
Case Study Report: Agile Product
Management at Planon

K. Vlaanderen
S. Brinkkemper
T. Cheng
S. Jansen

Technical Report UU-CS-2009-005

March 2009

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

1 INTRODUCTION

Abstract
With the advent of agile development methods such as SCRUM, the unpredictable and dynamic process of software
development has for the first time become manageable in an efficient manner. It is no surprise that these devel-
opments have resulted in an increased interest in the expansion of agile principles to other domains. One of these
domains is product management, which involves mainly the elicitation, selection and prioritization of requirements
as input for the development process. Up until now, sparse literature has been published concerning attempts to
implement an agile product management process. In this work, we present the unique case of a company that
successfully implemented an agile product management process. In this technical report we describe the relevant
concepts, the product management and product development processes, and the lessons learned from implementing
agile product management.

1 Introduction

One of the major innovations in software development methodology of the last few years has
been the introduction of agile principles. Since the creation of the Agile Manifesto in 2001, in-
cluding the years leading to its creation, several agile software development methods have been
developed (Abrahamsson et al., 2003). Examples of such methods are DSDM (Stapleton, 1999),
Extreme Programming (Beck, 1999) and Feature Driven Development (Palmer & Felsing, 2002).
The strong points of such methods are that by employing them, the development process becomes
more responsive to a changing environment, working software is chosen over extensive documen-
tation, individuals and interactions are considered more important than tools and processes, and
customer collaboration is valued more than contract negotiation1.

In the last few years, these agile methods have proven to be successful in a large number of
cases. Companies that have put the agile method SCRUM (Schwaber, 1995) into practice range
from small companies as described by Dingsoyr et al. (2006) to large multinationals (Fitzgerald et
al., 2006). Research has shown that the use of SCRUM within a company can lead to significant
benefits (Mann & Mauer, 2005), and that its use is not limited to local projects (Danait, 2005).

As a consequence, demand for the extension of agile principles to other domains has risen.
One such domain is software product management. Software product management (SPM) is the
process of managing requirements, defining releases, and defining products in a context where many
internal and external stakeholders are involved (Weerd et al., 2006; Gorchel, 2000). The topic of
product management touches upon several other areas. In the related field of lifecycle management
and release planning, several approaches have been proposed regarding market-driven requirements
engineering (Carlshamre & Regnell, 2000), requirements interdependencies (Carlshamre et al.,
2001) and evolutionary and iterative release planning (Greer & Ruhe, 2004). Another related
field, requirements prioritization, has seen several publications in recent years, including work
on requirements prioritizing for product software (Berander, 2007) and distributed prioritization
(Regnell et al., 2001).

Due to the complexity of software products, with a large amount of shareholders, long lists of
requirements and a rapidly changing environment, SPM is a complex task. However, relatively
little scientific work has been performed in this area. An attempt to close this gap has been
provided by Weerd et al. (2006) in the form of a reference framework for SPM. This work aims at
providing a structure for the body of knowledge regarding SPM by identifying and defining the
key process areas as well as the stakeholders and their relations.

Currently, little work exists regarding agile SPM. A case study describing agile requirements
engineering is described by Pichler et al. (2006). This research aims to further fill this gap by
proposing an agile product management method based on the successful SCRUM development
method. Furthermore, we present a case study performed at a product software company located
in the Netherlands that has worked with agile SPM method for nearly two years. By showing their
experiences, we are able to provide a set of useful lessons learned that aid in the implementation
of SCRUM-inspired SPM alongside agile software development at other companies.

The remainder of this text is structured as follows. Section 2 describes the case study approach,
including the research question and methods, and a description of the validity threats. Section 3

1http://agilemanifesto.org/

1

2 CASE STUDY RESEARCH APPROACH

describes the conceptual model used in this study, with a definition of all relevant terms regarding
SCRUM and agile product management. Section 4 contains a description of the application of
SCRUM at the Dutch software vendor Planon, followed by a description of their implementation
of agile product management in section 5. To conclude, section 7 contains a description of the
lessons learned by Planon regarding agile product management and sections 8 and 9 summarize
the study.

2 Case Study Research Approach

The main research question to this research is How should SPM be performed in a SCRUM devel-
opment context? The research question is answered by developing a method for agile SPM using
design research. Furthermore, the method is tested in a case study of a production environment in
a product software company in the Netherlands. During the case study facts have been collected
to answer the research questions (Yin, 2003). The means through which we gathered these facts
were:

• Interviews – The main research questions have been answered in part during the interviews
with product stakeholders.

• Document study – The case company provided us with guideline documents such as the
Volere Requirements Specification Template (Robertson & Robertson, 1998), the Product
Backlog and Sprint Backlogs. These documents were studied and added to our case study
database.

• Direct observations – Direct observations were made during our presence at the case
company. These direct observations were later affirmed during the interviews.

A final analysis was performed on the obtained SPM sprint backlogs to obtain further insight in
the practical consequences of agile product management.

2.1 Validity Threats

In order to ensure the quality of our work, we have tried to adhere to four validity criteria for em-
pirical research. The validity threats are construct, internal, external, and reliability threats (Yin,
2003; Jansen & Brinkkemper, 2008). Construct validity refers to the proper definition of the
concepts used within the study. For this study, well established concepts were used to construct
theories. These theories were established in a discussion session at the beginning of the project.
Since well-known concepts were used to describe novel phenomena, construct validity is guarded.
Furthermore, peer review was used to check whether the constructs were used correctly. The in-
ternal validity, which concerns relations between concepts, was threatened by incorrect facts and
incorrect results from the different sources of information. Interviews were held with several people
in order to cross-check documentation found and to confirm facts stated in other interviews.

With respect to external validity, concerning the ability to generalize the results, a threat is
that this case is not representative for other software producers working with SCRUM. However,
other similar sized software vendors have to continuously create new requirements as well, many of
which have implemented SCRUM. We strongly believe that the practices described in this paper
can be a successful way to manage teams of product managers for similar sized software vendors.
Finally, to defend reliability, similar results would be gathered if the case study was redone if
the circumstances are at least similar (same interviewees, same documents, etc), due to the use
of a case study protocol, structured interviews, and a peer-reviewed research process (Jansen &
Brinkkemper, 2008).

2.2 Case Study Company: Planon

The main contribution of this work lies in the description of a black sheep among Dutch product
software companies, and potentially among product software companies in general. The company

2

3 DEFINITIONS AND CONCEPTUAL MODEL

at which the case study has been performed, Planon International, has, as one of the first known
companies, attempted to implement an agile product management process based on the agile
principle (and the SCRUM development method specifically).

Planon International is an international software vendor that produces Facility Management
and Real Estate management software for organisations. Planon, founded in 1984, currently has
a customer base of over 1300, which is supported by more than 325 employees. Planon’s products
are marketed through six Planon subsidiaries, based in the Netherlands, Belgium, Germany, UK,
India and the US, and a worldwide network of partners. The company made approximately 1.9
million profit with a revenue of 25 million in 2007.

Facility management is the discipline of ensuring functionality of the built environment by
integrating people, place, process and technology. The complex process of facility management
encompasses activities such as long-range and annual facility planning, facility financial forecasting,
real estate acquisition and/or disposal, work specifications, installation and space management,
maintenance and operations management, and telecommunications integration, security, and ad-
ministrative services. Planon develops client-server software (two- and three-tier architectures)
with which it attempts to support the processes of facility management. Finally, Planon has im-
plemented a set of components that can be used to communicate with other applications through
XML interfaces.

Planon observes the following principles for their products. To begin with, Planon uses the
principle that common data can be used among different processes. The common data is therefore
only entered once into the data model that is central to all Planon software. Secondly, because
so many of the facility management processes are affected by Planon software products, Planon
has developed its own implementation framework. With this framework a specific implementation
path can be designed for a customer. Finally, Planon trains the application managers at customers
on a regular basis, as to provide them with more competence with the Planon products.

3 Definitions and Conceptual Model

The SCRUM development method was proposed in 1995 by Ken Schwaber (Schwaber, 1995),
at a time when it became clear to most professionals that the development of software was not
something that could be planned, estimated and completed successfully using the common ’heavy’
methods. The SCRUM method is based on the work of Pittman (1996) and Booch (1995), and
adhers to the principles of agile software development.

