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Abstract

Strategic reasoning representation is a key issue in the theoretical study and the im-

plementation of Multi Agent System. To this purpose a language is developed that can

explicitly describe the dynamics of strategies, the preferences and their interaction. The

relation with Pauly's Coalition Logic is studied and a full reduction is shown, together

with the characterization of gametheoretical concept such as undominated choice.

1 Introduction

In their latest foundational book on Multi Agent Systems [12] Shoham and Leyton-Brown
address the study of the �eld's broad umbrella by means of �ve keywords: �coordination,
competition, algorithms, game theory and logic�. Stemming from this view it is natural to
maintain that strategic reasoning representation - that is �nding a suitable mathematical lan-
guage to describe the inferences of interactive decision makers - is a key issue in the theoretical
study and the implementation of Multi Agent System. Interactive decision makers that rea-
son on the best action to select, taking into account the other players and the environment,
are object of study of Game Theory, that constitutes a well founded model for Multi Agent
Systems [12].

Game Theory deals with solution concepts, as for instance that of Nash Equilibrium [10],
in which players reason on the possible reactions of their opponents and choose the best
strategy given such reactions. To represent strategic reasoning a language is then needed
that is able to describe the strategies and the preferences of the agents, together with their
dynamics. However the present languages that talk about gametheoretical interaction such
as ATL [2], Coalition Logic [11] or STIT [7] do not explicitly represent preferences and only
allow to reason on what a coalition of agents can achieve independently of the moves of the
other players [7, 8, 13, 14]. As pointed out in [14], p.1:

Much of game theory is about the question whether strategic equilibria exist.
But there are hardly any explicit languages for de�ning, comparing, or combining
strategies as such - the way we have them for actions and plans, maybe the closest
intuitive analogue to strategies. True, there are many current logics for describing
game structure - but these tend to have existential quanti�ers saying that �players
have a strategy� for achieving some purpose, while descriptions of these strategies
themselves are not part of the logical language.

To tackle this problem, we extend Coalition Logic, the relation of which with strategic
games is clari�ed by Pauly Representation Theorem [11], with an operator that is interpreted
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i \ j C D

C (3, 3) (0, 4)
D (4, 0) (1, 1)

Table 1: A Prisoner Dilemma

in the game restriction, or update, induced by the choice of a coalition. Players can select
their best responses considering such restrictions. Both strategies and preferences are made
explicit in the language, that can be used to represent strategic reasoning.

A further issue concerns implementation. Whenever a language is made for computational
purposes the issue of complexity of representation need to be taken into account. A language
that is proposed for being a suitable extension of already present languages should not be
much more complicated to implement than the languages it is extending. We address this
issue showing a full reduction of a language for strategic ability update to the language of
coalitional interaction.

Updates are not new to the realm of logics. Formalizations of dynamics of information
�ow, like Dynamic Epistemic Logic [16] (DEL), reason about how agents' knowledge is updated
after an epistemic event, for instance a public announcement, takes place. The idea of this
paper is to extend the update paradigm of public announcements to account for the changes
that moves in a game induce to players' strategic decisions.

1.1 Illustrative Example

For an intuition, let us consider a Prisoner Dilemma [10], that is an interactive situation in
which the advantages of cooperation are overruled by the incentive for individual players to
defect. In Table 1 a Prisoner Dilemma is described, where players i and j, that we assume to
be rational, can choose between a cooperative move C and a defective move D, yielding an
outcome (xi, xj), xk being the payo� for each k ∈ {i, j}. If we focus on player i we can observe
that, after the choice C by j, the choice D becomes preferable to the choice C - yielding (4, 0)
instead of (3, 3) - and the same holds in case j moved D - yielding (1, 1) instead of (0, 4). Our
rationality assumption warrants player i to reason on the updates of his own choices brought
about by player j, and to select his best response in each such update. We call undominated

a choice that remains a best response for all possible reactions of one's opponents.
Our aim is to formally capture the reasoning structure of players in strategic interaction.

To do so we will provide a semantics for the notion of undominated choice, seen as an optimal
solution in each game restriction induced by the moves of the players. We will work on
cooperative structures, where players can form coalitions to achieve their goals [3]. The paper
is structured as follows: The �rst part of the paper introduces Coalition Logic, that we use to
model strategic ability; in the second part we introduce an operator to talk about the model
transformations induced by the choices of coalitions: the subgame operator. In the third part
we give a semantics to preferences and combine them to the subgame operator to characterize
the notion of undominated choice. Finally we give reduction axioms for the full language and
discuss its links with Public Announcement Logic.
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2 Coalition Logic and Strategic Ability

In Game Theory players may be able to force the interaction to end up in an outcome satisfying
certain properties. An abstract representation of this notion is given by the dynamic e�ectivity
function, �rst described in [11], which we adopt to model strategic ability.

De�nition 1 (Dynamic E�ectivity Function)

Given a �nite set of agents Agt and a set of states W , a dynamic e�ectivity function is a

function E : W → (2Agt → 22W
).

