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Strategies for Exercises

Bastiaan Heeren, Johan Jeuring and Alex Gerdes

Abstract. Strategies specify how a wide range of exercises can be solved in-
crementally, such as bringing a logic proposition to disjunctive normal form,
reducing a matrix, or calculating with fractions. In this paper we introduce a
language for specifying strategies for solving exercises. This language makes
it easier to automatically calculate feedback, for example when a user makes
an erroneous step in a calculation. We can automatically generate worked-out
solutions, track the progress of a student by inspecting submitted intermedi-
ate answers, and report back suggestions in case the student deviates from
the strategy. Thus it becomes less labor-intensive and less ad-hoc to specify
new exercise domains and exercises within that domain.

A strategy describes valid sequences of transformation rules that solve
the exercise at hand, which turns tracking intermediate steps into a parsing
problem. This is a promising view at the problem because it allows us to
take advantage of many years of experience in parsing sentences of context-
free languages, and transfer this knowledge and technology to the domain of
stepwise solving exercises.

In this paper we work out the similarities between parsing and solving
exercises incrementally, and we discuss the implementation of a recognizer for
strategies. We present a full implementation of such a recognizer, and discuss
a number of design choices we have made. In particular, we discuss the use of
a fixed point combinator to deal with repetition, and labels to mark positions
in the strategy.

1. Introduction

Tools like Aplusix [9], ActiveMath [15], MathPert [4], and our own tool for rewrit-
ing logic expressions [25] support solving mathematical exercises incrementally.
Ideally a tool gives detailed feedback on several levels. For example, when a stu-
dent rewrites p→ (r ↔ p) into ¬p∨(r ↔ p, our tool will tell the student that there
is a missing parenthesis. If the same expression is rewritten into ¬p ∧ (r ↔ p), it
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will tell the student that an error has been made when applying the definition of
implication: correct application of this definition would give ¬p∨ (r ↔ p). Finally,
if the student rewrites ¬(p∧ (q∨ r)) into ¬((p∧ q)∨ (p∧ r)), it will tell the student
that although this step is not wrong, it is better to first eliminate occurrences of
¬ occurring at top-level, since this generally leads to fewer rewrite steps.

The first kind of error is a syntax error, and there exist good error-repairing parsers
that suggest corrections to formulas with syntax errors. The second kind of error
is a rewriting error: the student rewrites an expression using a non-existing or
buggy rule. There already exist some interesting techniques for finding the most
likely error when a student incorrectly rewrites an expression. The third kind of
error is an error on the level of the procedural skill or strategy for solving this
kind of exercises. This paper discusses how we can formulate and use strategies to
construct the third kind of feedback.

The main contribution of this paper is the formulation of a strategy language as a
domain-specific embedded language, with a clear separation between a context-free
and a non-context-free part. The strategy language can be used for any domain,
and can be used to automatically calculate feedback on the level of strategies, given
an exercise, the strategy for solving the exercise, and student input. Another con-
tribution of our work is that the specification of a strategy and the calculation
of feedback is separated: we can use the same strategy specification to calculate
different kinds of feedback. Furthermore, we discuss the implementation of a recog-
nizer for such strategies, and discuss a number of design choices we have made. In
particular, we discuss the use of a fixed point combinator to deal with repetition,
and labels to mark positions in the strategy.

This paper is organized as follows. Section 2 introduces strategies, and discusses
how they can help to improve feedback in e-learning systems or intelligent tutoring
systems. We continue with some example strategies from the domain of logical
expressions (Section 3). Then, we present our language for writing strategies in
Section 4. We do so by defining a number of strategy combinators, and by showing
how the various example strategies can be specified in our language. Section 5
shows how we have implemented the components of our strategy language to obtain
a strategy recognizer, and discusses the main design choices. Section 6 discusses
several possibilities for giving feedback or hints using our strategy language. The
last section concludes and gives directions for future research.

2. Strategies and feedback

Whatever aspect of intelligence you attempt to model in a computer program, the
same needs arise over and over again [8]:

• The need to have knowledge about the domain.
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• The need to reason with that knowledge.
• The need for knowledge about how to direct or guide that reasoning.

In the case of exercises, the knowledge about how to guide reasoning is often cap-
tured by a so-called procedure or procedural skill. A procedure describes how basic
steps may be combined to solve a particular problem. A procedure is often called
a strategy (or meta-level reasoning, meta-level inference [8], procedural nets [6],
plans, tactics, etc.), and we will use this term in the rest of this paper.

Many subjects require a student to learn strategies. At elementary school, students
have to learn how to calculate a value of an expression, which may include fractions.
At high school, students learn how to solve a system of linear equations, and at
university, students learn how to apply Gaussian elimination to a matrix, or how to
rewrite a logical expression to disjunctive normal form (DNF). Strategies are not
only important for mathematics, logic, and computer science, but also for physics,
biology (Mendel’s laws), and many other subjects. Strategies are taught at any
level, in almost any subject, and range from simple – for example the simplification
of arithmetic expressions – to very complex – for example a complicated linear
algebra procedure.

E-learning systems for learning strategies. Strategic skills are almost always ac-
quired by practicing exercises, and indeed, students usually equate mathematics
with solving exercises. In schools, the dominant practice still is a student perform-
ing a calculation using pen-and-paper, and the teacher correcting the calculation
(the same day, in a couple of days, after a couple of weeks). There exist many
software solutions that support practicing solving exercises on a computer. The
simplest kinds of tools offer multiple-choice questions, possibly with an explana-
tion of the error if a wrong choice is submitted. A second class of tools asks for
an answer to a question, again, possibly with an analysis of the answer to give
feedback when an error has been made. The class of tools we consider in the pa-
per are tools that support the incremental, step-wise calculation of a solution to
an exercise, thus mimicking the pen-and-paper approach more or less faithfully.
Since e-learning tools for practicing procedural skills seem to offer many advan-
tages, hundreds of tools that support practicing strategies in mathematics, logic,
physics, etc. have been developed.

