with the appropriate values of ∆koptional and ∆kforbidden for every possible element bran
h, andthe appropriate values ∆kdiscard and ∆ktake for every possible set bran
h. The solution of thisset of re
urren
e relations is a fun
tion of the form αk−h where α is the largest positive real rootof the
orresponding set of equations:
1 = α−∆koptional + α−∆kforbidden 1 = α−∆kdiscard + α−∆ktakefor all |S| =

∑∞
i=2 ei and all freq(e) =

∑∞
i=1 si agreeing with the preferen
e order P ex
ept for theex
eptional
ases in Overview 1 (see Se
tion 4). Also, for ea
h element bran
h s1 ≤ 1 sin
e anelement
annot o

ur twi
e in a
ardinality one set by the identi
al sets rule.Noti
e that be
ause we do not bran
h on the �rst kind of ex
eptional
ases from Overview 1,we must keep in mind that there is a se
ond kind of ex
eptional
ases
reated by the fa
t that weonly bran
h on lo
al neighbourhoods respe
ting the preferen
e order P. These are the se
ond kindof ex
eptional
ases in Overview 1.What remains is to
hoose weight fun
tions that respe
t the
onstraints and minimise thesolution to the set of re
urren
e relations. We simplify this optimisation problem by noting thatthe weight fun
tions will
onverge to 1 at some point p resulting in:

w(p′) = v(p′) = 1 and ∆w(p′ + 1) = ∆v(p′ + 1) = 0 for all p′ ≥ pTherefore, the re
urren
e relations
orresponding to |S| > p+1 and freq(e) > p+1 are dominatedby those
orresponding to |S| > p and freq(e) = p, respe
tively. This leads to a large, but �nite,numeri
al optimisation problem (quasi
onvex program [9℄). We solve this by
omputer obtainingan upper bound on the number of subproblems of measured
omplexity h generated. This upperbound is 1.22670k−h using the following set of weights:
i 1 2 3 4 5 6 ≥ 7

v(i) 0.409958 0.776286 0.982138 0.995507 1 1
w(i) 0.367311 0.614495 0.767367 0.870084 0.972800 0.996358 1This proves the lemma. ⊓⊔Noti
e that the above Measure and Conquer analysis is more di�
ult to perform
ompared to astandard analysis. In parti
ular, there are di�erent preferen
e orders, and for ea
h preferen
e order,we obtain a new quasi
onvex program. Moreover, for ea
h su
h order, all possible
ombinations of

si or ei need to be put to a test for whether they
an be in
luded in this analysis (representing
asesto bran
h on), or whether they
an be ex
luded from the analysis and handled more e�
ientlyby dynami
 programming on the path de
omposition. The preferen
e order and ex
eptional
asesused in Algorithm 1 appear to give the best bound on the running time. We found these by bothexhaustive sear
h and trial and error by hand.6 Path De
omposition Dynami
 ProgrammingIn this se
tion we will dis
uss the subroutine Count-SC-PW(S). Algorithm 1
alls this subroutineif an e�
ient bran
hing is not possible, that is, there do not exist any large sets or high frequen
yelements that are not in any of the ex
eptional
ases in Overview 1. Note that it solves thesame problem as Algorithm 1, with extra information on the possible
ardinalities of sets andfrequen
ies of elements. This subroutine uses dynami
 programming on path de
ompositions. The
ombination of pathwidth te
hniques
ombined with a measure and
onquer analysis on bran
hingwas introdu
ed by Fomin et al. [10℄.We will start by giving some terminology on path de
ompositions.10

De�nition (Path de
omposition) A path de
omposition of a graph G = (V, E) is a sequen
eof bags (sets of verti
es) X = 〈X1, . . . , Xr〉 su
h that:
• ⋃r

i=1 Xi = V .
• for ea
h (u, v) ∈ E, there exists a Xi su
h that {u, v} ⊆ Xi.
• if v ∈ Xi and v ∈ Xk then v ∈ Xj, for all i ≤ j ≤ k.The bag Xi is said to introdu
e v /∈ Xi−1 if Xi = Xi−1 ∪ {v} and it is said to forget v ∈ Xi−1 if