Central to SCRUM is the idea that many of the processes during development cannot be
predicted. It therefore addresses projects in a very flexible way. The only two parts that are fully
defined during a project are the first and last phase (’planning’ and ’closure’). In between, the final
product is developed in a series of nonlinear, flexible ’black boxes’ called ’sprints’. During these
sprints, the final product is being evolved, subject to a constantly changing environment. This
environment, which includes factors such as competition, time and financial pressure, maintains
its influence on the project until the closure phase.

In figure 1, the entire SCRUM development process can be seen. In all cases, this process
start with the environment. Based on the vision of the company, which includes ideas about ROI
(Return on Investment), releases and milestones, a ’product backlog’ (PB) emerges (the product
backlog will be discussed later on). Once the PB is filled with requirements for the first time, the
sprint cycle starts.

The figure shows the sprint as a central, recurring part of the method with a fixed duration
of approximately one or two months. This pattern is also called the ’heartbeat’ of SCRUM. Each
cycle starts with a planning meeting in which decisions are being made on the PB items that will
be handled during the current sprint. Once this is done, the specific PB items are assigned to the
teams. It should be noted that these meetings, being the ’bridge’ between two sprints, form the
only possibility during the project for introducing changed or new requirements. Once a sprint
has begun, it becomes a ’black box’ until the sprint ends.

The product management (PM) planning meeting is followed by the planning meetings of all

3

3 DEFINITIONS AND CONCEPTUAL MODEL

Figure 1: SCRUM development process

teams. During these sessions, knowledge about the project is being shared. Besides this, these
sessions are used for the requirements-breakdown and the assignment of specific tasks to the
different teams. Details about this breakdown and assignment are written down in the ’sprint
backlog’ (SB), which will be maintained during the sprint so that it reflects the current situation
(more information about the SB will be provided later).

One can see that within each sprint, there is a daily recurring cycle. This cycle consists of two
parts; the daily SCRUM meeting and actual development. During the daily SCRUM, the teams
group together for 15 minutes to discuss the previous and current day. To guide the conversation,
there are three questions that every member has to answer:

1. How did it go yesterday?

2. What will you do today?

3. Have you encountered problems?

Potential problems and improvements are identified and written down in a ’retrospective doc-
ument’. Also, some small improvements to be made are placed on the sprint backlog.

All software that has been developed during a sprint has to be checked to see if it meets the
criteria and if it is ready to be presented as a demo. Implemented requirements that do not meet
one or more of the criteria are taken to the next sprint. The four criteria are the following:

1. All tests have been passed successfully

2. No urgent bugs exist

3. Documentation is made

4. Software is working

If the software does meet the criteria, it is taken to the activity “Deliver working software”.
At the end of every sprint, the sprint is evaluated by the team. The teams discuss what went well,
what went wrong and what improvements can be made in the next sprint. These improvement

4

3 DEFINITIONS AND CONCEPTUAL MODEL

items are written down and a selection of one to three items is made. These items are then placed
on the next sprint backlog.

When the sprint has ended and the software meets the criteria, an internal release is delivered.
Also a demo is made to present the working software. Each team delivers working software,
consisting of the software created in earlier sprints in addition to the requirements that have been
implemented in the current sprint. The team presents the demo of the working software in the
sprint review, which every stakeholder (employees, customers, product management) can attend.
New requirements can be derived from this review, which are then inserted into the product
backlog.

When the demo has been given and the sprint has been reviewed, an internal release of the
working software is delivered. Each half year, internal releases are combined into an external
release, which is then released to the customers. During this time, the sprint cycle is repeated
until the entire product backlog has been implemented, or until the project terminates due to
other reasons. These reasons include the absence of added business value or a lack of market
demands.

3.1 Product & Sprint Backlog

One of the central documents in the SCRUM method is the product backlog. The PB contains
a prioritized list of all items relevant to a specific product. This list can consist of bugs, defects,
customer requested enhancements, competitive product functionality, competitive edge function-
ality and technology upgrades (Schwaber, 1995). An example of such a product backlog is shown
in figures 2(a) and 2(b).

Each team that participates in the project maintains its own sprint backlog. On the SB are
placed all the requirements that are assigned to the team. As stated before, every requirement is
broken down into several tasks, which are then assigned to specific team-members (task-assignment
will be detailed later on).

The sprint backlog contains, besides the requirements-breakdown and task-assignment, an
estimation of work to be done per task and per employee. This makes it possible to keep track of
the amount of work that has been done, thus allowing to see whether a team or a team-member
is on track. An example sprint backlog can be seen in figure 3.

3.2 Effort Estimation

For the estimation of project, SCRUM does not offer any specific measurement system. The
flexibility of the methods has as an effect that estimations can be rather complex and volatile. It
is recognized however, that SCRUM projects tend to follow a certain pattern regarding acceleration
and velocity. Initial velocity and acceleration are low as infrastructure is built or modified. As
base functionality is put into objects, acceleration increases. Over time, the acceleration decreases
and velocity remains sustainably high (Schwaber, 1995).

3.3 Task Assignment

SCRUM moves away from the idea of ’command and control’. Instead, it relies heavily on team
empowerment. Effort estimation is one aspect of this empowerment, and it is supplemented by
the way tasks are assigned to teams. In SCRUM, teams sign up for those tasks of which they
think they will be able to complete them during the upcoming sprint. By using this set-up, more
realistic estimations are produced.

Besides this, certain social aspects come into play. By letting the teams sign up instead of
forcing tasks top-down, a higher feeling of commitment is created. Besides this, a sufficient (or
even higher) velocity is enforced through social control.

5

3 DEFINITIONS AND CONCEPTUAL MODEL

(a) Part one

(b) Part two

Figure 2: Extract from a sample product backlog

Figure 3: Extract of a development sprint backlog

6

4 SCRUM AT PLANON

3.4 Performance Indicators and Controls

Along with the introduction of agile development methods such as SCRUM, it has become more
and more important for project managers to adapt to a rapidly changing environment. New
requirements are added on a near daily basis, and chances are high that a large share of the
requirements changes during the lifetime of the project. In order to be able to cope with these
dynamics, it is no longer sufficient to think of software projects as being linear and plannable.

Augustine et al. (2005) state that modern project management, in order to be adaptive and
to be able to communicate good practice, should adhere to a certain set of practices:

• The ability to manage and adapt to change;

• A view of organizations as fluid, adaptive systems composed of intelligent people;

• Recognition of the limits of external control in establishing order; and

• An overall humanistic problem-solving approach that:

– Considers all members to be skilled and valuable stakeholders in team man-
agement;

– Relies on the collective ability of autonomous teams as the basic problem-
solving mechanism; and

– Minimizes up-front planning, stressing instead adaptability to changing con-
ditions.

The unpredictable and complex nature of software projects in general and SCRUM projects
specifically requires a set of controls that allows the management team, in cooperation with the
development management, to adjust the project when the environment dictates so.

The main control in SCRUM projects is risk. Continuous risk-assessment is the main tool
to prevent projects from falling into chaos. Risk-assessment influences all other controls of a
project, including releases, changes, problems and solutions. Ultimately, is also has its effects on
the aforementioned backlogs, which form another main type of control.

Besides this, the two earlier mentioned concepts ’velocity’ and ’acceleration’ can be used to
assess and control a project. Velocity indicates the speed with which requirements or backlog items
are implemented. Acceleration describes the evolution of this speed. For an efficient project-flow,
velocity should be sustained at a high level throughout the project.

These two concepts can be combined into a new control, called the ’burn-down’. This graph
relates the dimension of time to the amount of backlog-items to be implemented. By updating
this graph on a realtime basis, a view is obtained that demonstrates the flow of the project. This
helps both the product management team as well as the software development teams to assess the
current situation and to adjust in order to improve efficiency when needed.

3.5 Programming Infrastructure

Another requirement for a successfull implementation of SCRUM is the availability of a high quality
programming infrastructure. Such a structure should contain at least aspects like continuous buils,
nightly builds, test runs and reporting.