Should e-learning systems give feedback? In Rules of the Mind [1], Anderson dis-
cusses the ACT-R principles of tutoring, and the effectiveness of feedback in intel-
ligent tutoring systems. One of the tutoring principles deals with student errors.
If a student made a slip in performing a step (s)he should be allowed to correct it
without further assistance. However, if a student needs to learn the correct rule,
the system should give a series of hints with increasing detail, or show how to
apply the correct rule. Finally, it should also be possible to give an explanation of
an error made by the student. The question on whether or not to give immediate
feedback is still debated. Anderson observed no positive effects in learning with
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deferred feedback, but observed a decline in learning rate instead. Erev et al. [13]
also claim that immediate feedback is often to be preferred.

Feedback in e-learning systems supporting incrementally solving exercises. There
are only very few tools that mimic the incremental pen-and-paper approach and
that give feedback at intermediate steps different from correct/incorrect. Although
the correct/incorrect feedback at intermediate steps is valuable, it is unfortunate
that the full possibilities of e-learning tools are not used. There are several reasons
why the given feedback is limited. The main reasons probably are that supporting
detailed feedback for each exercise is very laborious, providing a comprehensive
set of possible bugs for a particular domain requires a lot of research (see for
example Hennecke’s work [17] on student bugs in calculating fractions), and auto-
matically calculating feedback for a given exercise, strategy, and student input is
very difficult.

Feedback should be calculated automatically. We think specifying feedback to-
gether with every exercise that is solved incrementally is a dead-end: teachers will
want to enter new exercises on a regular basis, and completely specifying feedback
is just too laborious, error prone, and repetitive. Instead, feedback should in gen-
eral be calculated automatically, given the exercise, the strategy for the exercise,
buggy rules and strategies, and the input from the student. To automatically cal-
culate feedback, we need information about the domain of the exercise, the rules
for manipulating expressions in this domain, the strategy for solving the exercise,
and common bugs. For example, for Gaussian elimination of a matrix, we have
to know about matrices (which can be represented by a list of rows), the rules
for manipulating matrices (the elementary matrix operations such as scaling a
row, subtracting a row from another row, and swapping two rows), buggy rules
and strategies for manipulating matrices (subtracting a row from itself), and the
strategy for Gaussian elimination of a matrix, which can be found in the technical
report corresponding to this paper [16].

Representing strategies. Representing the domain and the rules for manipulating
an expression in the domain is often relatively straightforward. Specifying a strat-
egy for an exercise is more challenging in many cases. To specify a strategy, we need
the power of a full programming language: many strategies require computations
of values. However, to calculate feedback based on a strategy, we need to know
more than that it is a program. We need to know its structure and basic compo-
nents, which we can use to report back on errors. Furthermore, we claim that if
we ask a teacher to write a strategy as a program, instead of specifying feedback
with every exercise, the automatic approach is not going to be very successful.

An embedded domain-specific language for specifying strategies. This paper dis-
cusses the design of a language for specifying strategies for exercises. The domains
and rules vary for the different subjects, but the basic constructs for describing
strategies are the same for different subjects (‘first do this, then do that’, ‘either do
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this or that’). So, the strategy language can be used for any domain (mathemat-
ics, logic, physics, etc). It consists of several basic constructs from which strategies
can be built. These basic constructs are combined with program code in a pro-
gramming language to be able to specify any strategy. The strategy language is
formulated as an embedded domain-specific language (EDSL) in a programming
language [20] to easily facilitate the combination of program code with a strategy.
Here ‘domain-specific’ means specific for the domain of strategies, not specific for
the domain of exercises. The separation into basic strategy constructs and program
code offers us the possibility to analyze the basic constructs, from which we can
derive several kinds of feedback.

What kind of feedback? We can automatically calculate the following kinds of
feedback, many of which are part of the tutoring principles of Anderson [1].

• Is the student still on the right path towards a solution? Does the step made
by the student follow the strategy for the exercise? What is the next step the
student should take?
• We produce hints based on the strategy.
• We can give an indication of the progress, based on the position on the path

from the starting point to the solution of an exercise.
• If a student enters a wrong final answer, we can ask the student to solve

subproblems of the original problem.
• We allow the formulation of buggy strategies to explain common mistakes to

students.

We do not build a model of the student to try to explain the error made by the
student. According to Anderson, an informative error message is better than bug
diagnosis.

How do we calculate feedback on strategies? The strategy language is defined as
an embedded domain-specific language in Haskell [28]. Using the basic constructs
from the strategy language, we can create something that resembles a context-free
grammar. The sentences of this grammar are sequences of transformation steps
(applications of rules). We can thus check whether or not a student follows a
strategy by parsing the sequence of transformation steps, and checking that the
sequence of transformation steps is a prefix of a correct sentence from the context-
free grammar. Many steps require student input, for example when a student wants
to multiply a row by a scalar, or when a student wants to subtract two rows. This
part of the transformation cannot be checked by means of a context-free grammar,
and here we make use of the fact that our language is embedded into a full pro-
gramming language, to check input values supplied by the student. The separation
of the strategy into a context-free part, using the basic strategy combinators, and
a non-context-free part, using the power of the programming language, offers us
the possibility to give the kinds of feedback mentioned above. Computer Science
has almost 50 years of experience in parsing sentences of context-free languages,
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including error-repairing parsers, which we can use to improve feedback on the
level of strategies.

Related work. Explaining syntax errors has been studied in several contexts, most
notably in compiler construction [31], but also for e-learning tools [19]. Some work
has been done on trying to explain errors made by students on the level of rewrite
rules [17, 22, 26, 5].

Already around 1980, but also later, VanLehn et al. [6, 7, 32], and Anderson and
others from the Advanced Computer Tutoring research group at CMU [1, 2] worked
on representing procedures or procedural networks. VanLehn et al. already noticed
that ‘The representation of procedures has an impact on all parts of the theory.’
Anderson et al. report that the technical accomplishment was ‘no mean feat’.
Both VanLehn et al. and Anderson et al. chose to deploy collections of condition-
action rules, or production systems. In Mind Bugs [32], VanLehn states several
assumptions about languages for representing procedures. In Rules of the Mind [1],
Anderson formulates similar assumptions. Their leading argument for selecting a
language for representing procedures is that it should be psychologically plausible.
We think our strategy language can be viewed as a production system. But our
leading argument is that it should be easy to calculate feedback based on the
strategy. Using an EDSL for specifying the context-free part of a strategy simplifies
calculating feedback. Furthermore, our language satisfies the assumptions about
representation languages given by VanLehn, such as the presence of variables in
procedures, and the possibility to define recursive procedures. As far as we can
see, neither VanLehn nor Anderson use parsing for the language for procedures to
automatically calculate feedback.