Xi = Xi−1 \ {v}. If for all 2 ≤ i ≤ r, Xi either introdu
es or forgets a vertex, then X is
alleda ni
e path de
omposition. The width of X is max1≤i≤r |Xi| − 1 and the pathwidth pw(G) of Gis the minimum over the widths of all its path de
ompositions. It is easy to transform any pathde
omposition into a ni
e path de
omposition of equal width in polynomial time.The subroutine Count-SC-PW(S) uses dynami
 programming on a path de
omposition on thein
iden
e graph GS of our set
over instan
e S.Proposition 2 Given GS = (VRed ∪· VBlue, E) and a ni
e path de
omposition X of GS of widthat most p, the number of red/blue dominating sets for GS of ea
h size 0 ≤ κ ≤ |XRed|
an be
ounted in O(2pnO(1)) time.Proof. Consider the standard dynami
 programming algorithm
omputing the minimumred/blue dominating set in GS using the path de
omposition X . A vertex in Xi
an have twostates: it is in the dominating set or not; and a blue vertex in Xi
an also have two states: it isdominated or not. This algorithm runs in O(2pnO(1)).Using the same stru
ture, we
onstru
t a new dynami
 programming algorithm
omputing forea
h state of the verti
es in Xi and for ea
h 0 ≤ κ ≤ |VRed| the number of red/blue dominating setson G[(
⋃

1≤j≤i Xj)] of size κ that agree with these states on Xi. This in
reases the (exponential)number of states by only a linear fa
tor. Sin
e ea
h state
an still be
omputed in polynomialtime using the dynami
 program, the new algorithm also runs in O(2pnO(1)). ⊓⊔What remains is to prove that we
an
ompute a path de
omposition of suitably boundedpathwidth on the input graphs of Count-SC-PW(S) in polynomial time. To this end, we use thefollowing result by Fomin et al. [10℄.Proposition 3 ([10℄) For any ε > 0, there exists and integer nε su
h that for every graph G with
n > nε verti
es,

pw(G) ≤ 1

6
n3 +

1

3
n4 +

13

30
n5 +

23

45
n6 + n≥7 + ǫnwhere ni is the number of verti
es of degree i in G for any i ∈ {3, . . . , 6} and n≥7 is the numberof verti
es of degree at least 7. Moreover, a path de
omposition of the
orresponding width
an be
onstru
ted in polynomial time.Remark 4. If our graph GS has a vertex of degree d with i degree one neighbours, then thisvertex
an be
onsidered to be a degree d − i vertex in Proposition 3. Namely, if we remove alldegree one verti
es from GS and then
ompute its path de
omposition, then we
an reintrodu
ethese verti
es by inserting
onse
utive introdu
e and forget bags in the de
omposition, in
reasingits pathwidth by at most one.Now we are ready to prove a bound on the running time of Count-SC-PW(S).Lemma 5 Count-SC-PW(S) runs in time O(1.2226k) when applied to a set
over instan
e ofmeasured
omplexity k.Proof. We will now prove an upper bound on the pathwidth of graphs input to Count-SC-PW(S)of measured
omplexity k. To this end we formulate a linear program in whi
h all variables have11

the domain [0,∞). In a simpler form, this was also done by Fomin et al. [10℄. From this paper,we take the �rst part of the linear program:
max z =

1

6
n3 +

1

3
n4 +

13

30
n5 +

23

45
n6 su
h that:

1 =

6
∑

i=1

w(i)xi +

5
∑

i=2

v(i)yi (1)
6

∑

i=1

ixi =

5
∑

i=2

iyi (2)In this linear program, xi and yi represent the number of sets of
ardinality i and elements offrequen
y i per unit of measured
omplexity in a worst
ase instan
e, respe
tively. Noti
e thata subproblem on whi
h Count-SC-PW(S) is
alled
an have sets of
ardinality at most six, fromwhi
h the
ardinalities four, �ve and six only o

ur as ex
eptional
ases (Overview 1), and elementsof frequen
y at most �ve. Constraint 1 guarantees that these xk and yk use exa
tly one unit ofmeasured
omplexity. And, Constraint 2 guarantees that both partitions of the bipartite in
iden
egraph have an equal number of edges.The obje
tive fun
tion, however, is formulated in terms of the variables ni. It represents themaximum pathwidth z of a graph per unit of measured
omplexity using Proposition 3. Thevariables ni represent the number of verti
es of degree i in the input graph per unit of measured
omplexity. Following Remark 6, ni is the number of sets of
ardinality i plus the number ofelements of frequen
y i that have no
ardinality one set o

urren
e and the number of elements offrequen
y i+1 that do o

ur in a
ardinality one set. These size one sets will use measure and notin
rease the pathwidth, so we
an assume that they will only exist if involved in an ex
eptional
ase. More pre
isely, if we let C be the set of ex
eptional frequen
y �ve element
ases de�nedin Overview 1, and let ci be the number of o

urren
es in a
ardinality i set for ex
eptional
ase
c ∈ C, then we
an introdu
e the variables pc for the number of o

urren
es of ea
h ex
eptional
ase c ∈ C per unit of measured
omplexity. This gives us to following additional
onstraints tothe linear program:

n3 = x3 + y3 (3)
n4 = x4 + y4 +

∑

c∈C,c1>0

pc (4) n5 = x5 +
∑

c∈C,c1=0

pc (5)
n6 = x6 (6)
y5 =

∑

c∈C

pc (7)The next thing to do is to add additional
onstraints justi�ed by the ex
eptional
ases. Observethat whenever pc > 0 for some c ∈ C, then there exist further restri
tions on the instan
e be
ausewe know the
ardinalities of the sets in whi
h these ex
eptional element o

ur. We lower boundthe number of sets of
ardinalities one, two and three in the instan
e using Constraint 8. And, weupper bound the number of sets of
ardinality four, �ve and six by using that there
an be at mostone su
h set per ex
eptional frequen
y �ve element
ontained in it. This is done in Constraint 9.
xi ≥

∑

c∈C

ci

i
pc for i ∈ {1, 2, 3} (8)

xi ≤
∑

c∈C
cipc for i ∈ {4, 5, 6} (9)The solution to this linear program is z = 0.28991 with all variables equal to zero, ex
ept:

x1 = 0.267603 x3 = 0.267603 x4 = 0.267603
y4 = 0.200703 y5 = 0.267603 n3 = 0.267603
n4 = 0.735910 p(1,0,3,1,0,0) = 0.26760312

As a result the dynami
 program on this path de
omposition runs in time O(2zknO(1)) whi
hequals O(1.2226k). We
omplete the proof by noting that although Proposition 3 only applies tographs of size at least nǫ, the result holds be
ause we
an �x ǫ to be small enough to disapear inthe rounding of the running time and
onsider all smaller graphs than nǫ to be handled in
onstanttime. ⊓⊔Combining Lemma 1 and Lemma 5 gives our main result.Theorem 6 Algorithm 1
omputes the number of dominating sets of all sizes 0 ≤ κ ≤ n in an nvertex graph G in O(1.5048n) when it is applied to a set
over formulation of this problem.Proof. Let T (k) be the time used on a problem of measured
omplexity k, and let Hk be theset of all possible
omplexities of subproblems of a problem of
omplexity k. Then by Lemma 1and Lemma 5:
T (k) ≤