4 SCRUM at Planon

For the implementation of its integrated workplace management solution, Planon switched to the
SCRUM development method in 2004. Before this time, work was being done according to the
Prince2 method. However, management recognized that by working in this manner, several issues
arose. Firstly, release cycles could take up to one or one and a half year. This was combined with
the fact that release end-dates were difficult to predict. Another important issue was the fact
that during a project, many changes were requested. The Prince2 method did not offer sufficient

7

4 SCRUM AT PLANON

support for this, resulting in a lot of calculations that caused a large share of the product man-
agements time to be put into these tasks instead of in product value. These downfalls motivated
the switch to the SCRUM. This has resulted in several improvements. Firstly, changes are now
implementable against far lower costs. Also, software is developed in one-month sprint, resulting
in two release per year, with marketing-versions delivered in between.

During the period that Planon has worked with SCRUM, it has been adapted to the company’s
own needs and wishes. These adaptions and customizations originated mainly from a set of lessons
learned. The rest of this section describes the main lessons learned by Planon and the changes
that were made since the adoption of SCRUM. The textual representation is illustrated by a
process-deliverable diagram (PDD), which is shown in figure 4. The accompanying activity table
is shown in table 3 in appendix A. Its concept table is shown in table 5 in appendix B.

4.1 Sprint Duration

In essence, the SCRUM method does not prescribe a specific duration for sprints. In practice, such
cycles can take anywhere from a few weeks to a few months. Initially, the sprint duration at Planon
was two months. However, with a sprint of that length, the process became too inflexible. For
this reason, the length of a sprint has been reduced to one month. This amount of time provides
a workable balance between flexibility and the idea of a ’black box’ in which the developers can
work efficiently without being distracted by new requirements.

4.2 Product & Sprint Backlog

All themes, concepts and requirements that are placed in the ’vision, scope & requirements-
document’ are also converted to the product backlog. Once the high-level concepts have been
broken into several smaller requirements, these are appended to the product backlog. This creates
a list of items that starts with the high-level themes at the bottom and the low-level requirements
at the top. During the lifecycle of the project, items on the PB are continuously detailed further,
resembling a refinery process.

From this point on, teams are able to select them in order to convert them into working software.
As stated above however, in most cases further refinement of the requirements is needed. For the
largest part, this is done by product management. An exception to this are the ’design items’
introduced by Planon, referring to those backlog items that are not fully defined yet and need
some additional ’brainstorming’. Development teams can select these design items, which allows
them to spend a certain amount of time thinking about that specific problem.

Every time that a requirement has been changed, decomposed, added or completed, the product
backlog is updated. This ensures that a complete list of requirements is available at all times,
especially at the time of the sprint planning meetings.

Since not all requirements are of equal importance, the product backlog items have to be
prioritized in a certain manner. Bug fixes and certain feature requests might be placed lower on the
list than other requirements, depending on factors such as business value, customer importance and
return on investment. As a tool to support this prioritization, Planon has developed a valuation
document. The document consists of priority-data gathered from customers based in several
different countries. Each country is assigned a weighing-factor, which allows the calculation of a
priority-score for each item on the list.

Although the valuation document is not intended to be used directly as input for the prior-
itization of the product backlog, it can function as input for further discussion. Based on such
discussion, combined with the ’common-sense’ of the ’product owner’, a prioritized product backlog
is created.

Each team that participates in the project maintains its own sprint backlog. On the SB
are placed all the requirements that are assigned to a specific team. As stated before, every
requirement is broken down into several tasks, which are then assigned to specific team-members.

The sprint backlog contains, besides the requirements-breakdown and task-assignment, an
estimation of work to be done per task and per employee, expressed in ’complexity points’ (CP;

8

4 SCRUM AT PLANON

Figure 4: Process-deliverable diagram for the development process

complexity points will be defined later). This makes it possible to keep track of the amount of
work that has been done, thus allowing to see whether a team or a team-member is on track.

9

4 SCRUM AT PLANON

4.3 Effort Estimation

In order to be able to make a sound planning, something should be known about the effort required
for the implementation of a certain concept or requirement. Due to several reasons, one cannot
suffice by simply taking the amount of hours required as a planning unit. Availability of testers,
complexity of a task and skill of the teams are some of the factors that make it difficult to define
an adequate unit.

As a solution to this, Planon currently uses ’complexity points’ (CP) to indicate the estimated
effort required. For each stage during the definition of the project, an estimation is made on the
amount of CP’s that a certain theme, concept or requirement will ’take’. However, what exactly
constitutes a CP is not defined clearly. As a rule of thumb, 1 CP can be defined as 2 or 3 FTE’s
(Full-Time Equivalent), including testing and overhead time. More important though, is that
CP’s function as indication of the capacity of the teams and are to be seen relative to each other.

The assignment of CP’s to specific requirements happens when new requirements become
available. Their descriptions are handed over to the development teams who will then try to
make a realistic estimation of the amount of effort required. Once these CP’s are assigned to the
requirements, they will be used throughout the project to keep track of the amount of work done
and the amount of work that is remaining.

4.4 Task Assigment

Task assignment at Planon has moved away from the original idea as proposed by SCRUM.
Although teams are still allowed to select those tasks of which they think that they can implement
them within one sprint’s time, more restrictions are being placed on the assignment of teams to
projects. It is Planon’s experience that teams become more effective and efficient once they have
been working on a specific topic for a certain amount of time. This means that in practice, every
team is assigned only to a few projects. As a result, team-members become specialists on this
topic which increases their ability to implement related features.

4.5 Product Quality Assurance

One of the key-elements to a successfull SCRUM implementation identified by Planon is product
quality assurance. In order to ensure optimal quality of the produced software, this should be
done in the correct way as soon as possible, preferably from the beginning. Important in this
respect is an effective composition of the development teams regarding the ratio of programmers
over testers, which is three to one in the case of Planon.

Another crucial aspect is test automation along with unit testing by the whole team. Since it
is not possible to test all features completely, test effort has to be determined per backlog item.
To this extend, Planon uses a classification based on the dimensions ’potential business damage’,
determined by the product owner, and ’probability of failure (software complexity)’, determined
by the software architect. This results in four possible classifications according to which test effort
is prioritized. Figure 5 shows the resulting diagram.

4.6 Development Team Composition

As stated before, team composition is important with relation to quality assurance, but also in
relation to efficiency and effectiveness. Therefor, the composition of development teams requires
considerable attention, since an incorrect set-up can have a large impact. At Planon, this was noted
after changing team-formation prior to the sprints, which led to a decrease in the velocity. Only
after several Sprints in unchanged composition teams become productive, so changing formations
should be avoided where possible.

Currently, development teams at Planon are multi-disciplined, consisting of functional design-
ers, testers, (lead) programmers and documenters. Besides this, two other functions exist outside
of the teams, namely the lead architect and development infrastructure support.

10

5 AGILE PRODUCT MANAGEMENT AT PLANON

Figure 5: Determination of Testing Effort

5 Agile Product Management at Planon

Up until recently, little known work had been performed on the application of agile practices to
every-day product management. To our knowledge, no publications have been made describing
the successful, unsuccessful nor partial implementations of agile product management. As of 2007,
Planon has made efforts to change this situation.

Planon has tried to apply SCRUM principles to the product management process. By making
this adaptation, lean principles have been introduced to the requirements management process
(Poppendieck & Poppendieck, 2003). Related to these principles are three main motivations that
led to the implementation project. Synchronization of the product management heartbeat with
the development heartbeat can be identified as the first reason. Secondly, the introduction of
SCRUM principles inherently allows a greater flexibility in requirements management process. As
a third reason, related to the previous, SCRUM principles allow a manageable implementation of
continuous improvement.

5.1 The Process of Agile Product Management

This section describes the agile product management process as it is used at Planon, after which
some aspects are described in more detail The textual representation is illustrated by a process-
deliverable diagram, which is shown in figure 6. The accompanying activity table is shown in table
4 in appendix A. Its concept table is shown in table 6 in appendix B.

The inception of the process starts with the identification of a verified business problem. This
can be a new theme, or a problem that fits within existing projects. The input for the themes can
come from various sources, such as customers, employees or stakeholders. Once such a problem has
been recognized, goals are being set for the upcoming project based on the vision of the company.