Zinn [34] writes strategies as Prolog programs, in which rules and strategies (‘task
models’) are intertwined.

3. Three example strategies

In this section we present three strategies for rewriting a classical logical expression
to disjunctive normal form. Although the example strategies are relatively simple,
they are sufficiently rich to demonstrate the main components of our strategy
language.

The domain. Before we can define a strategy, we first have to introduce the domain
of logical expressions and a collection of available rules. A logical expression is a
logical variable, a constant true or false (written T and F ), the negation of a
logical expression, or the conjunction, disjunction, implication, or equivalence of
two logical expressions. This results in the following grammar:
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Basic Rules:
Constants: AndTrue: p ∧ T = p

OrTrue: p ∨ T = T
NotTrue: ¬T = F

AndFalse: p ∧ F = F
OrFalse: p ∨ F = p
NotFalse: ¬F = T

Definitions: ImplDef: p → q = ¬p ∨ q
EquivDef: p ↔ q = (p ∧ q) ∨ (¬p ∧ ¬q)

Negations: NotNot: ¬¬p = p
DeMorganAnd: ¬(p ∧ q) = ¬p ∨ ¬q
DeMorganOr: ¬(p ∨ q) = ¬p ∧ ¬q

Distribution: AndOverOr: p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r)

Additional Rules:
Tautologies: ImplTaut: p → p = T

EquivTaut: p ↔ p = T
OrTaut: p ∨ ¬p = T

Contradictions: AndContr: p ∧ ¬p = F EquivContr: p ↔ ¬p = F

Figure 1: Rules for logical expressions

Logic ::= Var | T | F | ¬Logic | Logic ∧ Logic
| Logic ∨ Logic | Logic → Logic | Logic ↔ Logic

Var ::= p | q | r | . . .

If necessary, we write parentheses to resolve ambiguities. Examples of valid ex-
pressions are ¬(p ∨ (q ∧ r)) and ¬(¬p ↔ p).

The rules. Logical expressions form a boolean algebra, and hence a number of rules
for logical expressions can be formulated. Figure 1 presents a small collection of
basic rules and some tautologies and contradictions. All variables in these rules are
meta-variables and range over arbitrary logical expressions. The rules are expressed
as equivalences, but are only applied from left to right. For most rules we assume
to have a commutative variant, for instance, T ∧ p = p for rule AndTrue. With
these implicit rules, we can bring every logical expression to disjunctive normal
form.

Every serious exercise assistant for this domain has to be aware of a much richer set
of rules. In particular, we have not given rules for commutativity and associativity,
several plausible rules for implications and equivalences are omitted, and the list
of tautologies and contradictions is far from complete.

Strategy 1: apply rules exhaustively. The first strategy applies the basic rules from
Figure 1 exhaustively: we proceed as long as we can apply some rule somewhere,
and we will end up with a logical expression in disjunctive normal form. This is a
special property of the chosen collection of basic rules, and this is not the case for
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a rule set in general. The strategy is very liberal, and approves every sequence of
rules.

Strategy 2: four steps. Strategy 1 accepts sequences that are not very attractive,
and that no expert would ever consider. We give two examples:

¬¬(p ∨ q) DeMorganOr=⇒ ¬(¬p ∧ ¬q) T ∨ (¬¬p) NotNot=⇒ T ∨ p

In both cases, it is more appealing to select a different rule (NotNot and OrTrue,
respectively). We define a new strategy that proceeds in four steps, and such that
the above sequences are not permitted.

• Step 1: Remove constants from the logical expression with the rules for “con-
stants” (see Figure 1), supplemented with constant rules for implications and
equivalences. Apply the rules top-down, that is, at the highest possible posi-
tion in the abstract syntax tree. After this step, all occurrences of T and F
are removed.
• Step 2: Use ImplDef and EquivDef to rewrite implications and equivalences

in the formula. Proceed in a bottom-up order.
• Step 3: Push negations inside the expression using the rules for negations,

and do so in a top-down fashion. After this step, all negations appear directly
in front of a logical variable.
• Step 4: Use the distribution rule (AndOverOr) to move disjunctions to top-

level. The order is irrelevant.

Strategy 3: tautologies and contradictions. Suppose that we want to extend Strat-
egy 2, and use rules expressing tautologies and contradictions (for example, the
additional rules in Figure 1). These rules introduce constants. Our last strategy is
as follows:

• Follow the four steps of Strategy 2, however:
• Whenever possible, use the rules for tautologies and contradictions (top-

down), and
• clean up the constants afterwards (step 1). Then continue with Strategy 2.

Buggy rules. In addition to the collection of rules and a strategy, we can formulate
buggy rules. These rules capture mistakes that are often made, such as the following
unsound variations on the two De Morgan rules:

BuggyDM1 : ¬(p ∧ q) 6= ¬p ∧ ¬q BuggyDM2 : ¬(p ∨ q) 6= ¬p ∨ ¬q

The advantage of formulating buggy rules is that specialized feedback can be
presented if the system detects that such a rule is applied. Note that these rules
should not appear in strategies, since that would invalidate the strategy.

The idea of buggy rules can easily be extended to buggy strategies. A buggy
strategy corresponds to a common procedural mistake. Applying a buggy rule
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results in an expression with a different semantics from the previous expression.
Applying a rule from a buggy strategy results in an equivalent expression, but
following a wrong strategy. Also for buggy strategies we want to report a detailed
message.

4. A language for strategies for exercises

The previous section gives an intuition of strategies for exercises, such as the
three DNF strategies. In this section we define a language for specifying such
strategies. We explore a number of combinators to combine simple strategies into
more complex ones. We start with a set of basic combinators, and gradually move
on to more powerful combinators.

4.1. Basic strategy combinators

Strategies are built on top of basic rules, such as the logic rules from the previous
section. Let r be a rule, and let a be some term. We write apply r a to denote
the application of r to a, which returns a set of terms. If this set is empty, we say
that r is not applicable to a, and that the rule fails.

The basic combinators for building strategies are the same as the building blocks
for context-free grammars (CFGs). In fact, we can view a strategy as a grammar
where the rules form the alphabet of the language.