∑

h∈Hk

Nh(k) · 1.2226h ≤
∑

h∈Hk

1.22670k−h · 1.2226h ≤
∑

h∈Hk

1.22670kSin
e |Hk| is polynomially bounded be
ause we only use a �nite number of weights, Algorithm 1runs in time O(1.22670d), where d is the dimension of the set
over problem instan
e. Using thestandard set
over formulation of dominating set, this gives a running time of O(1.226702n) <
O(1.5048n). ⊓⊔7 Algorithms for Dominating Set Restri
ted to Some GraphClassesThe algorithm, given and analysed in Se
tions 4-6, not only gives the
urrently fastest algorithmto
ompute the number of dominating sets of given sizes, but also is the
urrently fastest algorithmfor the minimum dominating set problem. However, the improvement over the previous fastestminimum dominating set algorithm [25℄ is only small. When we
onsider the dominating setproblem on spe
i�
 graph
lasses, we get a mu
h larger improvement with our approa
h.Gaspers et al.
onsider exa
t algorithms for the dominating set problem on spe
ial graph
lasses on whi
h this problem is still NP-
omplete [16℄. They
onsider c-dense graphs,
ir
legraphs,
hordal graphs, 4-
hordal graphs, and weakly
hordal graphs. They show that if werestri
t ourselves to su
h a graph
lass, then there are either many verti
es of high degree allowingmore e�
ient bran
hing, or the graph has low treewidth allowing us to e�
iently solve the problemby dynami
 programming over a tree de
omposition. In this se
tion, we will show that by usingour two bran
hing rules we need less verti
es of high degree to obtain the same e�e
t with moree�e
tive bran
hing, further improving the results on four of these graph
lasses.We begin by showing that having many verti
es of high degree is bene�
ial to the running timeof an algorithm in our approa
h. Combining the results of Se
tion 4-6 with a result from Gasperset al. [16℄, we dire
tly obtain:Proposition 7 ([16℄, Theorem 6) Let t > 0 be a �xed integer, and let Gt be a
lass of graphswith for all G = (V, E) ∈ Gt: |{v ∈ V : d(v) ≥ t − 2}| ≥ t. Then there is a O(1.226702n−t) timealgorithm to solve the minimum dominating set problem on graphs in Gt.We will now give and prove a stronger variant of this proposition.Lemma 8 Let t > 0 be a �xed integer, and let Gt be a
lass of graphs with for all G = (V, E) ∈ Gt:
|{v ∈ V : d(v) ≥ t − 2}| ≥ 1

2 t. Then there is a O(1.226702n−t) time algorithm to solve theminimum dominating set problem on graphs in Gt.Proof. Let H be the set of verti
es of degree at least t − 2 from the statement of the lemma,and
onsider the set
over formulation of the dominating set problem.13

Let S be a set
orresponding to a vertex in H . We bran
h on this set and
onsider the bran
hin whi
h we take this set in the set
over: the set is removed and all its elements are
overedand hen
e removed also. These are at least t − 1 elements, and therefore this bran
h results in aproblem of dimension at most 2n − t. Only a single set is removed in the other bran
h, in whi
h
ase we repeat this pro
ess and bran
h on the next set represented by another vertex in H . Thisgives us 1
2 t problem instan
es of dimension at most 2n− t and one problem instan
e of dimension

2n − 1
2 t be
ause here 1

2 t sets are removed.In this latter instan
e, we use our new in
lusion/ex
lusion based bran
hing rule on the elements
orresponding to the verti
es in H . These elements still have frequen
y at least 1
2 t− 1, sin
e only

1
2 t sets have been dis
arded until now. When bran
hing on an element and forbidding it, asubproblem of dimension at most 2n − t is
reated be
ause at least an additional element and
1
2 t− 1 sets are removed in this bran
h. What remains is one subproblem generated in the bran
hafter dis
arding 1