Stakeholders are involved in the decision making process and information is acquired from them.
In order to be able to determine which themes and functionalities are going to be implemented,
both the potential costs and opportunities are estimated. The cost is compared with the potential
added business value, which is described in the release document.

Based on the business value comparison, involving stakeholders, identified opportunities and
visions, profitable themes are selected. An estimation is made regarding the amount of time needed
to realize the theme. After this estimation, themes are reviewed by product management. If they
are approved, product management will further define the theme. If it is rejected, themes need to

11

5 AGILE PRODUCT MANAGEMENT AT PLANON

Figure 6: Process-deliverable diagram for the product management process

be redefined.
The chosen themes are, in most cases, broken down into a set of concepts. Every concept

contains a set of solution stories. These stories are used for defining the requirements. The
concepts are defined by product managers and software architects. When concepts are defined,
they are reviewed by software architects and domain experts. If the concepts are approved, the

12

5 AGILE PRODUCT MANAGEMENT AT PLANON

concept is broken down into a set of requirements. If a concept is not approved, it should be
redefined or adjusted.

A requirement engineer and a SCRUM team are responsible for the definition of the require-
ments. Requirements can be broken down into smaller requirements to fit into a sprint. Require-
ments are also assigned a priority, after which they are put on the product backlog. The highest
rated requirements are to be developed first. This priority rating is assigned by the product board
and the sales department.

Requirements are reviewed by lead developers, architects, functional analysts and domain
experts. If a requirement is approved, a potential value has to be estimated for it. If a requirement
is rejected, it needs to be defined again and goes back to the activity ‘Define requirement’. The
reason for rejection can be: that it is unclear or that it is not described sufficiently.

When requirements are approved, the costs and business value are calculated. Each require-
ment is valued and prioritized through a value document. First the countries are prioritized and a
weighing-factor is assigned. After the country prioritizing, the requested features are prioritized.
The prioritization is put into the product backlog and is used for deciding about which features
to develop and when they should be developed.

After prioritizing the requirements, time is allocated to each requirement or concept to allow
the determination of a sprint planning. When requirements are clear and have enough detail they,
are assigned to SCRUM teams. The requirements are put in the sprint backlog of the specific
team and the general sprint backlog of product management. With the general sprint backlog,
product management can keep track of the project.

After assigning requirements, the release needs to be prepared. New modules and features are
first identified and prepared for the departments Marketing & Sales and Services. A deliverable
list is made to prepare the departments. The list contains items about how and what needs to
be sold effectively to the market and the customers. The logistics also needed to be prepared.
Other items can be about advising customers, how to use the new features and how to implement
the new features. Furthermore, Marketing & Sales, Services, customers and partners need to be
trained.

5.2 Vision, Scope & Requirements

Before any project can start, it should to a certain extent be clear what is going to be built. Since
SCRUM itself does not provide guidelines for the initial phase, Planon has extended this with the
concepts ’vision’, ’theme’ and ’concept’. Definitions of the theme, concepts and requirements are
maintained throughout the entire project in a document called the ’Vision, Scope & Requirements’-
document.

A vision is basically the starting point for each project. It is an idea, brought up by an
employee, a customer or any other stakeholder, and is in many cases only very vaguely defined.
Once the idea reaches a product manager or product owner, he or she then converts it into a (set
of) theme(s).

A theme is the formal elaboration of a vision, describing it in more detail. The product manager
defines the envisioned purpose of the new functionality, the business value of the theme and the
stakeholders that are involved. This is done based on the experience of the product manager
regarding the probable scope of the new themes.

Since a theme is a very high-level concept, it has to be broken down into smaller pieces. This
is done by converting a theme into a set of concepts. This is again performed by the product
manager. Each concept is a high-level focal point within the theme. A concept definition contains
a set of solution stories that can later be used to deduct specific requirements.

Requirements definition is performed in three steps, of which only the first one is performed by
product management (PM). PM translates the concepts into a list of requirements without going
into a lot of detail. Requirements definitions consist up to this point of a description, a rationale
and a ’fit criterion’. The process describing further refinement of the requirements is described in
the next section.

13

6 PRODUCT MANAGEMENT BACKLOG ANALYSIS

5.3 Product Management Sprint

The agile aspect of Planons product management approach lies mainly in the fact that, besides
software development, the product management task is also performed according to thirty-day
sprints. These sprints are not performed synchronously to the software development sprint, but
are shifted two weeks back. This ensures that the software development backlog is always up-to-
date and ready to be used once the software development sprint starts. Figure 7 illustrates this
concept of asynchronous sprints.

Figure 7: Alternating Sprints

Product management also performs its work within daily sprints. Similar to software de-
velopment, new, completed or cancelled tasks are continuously kept up-to-date on the product
management sprint backlog. Also, a burn-down chart is created continuously to allow monitoring
of the progress of the sprint. Another similarity is that the sprint backlog is filled with items from
the product management backlog at the beginning of each sprint. However, the items on this list
are not seperated into the levels of ’vision’, ’theme’ and ’concept’.

5.4 Planons New Vision of SCRUM

The changes that Planon has made to SCRUM, especially in the light of agile product management,
lead to a revision of the visualization of SCRUM as shown earlier (figure 1). The new diagram is
shown in figure 8.

As depicted by the oval shape, a few aspects have been altered or added. Primarily, the
default product backlog has been replaced with the new, more detailed PB containing Planon’s
’theme’, ’concepts’ and ’requirements’, which we earlier mentioned as the requirements refinery.
Also, ’themes’ have been added to the illustration, in accordance with the idea that leads to the
definition of themes and concepts. Finally, ’bugs’ have been introduced to depict an alternative
way of generating product backlog items.

Both software development as well as product management follow similar processes. Both work
according to a (product) backlog and a sprint backlog, and both perform their work in thirty-day
sprints. The difference lies in the product that is created, as the output of product management
is a prioritized product backlog, which is then used by the development teams to create a working
software increment.

6 Product Management Backlog Analysis

To gain insight into the actual workings of the SPM adaptation of SCRUM, we cannot suffice with
mere superficial observations. Instead, through a more profound analysis of the SPM documents
we are able to gain a more detailed view of the results and implications of Planons adaptations.

14

6 PRODUCT MANAGEMENT BACKLOG ANALYSIS

Figure 8: Planon’s Vision of SCRUM

For this analysis we have compiled a data-set of twenty-one SPM sprint backlogs, describing an
equal amount of months. The scope of the analysis ranges from March 2007, when SCRUM was
introduced into the SPM process, until November 2008.

Mean Lowest Highest

of Tasks 75.4 43.0 121.0
of Prod Man 5.6 5.0 6.0
of Hours at start 537.9 324.0 750.0
of Hours at end 197.1 102.0 320.0
Avg Hours per Task 7.7 3.7 12.9
Avg Tasks per Person 13.5 7.2 22.4
Avg Hours per Person 97.4 54.0 150.0
% of Hours Fulfilled 63.3% 47.6% 81.1%

Table 1: Descriptive statistics based on twenty-one product management backlogs

In our analysis, we have focused our attention both on the description of general statistics about
the task structure, including task duration and workload per person, as well as on the discovery of
interesting patterns. In table 1, we have shown some global figures about the data (the complete
data-set can be found in appendix C, table 7). From left to right, the table first shows the amount
of tasks that were placed on the SPM sprint backlog in that month, the total amount of planned
hours for those tasks and the amount of unfinished work at the end of the sprint. Subsequently,
data is shown displaying the average amount of hours per task, the average workload per person
expressed in amount of tasks and the average workload per person expressed in hours. The final
column shows an effectivity-score, obtained by calculating the reduction in hours assigned to all
the tasks. The bottom three rows show statistics about the lowest, the highest and the average
score for all items.

However, the real importance in this analysis lies in the observed evolution and correlation of
certain components. During the two years of experience, the SPM backlog provides interesting
information regarding the amount of tasks and their characteristics. Firstly, we are able to distin-
guish a set of recurring, standard activities. The second interesting point is the introduction of
themes, concepts and requirements into the SPM backlog. To conclude, we will track two themes

15

6 PRODUCT MANAGEMENT BACKLOG ANALYSIS

through the entire SPM process.