• Transformation rule. Such a rule is the smallest building block to construct
composite strategies, and closely corresponds to a terminal symbol in a CFG.
Occasionally, we write symbol r for some transformation rule r to distinguish
the strategy from the transformation rule.
• Sequence. Two strategies can be composed and put in sequence. We write

s <?> t to denote the sequence of strategy s followed by strategy t .
• Choice. We can choose between two strategies, for which we will write

s <|> t . One of its argument strategies is applied.
• Units. Two special strategies are introduced: succeed is the strategy that

always succeeds, without doing anything, and fail is the strategy that always
fails. These combinators are useful to have: succeed and fail are the unit
elements of the <?> and <|> combinators.
• Recursion. We need a way to deal with recursion, and for this we introduce

a fixed point combinator. We write fix f , where f is the function of which we
take the fixed point. Hence, the function f takes a strategy and returns one,
and such that the property fix f = f (fix f ) holds.
• Labels. With our final combinator we can label strategies. We write label ` s

to label strategy s with some label `. Labels are used to mark positions in
a strategy, and allow us to attach content such as hints and messages to the
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strategy. Labeling does not change the language that is generated by the
strategy.

We make our strategy combinators precise by defining the semantics of the strategy
language. A strategy is a set of sequences of transformation rules.

language (s <?> t) = { xy | x ∈ language s, y ∈ language t }
language (s <|> t) = language s ∪ language t
language (fix f ) = language (f (fix f ))
language (label ` s) = language s
language (symbol r) = {r}
language succeed = {ε}
language fail = ∅

This definition tells us whether a sequence of rules follows a strategy or not: the
sequence of rules should be a sentence in the language generated by the strategy,
or a prefix of a sentence since we solve exercises incrementally. Not all sequences
make sense, however. An exercise gives us an initial term (say t0), and we are
only interested in sequences of rules that can be applied successively to this term.
Suppose that we have terms (denoted by ti) and rules (denoted by ri), and let ti+1

be the result of applying rule ri to term ti. A possible derivation that starts with
t0 can be depicted in the following way:

t0
r0−→ t1

r1−→ t2
r2−→ t3

r3−→ . . .

To be precise, applying a rule to a term can yield multiple results, but most domain
rules, such as the rules for logical expressions in Figure 1, return at most one term.
Running a strategy s with an initial term t0 returns a set of terms, and is specified
by:

run s t0 = { tn+1 | r0 ... rn ∈ language s,∀i∈0...n : ti+1 ∈ apply ri ti }

The rest of this section introduces more strategy combinators to conveniently
specify strategies. All these combinators, however, can be defined in terms of the
combinators that are given above.

4.2. Extensions

Extended Backus-Naur form (EBNF) extends the notation for grammars, and of-
fers three new constructions that one often encounters in practice: zero or one oc-
currence (option), zero or more occurrences (closure), and one or more occurrences
(positive closure). Along these lines, we introduce three new strategy combinators:
many s means repeating strategy s zero or more times, with many1 we have to
apply s at least once, and option s may or may not apply strategy s. We define
these combinators using the basic combinators:
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many s = fix (λx → succeed <|> (s <?> x ))
many1 s = s <?> many s
option s = s <|> succeed

Observe the use of the fixed point combinator fix in the definition of many . Un-
folding the many s strategy would result in:

many s
= succeed <|> (s <?> many s)
= succeed <|> (s <?> (succeed <|> (s <?> many s)))
= ...

It is quite common for an EDSL to introduce a rich set of combinators on top of
a (small) set of basic combinators.

4.3. Negation and greedy combinators

The next combinators we consider allow us to specify that a certain strategy is
not applicable. Have a look at the definition of not , which only succeeds if the
argument strategy s is not applicable to the current term a:

(not s)(a) = if s(a) = ∅ then {a} else ∅

Observe that the not combinator can be specified as a single rule that either returns
a singleton set or the empty set depending on the applicability of strategy s. A
more general variant of this combinator is check , which receives a predicate as
argument (instead of a strategy) for deciding what to return.

Having defined not , we now specify greedy variations of many , many1 , and option
(repeat , repeat1 , and try , respectively). These combinators are greedy as they will
apply their argument strategies whenever possible.

repeat s = many s <?> not s
repeat1 s = many1 s <?> not s
try s = s <|> not s
s . t = s <|> (not s <?> t)

The last combinator defined, s . t , is a left-biased choice: t is only considered when
s is not applicable.

4.4. Traversal combinators

In many domains, terms are constructed from smaller subterms. For instance, a
logical expression may have several subexpressions. Because we do not only want
to apply rules and strategies to the top-level term, we need some additional combi-
nators to indicate that the strategy or rule at hand should be applied somewhere.
For this kind of functionality, we need some support from the underlying domain.
Let us assume that a function once has been defined on a certain domain, which
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applies a given strategy to exactly one of the term’s immediate children. For the
logic domain, this function would contain the following definitions:

once s (p ∧ q) = {p′ ∧ q | p′ ← run s p} ∪ {p ∧ q ′ | q ′ ← run s q }
once s (¬p) = {¬p′ | p′ ← run s p}
once s T = ∅

Using generic programming techniques [18], we can define this function once and
for all, and use it for every domain.

With the once function, we can define some powerful traversal combinators. The
strategy somewhere s applies s to one subterm (including the whole term itself).

somewhere s = fix (λx → s <|> once x )

If we want to be more specific about where to apply a strategy, we can instead use
bottomUp or topDown:

bottomUp s = fix (λx → once x . s)
topDown s = fix (λx → s . once x )

These combinators search for a suitable location to apply a certain strategy in a
bottom-up or top-down fashion, without imposing an order in which the children
are visited.