2 t sets and making 1
2 t elements optional. Sin
e all these sets and elements areremoved in these bran
hes, this also gives us a problem of dimension 2n − t.The above pro
edure generates t + 1 problems of dimension 2n− t, whi
h
an all be solved byAlgorithm 1 in O(1.226702n−t) time. These are only a linear number of instan
es giving us a totalrunning time of O(1.226702n−t). ⊓⊔De�nition (c-dense graph) A graph G = (V, E) is said to be c-dense, if |E| ≥ c where c a
onstant with 0 < c < 1

2 .If we
ombine our dominating set algorithm with the approa
h from Gaspers et al. [16℄, weobtain an O
(

1.22670(1+
√

1−2c)n
) algorithm that
ounts the number of dominating sets of ea
hsize on a c-dense graph. Using Lemma 8 we improve upon this, as shown below. A graphi
al
omparison of both results
an be found in Figure 1.Corollary 9 The number of dominating sets of all sizes 0 ≤ κ ≤ n in a
-dense graph
an
ountedin O

(

1.22670(1

2
+ 1

2

√
9−16c)n

).Proof. By a
ounting argument in [16℄, any graph has a set of high degree verti
es that allowappli
ation of Lemma 8 with parameter t if it has enough edges. For c-dense graphs this is when:
|E| ≥ cn2 ≥ 1

2

(

1

2
t − 1

)

(n − 1) +
1

2

(

n − 1

2
t + 1

)

(t − 3)If t ≤ 1
2 (4 + 3n) − 1

2

√
−8n + 9n2 − 16cn2 then this is the
ase. By taking t maximal in thisinequality and removing all fa
tors that disappear in the big-O, we obtain a running time of

O
(

1.22670(1

2
+ 1

2

√
9−16c)n

). ⊓⊔Note that this results also gives the
urrent fastest algorithm for minimum dominating set on
c-dense graphs.We now
onsider
ir
le graphs,
hordal graphs, 4-
hordal graphs, and weakly
hordal graphs.Let us �rst introdu
e these graph
lasses.De�nition (Cir
le graph) A
ir
le graph is an interse
tion graph of
hords in a
ir
le: everyvertex represents a
hord, and verti
es are adja
ent if the
ords interse
t.De�nition (Chordal graph) A graph is
hordal if it has no
hordless
y
le.De�nition (4-Chordal graph) A graph is 4-
hordal if it has no
hordless
y
le of length morethan four.De�nition (Weakly
hordal graph) A graph G is weakly
hordal if both G and its
omplementare 4-
hordal. 14

The solid line represents the upper bound on the running time of our algorithm, and the dashed linerepresents the upper bound obtained from [16℄ after plugging in our faster algorithm for dominating set.Figure 1: Comparison of bounds on the running time on c-dense graphs.On these graph
lasses Gaspers et al. [16℄ balan
e dynami
 programming over tree de
ompo-sitions to the many verti
es of high degree approa
h.De�nition (Tree de
omposition) A tree de
omposition of a graph G = (V, E) is a tree T within ea
h node a bag (set of verti
es) Xt su
h that:
• ⋃

Xt∈T Xt = V .
• for ea
h (u, v) ∈ E, there exists a Xt ∈ T su
h that {u, v} ⊆ Xt.
• for all X1, X2, X3 ∈ T , if X2 is on the path from X1 to X3 in T , then X1 ∩ X3 ⊆ X2.The width of a tree de
omposition T is maxXi∈T |Xi| − 1 and the treewidth tw(G) of G is theminimum over the widths of all its tree de
ompositions.Similar to path de
ompositions, a tree de
omposition is a ni
e tree de
omposition if it is abinary tree and every non-leaf bag is either an introdu
e, forget or join bag. In this terminology,the bag Xt is said to introdu
e v if it equals its
hild plus the vertex v, and it is said to forget v ifit equals its
hild minus the vertex v. Additionally, the bag Xt joins its right
hild Xr and its left
hild Xl if Xr = Xl = Xt. Kloks [20℄ has shown that any tree de
omposition
an be transformedinto a ni
e tree de
omposition of equal width in polynomial time.A ni
e tree de
omposition
an, just as a ni
e path de
omposion, be used for dynami
 pro-gramming. For more information on tree de
ompositions and dynami
 programming over treede
ompositions see [7, 8℄. A straightforward dynami
 programming algorithm for dominating setrunning in O(4tnO(1))
an be found in [1℄.We use a faster algorithm for dominating set on graphs of bounded treewidth [23℄ using fastsubset
onvolutions [5℄.Proposition 10 ([23℄) Given an n-vertex graph G = (V, E) and ni
e tree de
omposition T of Gof width t, the number of dominating sets in G of ea
h size 0 ≤ κ ≤ n
an be
ounted in O(3tnO(1))time.The following lemma is based on [16℄ and gives our running times on the other graph
lasses.Note that a graph
lass G is a hereditary graph
lass if all indu
ed subgraphs of any graph G ∈ Gare in G too.Lemma 11 Let G be a hereditary
lass of graphs su
h that tw(G) ≤ c∆(G) for all G ∈ Gand for whi
h su
h tree de
ompositions
an be
omputed in polynomial time. Then there is a