6.1 Standard Tasks

In order to create certain structure and clarity in the SPM task list, it is valuable to have a set
of standard tasks. These standard tasks can form a base structure of recurring activities, mostly
with the same amount of hours allocated. These tasks can be used to create a form of rhythm,
or a heartbeat, within the team(s). Analysis of the generic tasks can create valuable knowledge
that is applicable to other organizations as well. Information about task size and type can be used
by other CTOs to structure the SPM sprint backlogs. As fine-tuning of this structure can take
considerable time, this can prove to be a considerable advantage.

At the case company, the list of standard activities has evolved from a disorganized list into a
rather stable list of tasks during the period that is described in this paper. As described earlier,
the SPM sprint backlog was at first mainly structured in a product-focused manner. This had as
an effect that recurring tasks were spread across the backlog, resulting in a disorganized list which
had to be recreated from scratch every month.

Standard Activities Development Sprint Preparations
Prepare and Attend Product Board Backlog Preparations
Sprint Review Sprint Planning with Dev. Teams
Team Retro Meeting Sprint Review with Dev. Teams
Team Allocation Overview How-to-demo Stories
Problem and Change Management Several Product Related Tasks
Release Plan

Table 2: Standard Activities on the SPM Sprint Backlog

As of month five, a small list of recurring tasks related to the product board can be distin-
guished. However, this is comprised of not more than ninety hours. This list grows to a set of
five different tasks (of which some occur multiple times, once for each product manager), with a
total amount of 268 planned hours. This list stays relatively stable until month fifteen, at the time
when the new SPM sprint backlog is introduced. At this moment, the list of standard activities
is reduced to two tasks with a total amount of 72 hours. Remarkable is the steady growth of this
list in the next six months, after which the list of standard activities is comprised of six different
tasks, quite similar to the tasks of the earlier months, totaling only 80 hours. This final list of
standard activities is shown in table 2.

This low amount of planned hours can be explained by taking into account the introduction
of SCRUM principles. At the same time as the introduction of the new SPM sprint backlog
structure, a new group of tasks has been introduced on the list, containing all the tasks related to
the management of the upcoming development sprint. Although the exact contents of the group
differ every sprint, a large share of the tasks is recurring and thus added to table 2.

6.2 Themes, Concepts & Requirements

As described earlier in section 5.2, the concepts theme and concept were introduced into SCRUM
well after the method was adapted to the SPM process. Although the term concept can be found on
the backlog as of month two, themes are introduced for the first time in month fifteen. Regarding
the concepts, several interesting notes can be made. The backlogs show a clear evolution in the
use of the term. In the first few months, the sub-list ’concepts’ contains an aggregation of tasks
related to concept-elaboration in general. As of month five, tasks within the concepts-list are
grouped according to the specific concept that they belong to. Further elaboration of product
features is displayed under a products-list within the backlog.

The switch to the ’theme/concept/requirement’ requirements lifecycle in month fifteen has
some clear effects on the backlog. Most notable is the immediate structure and clarity that is
created by this adaptation. By dividing the tasks related to the elaboration of requirements into

16

6 PRODUCT MANAGEMENT BACKLOG ANALYSIS

three sublists, a clearer overview of the workload is obtained. For every task it becomes instantly
clear in what phase of elaboration the requirement currently is.

One consequence of this approach can be seen in the evolution of task size and amount. During
the two years of experience with SPM backlogs, two distinct trends have developed. On the one
hand, the amount of tasks on the sprint backlogs has increased approximately twofold, whereas
the average size of the tasks has decreased with approximately 50%. Evidence on the backlogs
suggests a relation with the introduction of themes and concepts on the backlog, as larger tasks
such as ’describe requirements’ are now split into smaller tasks, specific to the current phase.

6.3 Illustration: Maintenance Planning

To illustrate the specific workings of the themes, concepts and requirements within the SPM
backlog, we will try to follow the maintenance planning theme throughout its evolvement. The
theme was introduced in 2008, when the case company chose to achieve a redefinition of its
existing maintenance management solutions. The theme is concerned with functionality related
to the maintenance of facilities, and was initially introduced on the product backlog in month
fourteen of our analysis. The entire SPM lifecycle of the theme lasts seven months.

Although the theme elaboration has not been documented in the SPM sprint backlogs, the
theme is elaborated into several concepts. These concepts are ’planned maintenance (PM)’,
’planned preventative maintenance (PPM)’ and ’maintenance management (MM)’. Besides these,
there are several other concepts that fall partially within this theme, such as ’work orders’ and
’asset’. Each of these concepts is described in several documents, of which the ’vision, scope &
requirements’ document is the most detailed. Within the theme, a focal transition is visible from
planned preventative maintenance to planned maintenance. Furthermore, maintenance manage-
ment is introduced in a later stage. For this example, we will mainly follow the concepts of planned
maintenance and maintenance management.

The planned maintenance concept was introduced in month fourteen, right before the intro-
duction of the new backlog structure. Although a theme-section was not yet available in the SPM
backlog of that month, it is clear from the task-descriptions that these are related to theme-level
requirements. During the next five months, the tasks related to the theme should shift from
theme-level towards requirements-level. However, evidence from the backlog shows that planned
maintenance tasks are placed under the requirements section right away. These tasks are con-
cerned with the detailed elaboration of requirements, and would thus be expected later in the
process. Analysis of the product backlog reveals that the concept of planned maintenance was
elaborated into 152 requirements, subdivided over the groups ’no value’, ’contract’, ’generic’ and
’maintenance planning’.

This is slightly different for the initial tasks related to maintenance management (i.e. the
other concept within the maintenance planning theme). The tasks related to this concept can
be found on the sprint backlogs for the first time in month fifteen of our analysis, at the same
time as the introduction of the new backlog structure, and for the last time in month twenty.
These tasks are, similar to planned maintenance tasks, initially placed on the theme-level. As
the concept matures, task-focus moves towards the concept-level and finally towards requirements
elaboration, analogous to the ’theme/concept/requirements’ lifecycle.

6.4 Illustration: Planon Lite

As we have seen in the previous section, the introduction of themes, concepts and requirements on
the SPM backlog does not necessarily mean that all ideas brought up within the company follow
the same, complete track through all phases. Although it is recommended to do so with large,
complicated themes, the previous section has shown that it is possible and perhaps more efficient
to take a ’shortcut’.

At the same time, introducing a more fine-grained notation also does not mean that every
theme will make it through the entire process. In fact, the added detail allows for an increased
visibility of theme life cycles. As an example of this, we will describe the lifecycle of a new product

17

7 LESSONS LEARNED

idea coined within the company in the fifth month of our analysis. This concept, called Planon
Light, aimed at providing smaller companies with facility management services. The concept
started out as an idea with a set of tasks related to the elaboration of the concept-vision. After
this vision was created, it was discussed and revised, after which it had to be reviewed by the CIO.
However, as the priority of this task was not high, it remained on the backlog for several months.
Only in month eleven is the task completed, after which the Planon Light concept disappears from
the backlog, indicating a rejection of the concept.

This example shows two important points. Firstly, it shows that not all features start out
at the theme-level. As indicated before, only complex features are considered themes, whereas
smaller features can be directly translated to concepts or requirements. Secondly, the fact that
tasks keep recurring on the backlog indicates that basic SCRUM principles can be successfully
translated to the product environment process, adding more clarity and structure.

7 Lessons Learned

During its attempts to implement an agile SPM method, our case company has gained valuable
experiences in this area. These experiences, which have mostly been mentioned in the previous
sections, are listed in this section as a set of important lessons that should be taken into account
when implementing agile SPM alongside an agile software development method.

• Alternating cycles for SPM and Development – One of the main lessons learned
has been the importance of the alternating sprints. As depicted in figure 7, the software
development and the SPM sprint are both performed continuously, but with a difference in
starting date of approximately two weeks. This implies that each SPM sprint ends halfway
the software development sprint, ensuring that the product backlog is ready to be used when
the development teams start their new sprint.