4.5. DNF strategies revisited

In Section 3, we presented three alternative strategies for turning a logical expres-
sion into disjunctive normal form. Having defined a set of strategy combinators, we
can now give a precise definition of these strategies in terms of our combinators.
We start with grouping the rules, as suggested by Figure 1:

basicRules = constants <|> definitions <|> negations <|> distribution

constants = AndTrue <|> AndFalse <|> OrTrue <|> OrFalse

<|> NotTrue <|> NotFalse

Definitions for the other groups are similar. The first two strategies can now con-
veniently be written as:

dnfStrategy1 = repeat (somewhere basicRules)

dnfStrategy2 = label `1 (repeat (topDown constants))
<?> label `2 (repeat (bottomUp definitions))
<?> label `3 (repeat (topDown negations))
<?> label `4 (repeat (somewhere distribution))

The labels in the second strategy are not mandatory, but they emphasize the
structure of the strategy, and help to attach feedback to this strategy later on.
The third strategy can be defined with the combinators introduced thus far, but
we give a more elegant definition at the end of the next subsection.
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4.6. Parallel strategies

Suppose that we want to run the strategies s and t in parallel, denoted by s <||> t .
This operator is defined in Section 5.6. This operation makes sense in the domain
of rewriting: for example, two parts have to be reduced, and steps to reduce any of
the two parts can be interleaved until we are done with both sides. In theory, we
can express two strategies that run in parallel in terms of sequences and choices.
In practice, however, such a translation does not scale because the grammar will
grow tremendously.

The parallel strategy combinator is used in a combinator whenever , which takes
two strategies s and t , and applies s whenever possible, and t otherwise. It stops
when t has been fully applied. Its definition is rather involved, and not presented
here. With whenever we can give a concise definition for the third DNF strategy,
in which we reuse our second strategy.

dnfStrategy3 = whenever ((tautologies <|> contradictions) <?> step1 )
dnfStrategy2

In the above definition, step1 is equal to repeat (topDown constants).

4.7. Reflections

Is the set of strategy combinators complete? Not really, although we hope to have
convinced the reader that the language can be easily extended with more combi-
nators. In fact, this is probably the greatest advantage of using an EDSL instead
of defining a new, stand-alone language. We believe that our combinators are suf-
ficient for specifying the kind of strategies that are needed in interactive exercise
assistants that aim at providing advanced feedback. Our language is very similar
to strategic programming languages such as Stratego [33, 24], and very similar lan-
guages are used in parser combinator libraries [21, 31], boiler-plate libraries [23],
workflow applications [29], theorem proving (tacticals [27]) and data-conversion li-
braries [12], which suggests that our library could serve as a firm basis for strategy
specifications.

Our strategy language can be used to model strategies in multiple mathematical
domains. In the technical report corresponding to this paper [16] we present a
complete strategy that implements the Gaussian elimination algorithm in the lin-
ear algebra domain. This example is more involved than the strategies for DNF,
and shows, amongst others, how rules can be parameterised, and how to maintain
additional information in a context while running a strategy. In addition, we have
strategies for solving a linear system, solving a linear system with a matrix, and
applying the Gram-Schmidt algorithm in the linear algebra domain. The report
also discusses a strategy for simplifying fractions in the domain of arithmetic ex-
pressions. We have also implemented strategies in the domains of relation algebra
and calculus (derivatives, higher degree equations).
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Producing a strategy is like programming, and might require quite some effort.
We think that the effort is related to the complexity of the strategy. Gaussian
elimination is an involved strategy, which probably should be written by an expert,
but the basic strategy for DNF, dnfStrategy1 , is rather simple, and could have been
written by a teacher of a course in logic. Furthermore, due to compositionality of
the strategy combinators, strategies are reusable. In the linear algebra domain,
for example, many strategies we have written consist of Gaussian elimination,
preceded and followed by some exercise-specific steps (e.g., to find the inverse of
a matrix).

We can specify a strategy that is very strict in the order in which steps have to be
applied (dnfStrategy2 enforces a very strict order), or very flexible (dnfStrategy1
doesn’t care about which step is applied when). Furthermore, we can enforce a
strategy strictly, or allow a student to deviate from a strategy, as long as the
submitted expression is still equivalent to the previous expression, and the strategy
can be restarted at that point (this is possible for most of the strategies we have
encountered). If we want a student to take clever short-cuts through a strategy,
then these shortcuts should either be explicitly specified in the strategy (as in
dnfStrategy3 ), or it should be possible to deviate from the given strategy.

5. Design of a strategy recognizer

In this section we discuss the design of a strategy recognizer. Recognizing a strat-
egy comes down to tracing the steps that a student is taking, but how would a
tool get the sequence of rules? In exercise assistants that offer free input, users
submit intermediate terms. Therefore, the tool first has to determine which of the
known rules has been applied, or even which combination of rules has been used.
Discovering which rule has been used is obviously an important part of an exercise
assistant, and it influences the quality of the generated feedback. It is, however,
not the topic of this paper. An alternative to free input is to let users select a
rule, which is then applied automatically to the current term. In this setup, it is
no longer a problem to detect which rule has been used.

Instead of designing our own recognizer, we could reuse existing parsing libraries
and tools. There are many excellent parser generators and various parser combi-
nator libraries around [21, 31], and these are often highly optimized and efficient
in both their time and space behavior. However, the problem we are facing is
quite different from other parsing applications. To start with, efficiency is not a
key concern. Because we are recognizing applications of rewrite rules applied by a
student, the length of the input is very limited. Our experience until now is that
speed poses no serious constraints on the design of the library. A second difference
is that we are not building an abstract syntax tree.
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The following issues are important for a strategy recognizer, but are not (suffi-
ciently) addressed in traditional parsing libraries:

1. We are only interested in sequences of transformation rules that can be ap-
plied successively to some initial term, and this is hard to express in most
libraries. Parsing approaches that start by analyzing the grammar for con-
structing a parsing table will not work in our setting because they can not
take the current term into account.

2. The ability to diagnose errors in the input highly influences the quality of
the feedback. It is not enough to detect that the input is incorrect, but we
also want to know at which point the input deviates from the strategy, and
what is expected at this point. Some of the more advanced parser tools have
error correcting facilities, which helps diagnosing an error to some extent.

3. Exercises are solved incrementally, and therefore we do not only have to
recognize full sentences, but also prefixes. Backtracking and look-ahead can
not be used because we want to recognize strategies at each intermediate
step.

4. Labels help to describe the structure of a strategy in the same way as non-
terminals do in a grammar. For a good diagnosis it is vital that a recognizer
knows at each intermediate step where it is in the strategy.

5. A strategy should be serializable, for instance because we want to communi-
cate with other e-learning tools and environments.