O
(

max
(

1.226702n−t′n, 3(c+ 1

2
)t′n

)) time algorithm that
ounts the number of dominating setsof ea
h size in a graph G = (V, E). Both terms are balan
ed if: t′ = 4
2+d+2cd

where d =
1/ log3(1.22670). 15

Proof. Let X be the set of verti
es of degree at least t′n. If |X | ≥ 1
2 t′n then we
an applyLemma 8 with t = t′n giving a running time of O(1.226702n−t′n).Otherwise |X | ≤ 1

2 t′n and ∆(G[V \ X]) < t′n. Sin
e G[V \ X] belongs to G we know that:tw(G) ≤ tw(G[V \ X]) + |X | ≤ c∆(G[V \ X]) + |X | < ct′n +
1

2
t′n =

(

c +
1

2

)

t′nNow we
an apply Proposition 10 giving us a running time of O(3(c+ 1

2
)t′n).The balan
ing follows from basi

al
ulations. ⊓⊔Proposition 12 ([16℄) The following graph
lasses are hereditary graph
lasses with tw(G) ≤

c∆(G) for all G ∈ G using the following values of c.
• Cir
le graphs (c = 4).
• 4-Chordal graphs (c = 3).
• Weakly Chordal graphs (c = 2).The
orresponding tree de
omposition
an be
omputed in polynomial time.Corollary 13 There exist algorithms that
ount the number of dominating sets of ea
h size ina
ir
le graph in time O(1.4806n), in a 4-
hordal graph in O(1.4741n), and in a weakly
hordalgraph in O(1.4629n).Proof. Combine Lemma 11 and Proposition 12. ⊓⊔As a �nal remark, we state that we
ould not use our two bran
hing rules to improve theresult on
hordal graphs beyond plugging in our faster algorithm for general dominating set. We
ombine the approa
h of Gaspers et al. [16℄ with Theorem 6 and obtain the following proposition.Proposition 14 There exist algorithms that
ount the number of dominating sets of ea
h size ina
hordal graph in time O(1.3712n).Proof. Following [16℄,
ombine Algorithm 1 with a O(2tnO(1)) algorithm on
hordal graphs oftreewidth t. ⊓⊔8 Con
lusionIn this paper we have show that we
an use in
lusion/ex
lusion based bran
hing in
ombinationwith traditional bran
hing and analyse su
h an algorithm by means of measure and
onquer. Sin
ethe use of in
lusion/ex
lusion restri
ts you to
ounting problems, whi
h allow less redu
tion rulesthan their de
ision
ounterparts, we shifted to pathwidth based te
hniques on sparse instan
es.This
ombination resulted in an algorithm that
omputes the number of dominating sets of ea
h
ardinality slightly faster than any previous algorithm that
omputes a single minimum dominatingset. Furthermore, we have shown that this leads to a signi�
ant speed up when restri
ted to somegraph
lasses, while we still
ompute mu
h more information.While the improvement of the running time for the studied problems are interesting, we believethat the most important
ontribution of our paper is the novel
ombination of in
lusion/ex
lusionand bran
hing with a measure and
onquer analysis. This gives a ni
e way to get rid of the usual