• Daily SCRUM meetings are essential – The daily stand-ups, or SCRUM meetings,
that are essential within the SCRUM development method, are also valued highly within
the agile SPM method. The fifteen-minute meeting at the start of each day is experienced
as a positive, helpful aspect of the process. By providing constructive critique, potential
problems can be avoided and existing problems can be solved.

• Complex requirements are in need of structured detailing – This contribution lies
in the division of requirements into themes, concepts and requirements. The structured
agile requirements refinery approach has made it possible to effectively manage large sets of
requirements of different granularity. Both high level and low level requirements are placed
on the product backlog and handled in time by the appropriate person.

• Backlog administration requires discipline – We have seen that strict documentation
of all tasks on the sprint backlog is still difficult to achieve. Although the sprint backlog
can play a useful role in controlling the SPM process and keeping track of the progress of
a sprint, the motivation to keep the current set of tasks and the amount of time spent on
a specific task up-to-date is still lacking. However, it should be noted that one of the agile
principles is a favoring of individuals and interactions over processes and tools. This means
that, as long as the work gets done, project administration becomes less important.

• Early collaboration promotes reuse and integration – Since product managers in a
SCRUM team cooperatively work on a backlog and discuss requirements before they have
been implemented, re-use and integration opportunities can be spotted at an early stage.
We suspect that higher quality software products are built using this approach than other
approaches with less communication during the requirements specification process.

18

9 CONCLUSIONS AND OUTLOOK

8 Discussion

Although we have aimed our efforts at providing reliable and objective results, we must recognize
that some aspects of our research have room for improvement in the future. By making these
aspects explicit, we are able to take a critical look at our work and to adapt our approach in
consecutive projects.

A first critical mark concerns the amount of persons that we have interviewed. The amount of
four employees does not allow for sufficient cross-checking, thereby introducing the possibility of
reduced reliability of the data. Although the persons that we have interviewed held high positions
within the product management process, this is no substitute for the internal validity principal.

A second point of remark can be made regarding the amount of time spent with each inter-
viewee. Time limitations prohibited our ability to go into depth on every relevant aspect. By
increasing the amount of time available for future sessions, the quality and amount of information
obtained can be increased.

9 Conclusions and Outlook

Up until now, no attempts to create an agile SPM process had been described in literature. In this
situation we have proposed such a method based on agile principles and the proven structures of
a well-known agile development method. By providing the lessons that have been learned during
this process, it is our hope that other companies can benefit from the experience of the case study
company and that other researchers can apply and measure the effects of the requirements refinery.

From the situation described in this work, it has become clear that an agile development
process implies an environment that is significantly different from those created by other, more
linear and controlled methods. As a result, such a dynamic environment places its own, unique
requirements on the processes that are related to it. The effect of this is an increased demand
for agile SPM processes, as described in this work. The main contribution of this work has been
the description of a innovative SPM process based on agile principles. The textual description
along with process-deliverable diagrams both for the software development as well as the SPM
processes allows effective reuse of the described method in other companies that find themselves
in a comparable situation.

Furthermore, the specific lessons that Planon has learned during its experience with agile SPM
and SCRUM allow companies that wish to implement agile SPM to circumvent a set of potentially
dangerous problems. The experiences of Planon have shown that, to ensure effective agile SPM,
several factors should be taken into account. Factors such as team composition, effort estimation
and product quality assurance become even more critical in such situations. For a successful
implementation, these aspects require considerable effort, both in the preparation of a product as
well as, mainly, during the lifecycle of the product itself. At this point in time, the maturity of
the agile SPM process is still fairly low. Therefore, little is known about the exact requirements
of such a process. Future research should be aimed at further formalization of these requirements.
Besides this, more information should be gathered regarding current implementations of agile SPM
processes, and their integration with agile development.

Acknowledgements

We would like to thank Planon for sharing its experiences, and for providing us with all required
documents. Also, we would like to thank Jaap Kabbedijk for his input during the writing of this
paper.

19

REFERENCES

References

Abrahamsson, P., Warsta, J., Siponen, M. T., & Ronkainen, J. (2003). New directions on agile
methods: A comparative analysis. Proceedings of the International Conference on Software
Engineering, May, 244.

Augustine, S., Payne, B., Sencindiver, F., & Woodcock, S. (2005). Agile project management:
Steering from the edges. Communications of the ACM, 48 (12), 85 - 89.

Beck, K.(1999). Extreme programming explained: embrace change. Boston, USA: Addison-Wesley
Longman Publishing Co., Inc.

Berander, P. (2007). Evolving prioritization for software product management. Blekinge Institute
of Technology.

Booch, G.(1995). Object solutions: Managing the object-oriented project. Addison-Wesley.

Carlshamre, P., & Regnell, B.(2000). Requirements lifecycle management and release planning in
market-driven requirements engineering processes. In Workshop on database and expert systems
applications.

Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., & Dag, J. N. och. (2001). An industrial
survey of requirements interdependencies in software product release planning. In Fifth ieee
international symposium on requirements engineering.

Danait, A.(2005). Agile offshore techniques - a case study. In Agile conference.

Dingsoyr, T., Hanssen, G. K., Dyba, T., Anker, G., & Nygaard, J. O. (2006). Lecture notes in
computer science. In (p. 5-15). Springer Berlin / Heidelberg.

Fitzgerald, B., Hartnett, G., & Conboy, K.(2006). Customising agile methods to software practices
at intel shannon. European Journal of Information Systems, 15, 200-213.

Gorchel, L. (2000). The product managers handbook: The complete product management resource
(2nd edition). NTC Business Books.

Greer, D., & Ruhe, G.(2004). Software release planning: an evolutionary and iterative approach.
Information and Software Technology, 46 (4), 243-253.

Jansen, S., & Brinkkemper, S. (2008). Information systems research methods, epistemology, and
applications. In A. Cater-Steel & L. Al-Hakim (Eds.), (p. 120-139). Idea Group Inc.

Mann, C., & Mauer, F. (2005). A case study on the impact of scrum on overtime and customer
satisfaction. In Agile development conference.

Palmer, S., & Felsing, J.(2002). A practical guide to feature-driven development. Prentice Hall.

Pichler, M., Rumetshofer, H., & Wahler, W. (2006). Agile requirements engineering for a social
insurance for occupational risks organization: A case study. In 14th ieee international require-
ments engineering conference.

Pittman, M. (1996). Lessons learned in managing object-oriented development. IEEE Software,
10 (1), 43-53.

Poppendieck, M., & Poppendieck, T. (2003). Lean software development an agile toolkit. Boston,
MA, USA: Addison-Wesley Longman Publishing.

Regnell, B., Höst, M., Dag, J. N. och, Beremark, P., & Hjelm, T.(2001). An industrial case study
on distributed prioritisation in market-driven requirements engineering for packaged software.
Requirements Engineering, 6 (1), 51-62.

20

REFERENCES

Robertson, J., & Robertson, S.(1998). Volere requirements specification template edition 6.0 (Tech.
Rep.). Atlantic Systems Guild.

Schwaber, K. (1995). Scrum development proces. In Proceedings of the conference on object-
oriented programing systems, languages, and applications workshop on business object design
and implementation.

Stapleton, J.(1999). Dsdm: Dynamic systems development method. In Proceedings of technology
of object-oriented languages and systems.

Weerd, I. van de, Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., & Bijlsma, L.(2006). Towards
a reference framework for software product management. In 14th ieee international requirements
engineering conference.

Yin, R. K.(2003). Case study research - design and methods. SAGE Publications.

21

A ACTIVITY TABLES

A Activity Tables

Table 3: Activity table Product Development process

Activity Sub-activity Description

Prepare Sprint

Review product backlog An existing PRODUCT BACKLOG is reviewed
by the team and product owner to see which
PRODUCT REQUIREMENTS needs to be de-
veloped in the upcoming sprint. The PRODUCT
BACKLOG contains PRODUCT REQUIRE-
MENTS for a project. Each sprint has a
number of PRODUCT REQUIREMENTS to
be developed. The team decides if they ac-
cept or reject the REQUIREMENTS. Rejected
REQUIREMENTS are sent back to the Prod-
uct manager. Accepted REQUIREMENTS are
planned and assigned for the upcoming sprint.