In earlier attempts to design a recognizer library for strategies, we tried to reuse
an existing error-correcting parser combinator library [31], but failed because of
the reasons listed above. The library we develop in this section is written in the
functional programming language Haskell [28]. The code in this paper is almost
complete and conforms to the Haskell 98 standard. Although the code is relatively
short, we want to emphasize that the library has been tested in practice on different
domains. For instance, strategies implemented for the domain of linear algebra are
more complex than the strategy for logical expressions reported in this paper.

5.1. Representing grammars

Because strategies are grammars, we start by exploring a suitable representation
for grammars. The data type for grammars is based on the alternatives of the
strategy language discussed in Section 4:

data Grammar a = Grammar a :?: Grammar a
| Grammar a :|: Grammar a
| Rec Int (Grammar a)
| Symbol a | Var Int | Succeed | Fail

The type variable a in this definition is an abstraction for the type of the symbols:
for strategies, the symbols are rules. The first design choice is how to represent
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recursive grammars, for which we use the constructors Rec and Var . A Rec binds
all the Vars in its scope that have the same integer. We assume that all our
grammars are closed, i.e., there are no free occurrences of variables. This data type
makes it easy to manipulate and analyze grammars. Alternative representations
for recursion are higher-order fixed point functions, or nameless terms using de
Bruijn indices. We discuss in Section 5.2 how fix is defined in terms of Rec and
Var .

Labels are absent and will be added later. Observe that we use the constructors
:?: and :|: for sequence and choice, respectively (instead of the combinators <?>
and <|> introduced earlier). Haskell infix constructors have to start with a colon,
but the real motivation is that we use <?> and <|> as smart constructors.

Although we use Rec and Var to represent recursive grammars, we use the fixed
point representation instead to define recursive grammars. It is more convenient
to use the fixed point representation to define recursion. The fix combinator is
expressed as a smart constructor in terms of Rec and Var .

5.2. Smart constructors

A smart constructor is a normal function that in addition to constructing a value
performs some checks or some simplifications. We use smart constructors for sim-
plifying grammars, and to obtain a normal form. We introduce a smart constructor
for every alternative of the Grammar data type: the functions symbol , var , succeed ,
and fail do nothing special, but are introduced for consistency.

The smart constructor <?> for sequences removes the unit element Succeed , and
propagates the absorbing element Fail . Because the input is processed from left to
right, we associate sequences to the right. Pay close attention to the occurrences
of the smart constructors and the actual constructors in the following definition:

(<?>) :: Grammar a → Grammar a → Grammar a
Succeed <?> t = t
s <?> Succeed = s
Fail <?> = fail

<?> Fail = fail
(s :?: t) <?> u = s :?: (t <?> u)
s <?> t = s :?: t

For choices, we remove occurrences of Fail , and we nest alternatives to the right:

(<|>) :: Grammar a → Grammar a → Grammar a
Fail <|> t = t
s <|> Fail = s
(s :|: t) <|> u = s :|: (t <|> u)
s <|> t = s :|: t
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The smart constructor for recursive grammars checks that there is at least one free
occurrence of the variable in the body: a Rec is built only if this is the case.

rec :: Int → Grammar a → Grammar a
rec i s = if i ∈ freeVars s then Rec i s else s

Calculating the set of free variables of a grammar is straightforward, although we
have to take care of shadowing binders.

Finally, we define the constructor function for fixed points on grammars, which
gives us another way to specify recursive grammars:

fix :: (Grammar a → Grammar a)→ Grammar a

This function can be implemented using rec and var : the only difficulty in defining
fix is to discover which integer can be used. We omit the implementation details.

5.3. Empty and firsts

For recognizing sentences, we have to define the functions empty and firsts. The
function empty tests whether the empty sentence is part of the language.

empty :: Grammar a → Bool
empty (s :?: t) = empty s ∧ empty t
empty (s :|: t) = empty s ∨ empty t
empty (Rec i s) = empty s
empty Succeed = True
empty = False

The last definition covers the cases for Fail , Symbol , and Var . The most interesting
definition is for the pattern (Rec i s): it calls empty recursively on s as there is no
need to inspect recursive occurrences.

The function firsts returns a list with all symbols that can appear as the first
symbol of a sentence. For each symbol, the function also returns the remaining
grammar, i.e., the sentences that can appear after that symbol.

firsts :: Grammar a → [(a,Grammar a)]
firsts (s :?: t) = [(a, s ′ <?> t) | (a, s ′)← firsts s ] ++

(if empty s then firsts t else [ ])
firsts (s :|: t) = firsts s ++ firsts t
firsts (Rec i s) = firsts (replaceVar i (Rec i s) s)
firsts (Symbol a) = [(a, succeed)]
firsts = [ ]

For a sequence (s :?: t), we determine which symbols can appear first for s, and we
change the results to reflect that t is part of the remaining grammar. Furthermore,
if s can be empty, then we also have to look at the firsts for t . For choices, we
simply combine the results for both operands. If the grammar is a single symbol,
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then this symbol appears first, and the remaining strategy is succeed (we are done).
To find the firsts for (Rec i s), we have to look inside the body s. All occurrences of
this recursion point are replaced by the grammar itself before we call firsts again.
The replacement is performed by a helper-function: replaceVar i s t replaces all
free occurrences of (Var i) in t by s.

The function nonempty removes the empty sentence from a grammar, and is de-
fined using firsts:

nonempty :: Grammar a → Grammar a
nonempty s = foldr (<|>) fail [symbol a <?> t | (a, t)← firsts s ]

5.4. Running a strategy

So far, nothing specific about recognizing strategies has been discussed. A strategy
is a grammar over rewrite rules: with the functions empty and firsts we can run a
strategy with an initial term:

run :: Grammar (Rule a)→ a → [a ]
run s a = [a | empty s ] ++ [c | (r , t)← firsts s, b ← apply r a, c ← run t b ]

This function is an implementation of the run function defined in Section 4.1. The
list of results returned by run consists of two parts: the first part tests whether
empty s holds, and if so, it yields the singleton list containing the term a. The
second part takes care of the non-empty alternatives. Let r be one of the symbols
that can appear first in strategy s (r is a rewrite rule). We are only interested in
r if it can be applied to the current term a. It is irrelevant how the type Rule is
defined, except that applying a rule to a term returns a list of results. We run the
remainder of the strategy (that is, t) with the result of the application of rule r .