O(2nnO(1)) running times obtained by in
lusion/ex
lusion algorithms when applied to generalgraphs.We note that we
an use the same algorithm to the weighted versions of the problems as longas the size of the set of possible weight sums Σ is polynomially bounded. The only modi�
ationne
essary is to make the algorithms
ompute the number of set
overs of ea
h possible weight
w ∈ Σ at ea
h step. 16

Our algorithms are highly dependent on the
urrent best known upper bounds on the pathwidthof bounded degree graphs [10, 14℄. Any result that would improve these bounds would also improveour algorithm.We remark that we use dynami
 programming over path de
ompositions, while tree de
ompo-sitions are more general and would allow the same running times by using fast subset
onvolutionsto perform join operations [5, 23℄. Kneis et al. [21℄ have some results on treewidth bounds forbounded degree graphs, but weaker than the pathwidth results we use. We
onsider it to be animportant open problem to give stronger (or even tight) bounds on the treewidth or pathwidth ofbounded degree graphs for whi
h de
ompositions
an be
omputed e�
iently.For further resear
h, we are looking at more problems to whi
h our in
lusion/ex
lusion meetsmeasure and
onquer approa
h
an be applied.A
knowledgementsWe would like to thank our advisor Hans L. Bodlaender for his enthusiasm for this resear
h andfor useful
omments on an earlier draft of this paper. We would also like to thank Alexey A.Stepanov for useful dis
ussions on [10℄.Referen
es[1℄ J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed parameteralgorithms for dominating set and related problems on planar graphs. Algorithmi
a, 33:461�493, 2002.[2℄ E. T. Bax. In
lusion and ex
lusion algorithm for the hamiltonian path problem. InformationPro
essing Letters, 47(4):203�207, 1993.[3℄ E. T. Bax. Re
urren
e-based redu
tions for in
lusion and ex
lusion algorithms applied to #Pproblems, 1996.[4℄ A. Björklund and T. Husfeldt. Exa
t algorithms for exa
t satis�ability and number of perfe
tmat
hings. Algorithmi
a, 52(2):226�249, 2008.[5℄ A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius: fast subset
onvolution. In STOC '07: Pro
eedings of the thirty-ninth annual ACM symposium on Theoryof
omputing, pages 67�74, New York, NY, USA, 2007. ACM.[6℄ A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via in
lusion-ex
lusion. SIAMJournal of Computing, Spe
ial Issue for FOCS 2006, to appear.[7℄ H. L. Bodlaender. A tourist guide through treewidth. A
ta Cyberneti
a, 11:1�23, 1993.[8℄ H. L. Bodlaender and A. M. C. A. Koster. Combinatorial optimization on graphs of boundedtreewidth. The Computer Journal, 51(3):255�269, 2008.[9℄ D. Eppstein. Quasi
onvex analysis of ba
ktra
king algorithms. In Pro
eedings of the 15thAnnual ACM-SIAM Symposium on Dis
rete Algorithms, SODA 2004, pages 781�790, 2004.[10℄ F. V. Fomin, S. Gaspers, S. Saurabh, and A. A. Stepanov. On two te
hniques of
ombiningbran
hing and treewidth. Algorithmi
a. Spe
ial issue of ISAAC 2006, to appear.[11℄ F. V. Fomin, F. Grandoni, and D. Krats
h. Measure and
onquer: Domination � a
asestudy. In Pro
eedings of the 32nd International Colloquium on Automata, Languages andProgramming, ICALP 2005, pages 191�203. Springer Verlag, Le
ture Notes in ComputerS
ien
e, vol. 3580, 2005.[12℄ F. V. Fomin, F. Grandoni, and D. Krats
h. Some new te
hniques in design and analysis ofexa
t (exponential) algorithms. Bulletin of the EATCS, 87:47�77, 2005.17