Send to PM REQUIREMENTS that are rejected will be send-
ing back to the Product Manager. Further de-
scription or adjustments has to be made for
the team in order to be clear and able to de-
velop. When the REQUIREMENTS are further
described or adjusted by the Product Manager,
the team can review the PRODUCT REQUIRE-
MENT in the PRODUCT BACKLOG.

Make planning A planning for developing REQUIREMENTS is
made for each team with their SPRINT BACK-
LOG for the upcoming sprint.

Assign requirement The PRODUCT REQUIREMENTS are assigned
to the SCRUM teams. The PRODUCT RE-
QUIREMENTS are put in the SPRINT BACK-
LOGS of the teams. Each team has their own
SPRINT BACKLOG.

Run Sprint

Hold daily SCRUM
meeting

Every day is a SCRUM meeting where teams can
come together to answer three questions:

1. How did it go yesterday?

2. What will you do today?

3. Have you encountered problems?

Every team has their own SCRUM meeting. The
SCRUM master gets an update and can remove
certain impediments. When this is done the
progress can be clearly seen and the SPRINT
BACKLOG can be updated.

Continued on next page

22

A ACTIVITY TABLES

Table 3 – continued from previous page
Activity Sub-activity Description

Develop requirement After the daily SCRUM meeting, the team
does their own work and develops the assigned
REQUIREMENTS. Each REQUIREMENT has
one or multiple DESIGNS, one STATUS, pro-
grammed in one or more PROGRAMMING
LANGUAGES and has one Document. Depend-
ing on the priority and importance of the RE-
QUIREMENTS, developed REQUIREMENTS
are chosen and tested. Therefore not every RE-
QUIREMENT has a TEST CASE. But a RE-
QUIREMENT can have multiple TEST CASES.
If the sprint has not ended, it goes to the activity
“Hold daily SCRUM meeting”. When the sprint
ends it goes to the activities “Check developed
software” and “Evaluate past sprint”.

Check developed soft-
ware

Developed software is checked if they meet the
criteria and ready to be presented as a demo. The
four criteria are:

1. Junit test has been passed successfully.

2. No urgent bugs.

3. Documentation is made.

4. Software is working.

When one of the criteria is missing, the RE-
QUIREMENTS are taken to the next sprint and
goes to the activity “Review product backlog”.
If the software meets the criteria it goes to the
activity “Deliver working software”.

Evaluate past sprint An evaluation takes place at the end of every
sprint. The teams discuss what went well and
what went wrong and what improvements can
be made for the next sprint. These IMPROVE-
MENT ITEMS are written down and a selec-
tion of one to three IMPROVEMENT ITEMS is
made. They are taken onto the SPRINT BACK-
LOG.

Deliver working software When the sprint has ended and the software
meets the criteria, an INTERNAL RELEASE
is delivered. Also a DEMO is made to present
the working software. Each team delivers work-
ing software. The working software is the RE-
QUIREMENTS combined together to an IN-
TERNAL RELEASE.

Continued on next page

23

A ACTIVITY TABLES

Table 3 – continued from previous page
Activity Sub-activity Description

Release Product
Review sprint The team presents the demo of the working

software in the Sprint review. Every stake-
holder (employees, customers, product manage-
ment) can attend the sprint review. NEW RE-
QUIREMENTS can be derived from the review.
These NEW REQUIREMENTS are put into the
PRODUCT BACKLOG.

Release external version When the DEMO is given and the sprint has
been reviewed, The INTERNAL RELEASE is
released. Each half year an EXTERNAL RE-
LEASE of the software is released. When the
half year hasn’t passed, a new sprint starts and
goes to “Review product backlog”.

Release customer If the half year has passed and there have been six
successful releases of the INTERNAL RELEASE,
an EXTERNAL RELEASE of the software is re-
leased to customers. A new sprint starts if the
project is still running and goes to “Review prod-
uct backlog”. Project can end because of several
reasons; no business value, no market needs or
software has been developed successfully and no
more adjustments/extensions have to be made.

Table 4: Activity table Product Management process

Activity Sub-activity Description
Identify Business Prob-
lem

The inception of the process always starts with
identifying a VERIFIED BUSINESS PROB-
LEM. These problems are the triggers for the
process. Then the decision is made whether VI-
SION and THEMES are applicable to solve the
business problem. If applicable or needed it goes
to “set goals” or else “Create Product Backlog”.

Identify Theme

Set goals Set goals for the upcoming project and based on
the goals and the business problems, VISIONS
are chosen.

Choose vision The input for the VISION can come from cus-
tomers, employee or a stakeholder. Visions are
chosen to solve the business problem.

Involve stakeholders Stakeholders are involved in the decision making
process and information is acquired from them.

Decide business value VISIONS are depicted in a graph to see their
business value. The cost is compared against
their added value. The business value is de-
scribed in the RELEASE DOCUMENT.

Identify opportunities Based on the business value, opportunities are
identified.

Define theme The VISION is further described to a THEME.
A VISION is defined to a THEME or a set of
THEMES.

Continued on next page

24

A ACTIVITY TABLES

Table 4 – continued from previous page
Activity Sub-activity Description

Estimate theme invest-
ment

An estimation of the investments and how long
it will take to realize the THEME is made. The
costs and the business value are calculated.

Choose theme Based on the business value comparison, stake-
holders of Product Management and theme in-
vestment, THEMES are chosen for the upcom-
ing project. The chosen THEME is described
further in the RELEASE DOCUMENT. When
THEMES are chosen, the next decision is if CON-
CEPTS are needed or go straight to defining RE-
QUIREMENTS.

Define Requirements

Define concept A THEME is broken down to a set of CON-
CEPTS. These CONCEPTS contains SOLU-
TION STORIES. These stories are used for defin-
ing the REQUIREMENTS. CONCEPTS are de-
fined by product managers and software archi-
tects.

Review concept When CONCEPTS are defined, they are re-
viewed by Software Architects and Domain Ex-
perts. If the CONCEPTS are approved, a set of
REQUIREMENTS are defined in the next activ-
ity. If the CONCEPT is not approved, it should
go back to the activity ‘Define Concept’.

Define requirement Each CONCEPT is further described and bro-
ken down to a set of REQUIREMENTS. A team
is responsible for defining REQUIREMENTS. A
REQUIREMENT can be broken down to smaller
REQUIREMENTS to fit in a sprint. The RE-
QUIREMENTS are put into the PRODUCT
BACKLOG.

Review requirement REQUIREMENTS are reviewed by Lead Devel-
opers, Architects, Functional analysts and Do-
main Experts. If a REQUIREMENT is approved
it goes to the next activity ‘Value requirement’. If
a REQUIREMENT is rejected, because they are
unclear or not sufficiently described, they need
to be defined again and goes back to the activity
‘Define requirement’.

Create Product Backlog A PRODUCT BACKLOG is made to put in the
chosen THEMES, CONCEPTS and REQUIRE-
MENTS for the upcoming project.

Prepare Product
Development

Value requirement The costs and the business value of a REQUIRE-
MENT are determined. These REQUIRE-
MENTS are valued and prioritized in the next
activity.

Continued on next page

25

A ACTIVITY TABLES

Table 4 – continued from previous page
Activity Sub-activity Description

Prioritize requirement A value document exists to value and prior-
itize the REQUIREMENTS. First the coun-
tries are prioritized and a weighing-factor is as-
signed. After the country prioritizing, the re-
quested features are prioritized. REQUIRE-
MENTS get a priority and are put into the
PRODUCT BACKLOG. The highest rated RE-
QUIREMENTS needs to be developed first.

Make sprint planning When REQUIREMENTS are clear and have
enough detail they are assigned to SCRUM
teams. The REQUIREMENTS are put in the
specific sprint backlog of each team and the
general sprint backlog of Product Management.
With the general sprint backlog, Product Man-
agement can keep track of the project. The
progress of a project can be tracked and moni-
tored. There is a planning and an overview of the
teams with their REQUIREMENTS. Each de-
velopment team has their specific sprint backlog
containing the progress, planning and the mem-
bers of the team. The sprint backlog contains
the following items: PROGRESS PROJECT,
SPRINT PLANNING and SCRUM TEAM.