The function run can produce an infinite list. In most cases, however, we are only
interested in a single result (and rely on lazy evaluation). The part that considers
the empty sentence is put at the front to return sentences with few rewrite rules
early. Nonetheless, the definition returns results in a depth-first manner. We define
a variant of run which exposes breadth-first behavior:

run ′ :: Grammar (Rule a)→ a → [[a ]]
run ′ s a = [a | empty s ] : merge [run ′ t b | (r , t)← firsts s, b ← apply r a ]

where merge = map concat ◦ transpose

The function run ′ produces a list of lists: results are grouped by the number of
rewrite steps that have been applied, thus making explicit the breadth-first nature
of the function. The helper-function merge merges the results of the recursive
calls: by transposing the list of results, we combine results with the same number
of steps.
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5.5. Labels

Labels are not included in the Grammar data type. We introduce two mutually
recursive types for strategies that can have labeled parts:

data LabeledStrategy l a = Label l (Strategy l a)
type Strategy l a = Grammar (Either (Rule a) (LabeledStrategy l a))

A labeled strategy is a strategy with a label (of type l). A strategy is a grammar
where the symbols are either rules or labeled strategies. For this choice, we use the
Either data type: rules are tagged with the Left constructor, labeled strategies are
tagged with Right . With the type definitions above, we can have grammars over
other grammars, and the nesting can be arbitrarily deep.

Excluding labels from the Grammar data type is a design choice. Functions that
work on the Grammar data type don’t have to deal with labels, which makes it, for
example, simpler to manipulate grammars. A disadvantage of our solution is that
symbols in a strategy must be tagged Left or Right . In our actual implementation
we circumvent the tagging by overloading the strategy combinators. As a result,
strategies can really be defined as the specifications in Section 4.

Now that we can label parts of a strategy, we want to keep track at which point
in the strategy we are, and we do so without changing the underlying machinery.
We start with defining the Step helper data type:

data Step l a = Enter l | Step (Rule a) | Exit l

A step is a rewrite rule (constructor Step), or a constructor to indicate that we
entered (or left) a labeled part of the strategy. A labeled strategy can be turned
into a grammar over steps in the following way:

withSteps :: LabeledStrategy l a → Grammar (Step l a)
withSteps (Label l s) = symbol (Enter l)

<?> mapSymbol (either (symbol ◦ Step) withSteps) s
<?> symbol (Exit l)

For each label, we introduce symbols that mark the beginning and the end of that
label. We use the function mapSymbol to transform strategy s to a grammar of
steps. The function mapSymbol ::(a → Grammar b)→ Grammar a → Grammar b
applies its argument function f to all symbols in a grammar. Note that f returns a
grammar, and therefore can be used to change symbols and to flatten a grammar
of grammars in one traversal. Each symbol of s is either a rewrite rule or a labeled
strategy (see the type definition of Strategy): a rewrite rule becomes a symbol
with a step, and a labeled strategy is handled by calling the function withSteps
recursively.

To run a grammar with steps, we first have to overload the function apply such
that it also works on Step, and generalize the types of run and run ′ accordingly.
The step data type gives us more information, as we show in our next example.
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A derivation. Suppose that we run dnfStrategy2 from Section 4 on the term
¬(¬(p ∨ q) ∧ r) ∧ T : what would be the result? Of course, we would expect
to get the derivation:

¬(¬(p ∨ q) ∧ r) ∧ T
≡ {AndTrue}
¬(¬(p ∨ q) ∧ r)

≡ {DeMorganAnd}
¬¬(p ∨ q) ∨ ¬r

≡ {NotNot}
p ∨ q ∨ ¬r

The final answer, p ∨ q ∨ ¬r , is indeed what we get. It is informative to step
through the above derivation and see the intermediate steps.

[ Enter `1, Step AndTrue, Step not, Exit `1,
Enter `2, Step not, Exit `2, Enter `3,
Step DeMorganAnd, Step not, Step down, Step NotNot,
Step up, Step not, Exit `3, Enter `4,
Step not, Exit `4 ]

The list has many steps, but only three correspond to actual steps from the deriva-
tion: the rules of those steps are underlined. The other rules are administrative:
the rules up and down are introduced by the somewhere, bottomUp, and topDown
combinators, whereas not comes from the use of repeat . Also observe that each
Enter step has a matching Exit step. In principle, a label can be visited multiple
times by a strategy.

5.6. Parallel strategies

The parallel combinator is added as a primitive to our Grammar data type. As
explained in Section 4.6, the parallel combinator does not have to be defined as
a primitive, but by not doing so, some strategies become infeasibly large. In our
setup, it is relatively easy to add a new constructor to the Grammar data type.

data Grammar a = ... | Grammar a :||: Grammar a

Just as we did for sequences and choices, we first introduce a smart constructor
for parallel strategies, which expresses that it has Succeed as its unit element, Fail
as its absorbing element, and that the combinator is associative:

(<||>) :: Grammar a → Grammar a → Grammar a
Succeed <||> t = t
s <||> Succeed = s
Fail <||> = fail

<||> Fail = fail
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(s :||: t) <||> u = s :||: (t <||> u)
s <||> t = s :||: t

Next, we extend the definitions of empty and firsts with a new case:

empty (s :||: t) = empty s ∧ empty t
firsts (s :||: t) = [(a, s ′ <||> t ) | (a, s ′)← firsts s ] ++

[(a, s <||> t ′) | (a, t ′)← firsts t ]

Other functions that operate on the Grammar data type (such as freeVars and
mapSymbol) have to be extended as well, but these changes are minimal. Using a
generic traversal library [23] can further reduce the impact of adding a constructor.

In a similar way, we can define useful variants on this combinator, such as a
left-biased parallel combinator (which continues with its left operand strategy
whenever this is possible), or a parallel combinator that stops as soon as one of
its operand strategies is finished.

6. Feedback on strategies

This section briefly sketches how we use the strategy language, as introduced in
the previous sections, to give feedback to users of our e-learning systems, or to
users of other e-learning systems that make use of our feedback services [14]. We
have implemented several kinds of feedback. Most of these categories of feedback
appear in the tutoring principles of Anderson [1], or in existing tools supporting
the stepwise construction of a solution to an exercise. No existing tool implements
more than just a few of these categories of feedback.