[13℄ F. V. Fomin, F. Grandoni, and D. Krats
h. Measure and
onquer: a simple O(20.288n)independent set algorithm. In Pro
eedings of the 16th Annual ACM-SIAM Symposium onDis
rete Algorithms, SODA 2006, pages 18�25, 2006.[14℄ F. V. Fomin and K. Høie. Pathwidth of
ubi
 graphs and exa
t algorithms. InformationPro
essing Letters, 97:191�196, 2006.[15℄ F. V. Fomin, D. Krats
h, and G. J. Woeginger. Exa
t (exponential) algorithms for the dom-inating set problem. In J. Hromkovi�
, M. Nagl, and B. Westfe
htel, editors, Pro
eedings 30thInternational Workshop on Graph-Theoreti
 Con
epts in Computer S
ien
e WG'04, pages245�256. Springer Verlag, Le
ture Notes in Computer S
ien
e, vol. 3353, 2004.[16℄ S. Gaspers, D. Krats
h, and M. Liedlo�. Exponential time algorithms for the minimum domi-nating set problem on some graph
lasses. In L. Arge and R. Freivalds, editors, Pro
eedings ofthe 10th S
andinavian Workshop on Algorithm Theory, SWAT 2006, pages 148�159. SpringerVerlag, Le
ture Notes in Computer S
ien
e, vol. 4059, 2006.[17℄ F. Grandoni. A note on the
omplexity of minimum dominating set. J. Dis
. Alg., 4:209�214,2006.[18℄ K. Iwama. Worst-
ase upper bounds for ksat. Bulletin of the EATCS, 82:61�71, 2004.[19℄ R. M. Karp. Dynami
 programming meets the prin
iple of in
lusion-ex
lusion. OperationsResear
h Letters, 1:49�51, 1982.[20℄ T. Kloks. Treewidth. Computations and Approximations. Le
ture Notes in Computer S
ien
e,Vol. 842. Springer-Verlag, Berlin, 1994.[21℄ J. Kneis, D. Mölle, S. Ri
hter, and P. Rossmanith. Algorithms based on the treewidth of sparsegraphs. In Pro
eedings of the 31st International Workshop on Graph-Theoreti
 Con
epts inComputer S
ien
e (WG 2005), volume 3787 of LNCS, pages 385�396. Springer, 2005.[22℄ B. Randerath and I. S
hiermeyer. Exa
t algorithms for minimum dominating set. Te
hni
alReport zaik2005-501, Universität zu Köln, Cologne, Germany, 2005.[23℄ P. Rossmanith. Using fast set
onvolutions to
ompute minimal dominating sets. Talk atDagstuhl Seminar 07281, Stru
ture Theory and FPT Algorithmi
s for Graphs, Digraphs andHypergraphs, Juli 2007.[24℄ U. S
höning. Algorithmi
s in exponential time. In Pro
eedings of the 22nd InternationalSymposium on Theoreti
al Aspe
ts of Computer S
ien
e (STACS 2005), pages 36�43. SpringerVerlag, Le
ture Notes in Computer S
ien
e, vol. 3404, 2005.[25℄ J. M. M. van Rooij and H. L. Bodlaender. Design by measure and
onquer � a faster exa
talgorithm for dominating set. In S. Albers and P. Weil, editors, Pro
eedings of the 25th AnnualSymposium on Theoreti
al Aspe
ts of Computer S
ien
e, STACS 2008, pages 657�668. IBFIS
hloss Dagstuhl, 2008.[26℄ G. J. Woeginger. Exa
t algorithms for NP-hard problems: A survey. In CombinatorialOptimization: �Eureka, you shrink�, pages 185�207, Berlin, 2003. Springer Le
ture Notes inComputer S
ien
e, vol. 2570.
18