Prepare Release Launch

Identify key new mod-
ules/features

After assigning REQUIREMENTS, the release
needs to be prepared. New modules and features
are first identified and prepared for the depart-
ments: Marketing & Sales and Services.

Prepare Marketing &
Sales

A DELIVERABLE LIST (MARKETING LIST)
is made to prepare the department Marketing &
Sales. The list contains items about how and
what needs to be sold effectively to the market
and the customers. The logistics are also needed
to be prepared.

Prepare Services For an effective implementation a DELIVER-
ABLE LIST (SERVICES LIST) is made. Items
about advising customers, how to use the new
features and implementation of these new fea-
tures are part of the list.

Prepare Training The departments Marketing & Sales and Services
needs to be trained and is described in the IM-
PLEMENTATION LIST. This list can also be
found in the RELEASE DOCUMENT. Besides
a training description for the departments, also
the customers and partners of the company need
a training description.

Prepare Implementation The necessary items to effectively implement the
new modules/features are described in the RE-
LEASE DEFINITION and are also a part of the
DELIVERABLE LIST and RELEASE DOCU-
MENT.

26

B CONCEPT TABLES

B Concept Tables

Table 5: Concept table Product Development process

Concept Description
PRODUCT BACKLOG Product backlog contains product requirements for the upcoming

project. The product backlog acts as the intermediary of product
development and product management. Product requirements are
chosen and assigned to SCRUM teams.

PRODUCT REQUIRE-
MENT

Planned requirements for the project and is described in the product
backlog. Each requirement has a priority and a number of complexity
points. The highest priorities are to be developed first. The com-
plexity points indicate how much developer time is needed to create
it.

SPRINT BACKLOG Each team has their own sprint backlog. This backlog contains the
assigned requirements, improvement items from previous sprint and
the progress of the sprint can be monitored. It gets updated every
day.

DAILY UPDATE After each sprint meeting, a daily progress comes out.
REQUIREMENT These are the requirements that are developed during sprints. Each

requirement has a design, a certain status, programmed in a language
and is documented. Requirements with the highest priority and most
complexity points, has a test priority. They need to be tested before
delivering a service pack.

DESIGN A functional and technical design is made before developing the re-
quirements.

STATUS Assigned requirements for the sprint can have one of the following
statuses: Not Started, In Progress, Completed, and Cancelled.

PROGRAMMING LAN-
GUAGE

The used programming language depends on the known program-
ming language by the teams and the fit for a certain require-
ment/module.

DOCUMENTATION Documentation of requirements and working software is made during
the sprint.

TEST CASE Requirements can have different test cases, depending on the im-
portance (potential business damage) and complexity of the require-
ments.

RETROSPECTIVE DOCU-
MENT

After each sprint, the teams reviews and evaluates their sprint.
Things to improve are put in a retrospective document. This docu-
ment contains improvement items for the next sprint.

IMPROVEMENT ITEM These are the items a team has acknowledged to be improved in the
next sprint. A maximum of three improvement items are chosen and
put in the next sprint backlog.

INTERNAL RELEASE When a sprint has ended and tests are successful, a piece of working
software as an output from a sprint is delivered. The developed
requirements are combined to an internal release.

DEMO A demo is made from the internal release to show the developed
functionalities.

NEW REQUIREMENT During the sprint review when the demo is given, new requirements
can come up from the attendees. These are put into the product
backlog and further specified.

Continued on next page

27

B CONCEPT TABLES

Table 5 – continued from previous page
Concept Description

EXTERNAL RELEASE Each half year, the internal releases are combined to an external
release.

Table 6: Concept table Product Management process

Concept Description
VERIFIED BUSINESS
PROBLEM

Identified business problems are business cases which is the inception
of starting the process of Product Management.

RELEASE DOCUMENT This document is the formal documentation of a software develop-
ment project. The document contains the following items: the busi-
ness case, product description, vision, theme, concepts, requirements,
deliverable list and a release definition. These items are described in
detail and a planning can also be found in this document.

VISION Starting point of each project. Vision is an idea of a stakeholder,
customer or employee. A vision can be divided into a set of themes.

THEME A formal elaboration of a vision. Each theme can be broken down
to a set of concepts.

CONCEPT A concept contains a set of story solutions to realize a theme. Each
concept can be broken down to a set of requirements.

SOLUTION STORY The solution stories are used for deduction into requirements.
REQUIREMENT Requirements are detailed functionalities of a software product. The

requirements can also be broken down to several sub-requirements.
The developed requirements are input for identifying new features
for the market.

PRODUCT BACKLOG Product backlog contains a part of the release document. It contains
the same items as the release document except for deliverable list
and release definition. The product backlog acts as the intermediary
of product development and product management. Both of them
can work in the product backlog. This Product Backlog is reviewed
by development teams. They decide if the assigned requirements are
accepted or rejected.

SPRINT BACKLOG The sprint backlog contains key items of a product backlog for the
project. Containing the following items: progress project, sprint
planning and SCRUM team. The sprint backlog provides product
management the progress of the project, the planning, effectiveness
of team and watch if requirements are finished/unfinished.

SCRUM TEAM Every SCRUM team has their own sprint backlog. The product
management has a general sprint backlog which contains an overview
of the whole project. The performance of the teams can be measured
and are depicted as burndown charts.

SPRINT PLANNING A planning is made for every sprint. A sprint is one month. In every
sprint a number of requirements or tasks are assigned to the SCRUM
teams.

PROGRESS PROJECT The product management can keep track of the progress by looking
at the number of finished or unfinished requirements.

IDENTIFIED FEATURES These are the new key features or modules of an upcoming product.
Describing how to sell, implement and take care of the logistics of
the project evolve around these identified features.

Continued on next page

28

B CONCEPT TABLES

Table 6 – continued from previous page
Concept Description

DELIVERABLE LIST A set of items that needs to be described in order to prepare the
departments Marketing & Sales and Services. The deliverable list
can be a marketing list or services list. Depending on the department
that needs to be prepared.

MARKETING LIST A list of items describing how to sell and communicate the new fea-
tures to customers and the market.

SERVICES LIST A list of items describing of what is needed and how to effectively im-
plement the new features. Another issue is how to advice customers.

RELEASE DEFINITION This contain the plan how to do the implementation of new features
and how to train customers, partners and own employees.

29

C BACKLOG STATISTICS

C Backlog Statistics

Sprint # Tasks # Hours
Start

Hours
End

Avg Hours
per Task

Avg Tasks
per Person

Avg Hours
per Person

Efficiency

2007-03 45 449 154 10.0 9.0 89.8 65.7%
2007-04 57 513 177 9.0 11.4 102.6 65.5%
2007-05 56 527 147 9.4 11.2 105.4 72.1%
2007-06 57 539 102 9.5 11.4 107.8 81.1%
2007-07 112 409 179 3.7 22.4 81.8 56.2%
2007-08 95 574 301 6.0 19.0 114.8 47.6%
2007-09 81 550 215 6.8 16.2 110.0 60.9%
2007-10 58 750 274 12.9 11.6 150.0 63.5%
2007-11 53 544 188 10.3 10.6 108.8 65.4%
2007-12 43 324 142 7.5 7.2 54.0 56.2%
2008-01 60 648 193 10.8 10.0 108.0 70.2%
2008-02 67 497 226 7.4 11.2 82.8 54.5%
2008-03 65 604 250 9.3 10.8 100.7 58.6%
2008-04 84 669 320 8.0 14.0 111.5 52.2%
2008-05 100 619 248 6.2 16.7 103.2 59.9%
2008-06 121 586 198 4.8 20.2 97.7 66.2%
2008-07 85 530 208 6.2 14.2 88.3 60.8%
2008-08 91 443 197 4.9 15.2 73.8 55.5%
2008-10 82 523 176 6.4 13.7 87.2 66.3%
2008-11 81 543 116 6.7 13.5 90.5 78.6%
2008-12 91 455 129 5.0 15.2 75.8 71.6%

Avg 75.4 537.9 197.1 7.7 13.5 97.4 63.3%
Lowest 43.0 324.0 102.0 3.7 7.2 54.0 47.6%
Highest 121.0 750.0 320.0 12.9 22.4 150.0 81.1%

Table 7: Results of the product management sprint backlog analysis

30