We do not try to tackle the problem of how feedback should be presented to a
student in this paper. Here we look at the first step needed to provide feedback,
namely to diagnose the problem, and relate the problem to the rules and the
strategy for the exercise. We want users of our feedback services to determine how
these findings are presented to the user. For example, we could generate a table
from the strategy with the possible problems, and let teachers fill this table with
the desired feedback messages.

Feedback after a step. After each step performed by a student, we check whether
or not this step is valid according to the strategy. For steps involving argument-
and variable-value computations we have to resort to generators, which calculate
the correct values of these components, and check these values against the values
supplied by the student. These generators are easily and naturally expressed in
our framework.

Checking whether or not a step is valid amounts to checking whether or not the
sequence of steps supplied by the student is a valid prefix of a sentence of the
language specified by the context-free grammar corresponding to the strategy. As
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soon as we detect that a student no longer follows the strategy, we have several
possibilities to react. We can force the student to undo the last step, and let the
student strictly follow the strategy. Alternatively, we can warn the student that
she has made a step that is invalid according to the strategy, but let the student
proceed on her own path. For instance, a student has to rewrite ¬(¬(p ∨ q) ∧ r) ∧
T to DNF using dnfStrategy2 . When applying the DeMorganAnd rule, the student
can be warned that although the step is correct, it is better to do something else
(removing the constants).

Another example is when a student submits ¬¬(p ∨ q) ∨ ¬r as the final answer.
The exercise assistant reports back to the student that his answer is equivalent,
but with a gentle reminder that the exercise is not yet finished. In this scenario,
the strategy tells exactly which step needs to be taken: the double negation should
be simplified.

Progress. Given an exercise and a strategy for solving the exercise, we can deter-
mine the minimum number of steps necessary to solve the exercise, and show this
information in a progress bar. Each time a student performs a correct step, the
progress bar is updated.

Strategy unfolding. We have constructed an OpenMath binding with the MathDox
system [11], in which a student enters a final answer to a question. If the answer
is incorrect, we return a new exercise, which is part of the initial exercise. For
example, if a student does not return a correct disjunctive normal form of a logical
expression, we ask the student to solve the simpler problem of first eliminating all
occurrences of T and F in the logical expression. After completing this part of the
exercise, we ask to solve the remaining part of the exercise. This kind of feedback
is also used by Cohen et al. [10] in an exercise assistant for calculus.

Hint. A student can ask for a hint. Given an exercise and a strategy for solving
the exercise, we calculate the ‘best’ next step. The best next step is an element of
the first set of the context-free grammar specified by the strategy. For example, a
student has no clue how to rewrite ¬(¬(p ∨ q) ∧ r) ∧ T to DNF, and presses a
hint button. The system reports the hint: “remove all constants”. The fact that
the constants have to be removed can be concluded from the strategy. If this does
not help the student, the system can emit a more specific message that suggests a
specific rewrite rule (or the result of applying that rule).

An alternative possibility for hints is to use strategy unfolding. Instead of giving
the ‘best’ next step when asked for a hint, we tell the student which sub-problem
should be solved first.

Completion problems. Worked-out problems can be generated from a strategy,
showing all the steps from the initial term to the expected answer. A worked-out
problem is a presentation of a sentence that is generated by the strategy, like the
derivation shown in Subsection 5.5. Sweller, based on his cognitive load theory,
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describes a series of effects and guidelines to create learning materials. The basic
idea is that a student profits from having example solutions played for him or
her, followed by an exercise in which the student fills out some missing steps in
a solution [30]. We can use the strategy for a problem to play a solution for a
student, and we can play all but the middle two (three, last two, etc.) steps, and
ask the student to complete the exercise.

Buggy rules. Strategies can refer to buggy rules: these rules capture common
mistakes, and make it possible to report specialized messages for often occurring
errors. For example, a student submits ¬¬(p ∨ q) ∧ ¬r as an intermediate solution
to the exercise ¬(¬(p ∨ q) ∧ r). Because the terms are not equivalent, the buggy
rules are considered (BuggyDM1 and BuggyDM2), and in this case, rule BuggyDM1

matches. A special message associated with this rule (for example, “when applying
the DeMorganAnd rule, the ∧ operator must be replaced by the ∨ operator”) is
reported to the student.

Buggy strategies. If a step supplied by a student is invalid with respect to the
strategy specified, but can be explained by a buggy strategy for the problem, we
give the error message belonging to the buggy strategy. Again, this amounts to
parsing, not just with respect to the correct strategy, but also with respect to
known buggy strategies. In our logic domain, for example, a buggy strategy would
be to use the distribution rule before pushing the negations inside the expression.

7. Conclusions

We have introduced a strategy language with which we can specify strategies for
exercises in many domains. A strategy is defined as a context-free grammar, ex-
tended with non-context-free constructs for, for example, manipulating variables
and arguments. The formulation of a strategy as a context-free grammar allows us
to automatically calculate several kinds of feedback to students incrementally solv-
ing exercises. Languages for specifying procedures or strategies for exercises have
been developed before. Our language has the same expressive power and structure;
our main contribution is the advanced feedback we can calculate automatically,
and relatively easily. This is achieved by separating the strategy language into a
context-free language, the strategy combinators, and a non-context-free language,
the embedding as a domain-specific language. In Section 6 we have shown how
strategies can be used to report advanced feedback.

We have presented a complete implementation of a recognizer for strategies. Al-
though it is tempting to reuse existing parsing tools and libraries, a closer look
at the problem reveals subtle differences that make the existing tools unsuitable
for dealing with the problem we are facing. Some design choices were discussed, in
particular how to deal with recursion, and how to mark positions in a strategy.
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We have several plans for the future. We hope to create bindings of our feedback
service with more existing tools, such as ActiveMath [15]. For this purpose, we
need to standardize the protocol for providing feedback. Our tool already has a
binding with MathDox [11], and has recently been used in a classroom setting.
We have collected data from these sessions and preliminary analyses show that
providing feedback on the strategic level improves far transfer: students that re-
ceived feedback on the strategic level did better in advanced exercises. We will
collect more data from the experiments, and analyze and report on the results.
Also, we want to apply our ideas to domains with less structure, such as computer
programming [3], software modeling, and maybe even serious games in which stu-
dents have to cooperate to achieve a certain goal. A final area that requires further
investigation is how to make strategies more accessible to teachers.
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