Any subset of Agt will henceforth be called a coalition. The elements ofW are called states

or worlds; the sets of states X ∈ E(w)(C) are called the choices of coalition C in state w.
The set E(w)(C) is called the choice set of C in w. The complement of a set X is indicated
as X and calculated relative to the expected domain. A dynamic e�ectivity function can
be seen as a �formal description of the power structure in a society� [1]; it assigns, in each
world, to every coalition a set of sets of states that represents the strategic ability of that
coalition. Intuitively, if X ∈ E(w)(C), C is said to be able from w to force the interaction
to end up in some member of X. Every e�ectivity function has the property of outcome
monotonicity: for all X ⊆ W,Y ⊆ W,w ∈ W,C ∈ 2Agt, if X ∈ E(w)(C) and X ⊆ Y , then
Y ∈ E(w)(C). Said in other words, if a coalition is able to force the the interaction to end
up in some member of X then is also able to force the interaction to end up in some member
of any supersets of X. Together with outcome monotonicity we will assume the properties of
regularity: if X ∈ E(w)(C), then X 6∈ E(w)(C); and closed-worldness: E(w)(∅) = {W}.
Regularity means that disjoint coalitions do not make choices that contradict each other, while
closed-worldness requires the empty coalition not to in�uence the interaction. For an in depth
discussion on the desirability of these properties see the results in [5].

2.1 Models and Language

The models we refer to are structures of the form

〈W,E, V 〉

where W is a nonempty set of states, E an outcome monotonic, regular and closed-world
e�ectivity function, V : W → 2P a valuation function that assigns to each state a subset of a
countable set of atomic propositions P , to be interpreted as true at that state. The formulas
for the basic language are of the form

p|¬φ|φ ∧ ψ|[C]φ|Aφ

where p is any atomic proposition in P , [C]φ is the coalitional operator expressing the fact
that coalition C can force or bring about the formula φ; Aφ is the global modality, which
talks about a formula that holds in every world in the model. Their interpretation is standard
[11, 4, 13] and it is given as follows:

M,w |= p i� p ∈ V (w)
M,w |= ¬φ i� not M,w |= φ

M,w |= φ ∧ ψ i� M,w |= φ and M,w |= ψ
M,w |= [C]φ i� φM ∈ E(w)(C)
M,w |= Aφ i� M,v |= φ, for all v ∈W

3



where φM = {w ∈ W |M,w |= φ} is the truth set of φ. We write 〈C〉φ as an abbreviation
for ¬[C]¬φ.

What we can say in Coalition Logic The Prisoner Dilemma can intuitively be rewritten
as a coalition model. Here coalition {i} can force that {i} defects and can force that {i}
cooperates, but {i} cannot force that {j} cooperates (and equally it cannot force that {j}
defects). In any world w, we have therefore that PD,w |= [{i}]( i defects )∧¬[{i}]( j defects ).
On the other hand we cannot express what i can do given that j defects. This would mean
that i would have a strategy forcing that i defects and j defects and a strategy forcing that i
cooperates and j defects. This at the model level is PD,w |= [{i}]( i defects and j defects )∧
[{i}]( i cooperates and j defects ). By the property of outcome monotonicity, we would then
get PD,w |= [{i}]( j defects ), which is at odds with our initial statement. The reason of this
limitation is to be found in the interpretation of the coalition logic operator, that expresses
what a coalition can achieve independently of what its opponents do. Reasoning on how the
strategic ability of a coalition is updated by the possible moves of its opponents requires a
di�erent interpretation, namely what a coalition can achieve given what its opponents do.

3 Strategic Ability Update

To model strategic ability update we construct an operator [C ↓ ψ]φ the informal reading
of which is: �after coalition C chooses ψ, φ holds�. We de�ne the dual 〈C ↓ ψ〉φ as an
abbreviation of ¬[C ↓ ψ]¬φ. Intuitively what we do is to talk about the model restrictions
that are caused by the possible move ψ of coalition C. For this reason it will be called the

subgame operator. Its formal interpretation goes as follows:

M,w |= [C ↓ ψ]φ⇔ ψM ∈ E(w)(C) implies M ↓(C,ψM ,w), w |= φ

The operator has a conditional reading: if a coalition C has a certain choice ψM at w,
then the state where this choice is actually executed makes a certain proposition φ true. The
capacity of C to choose ψM is seen here as a precondition for C to actually execute ψM .

The restricted models M ↓(C,ψM ,w) are so de�ned:

M ↓(C,ψM ,w)
.= 〈W,E ↓(C,ψM ,w), V 〉

They inherit the domain and the valuation function from the original coalition model while
they update the coalitional relation 1 E ↓(C,ψM ,w) in the following way:

E ↓(C,ψM ,w) (w)(D) .= ({ψM})sup for D ∩ C 6= ∅
E ↓(C,ψM ,w) (w)(D) .= (E(w)(D) u ψM )sup for D ∩ C = ∅ and D 6= ∅
E ↓(C,ψM ,w) (w′)(D) .= E(w′)(D) for w′ 6= w or D = ∅

where for a set of sets X , (X )sup= {X ⊆ W | there is Y ∈ X and Y⊆ X ⊆ W}. In
words, ()sup is the superset closure of a set of sets. Moreover taken two sets of sets X ,Y,
X u Y = {X ∩ Y |X∈ X and Y ∈ Y}.

1Here the word functional relation would be more appropriate. In fact the E�ectivity Function behaves
as a relation in a Neighbourhood model and our restriction uniquely associates to an E�ectivity Function the
restriction imposed by a coalitional choice.
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The way the relation is updated deserves some comment. A distinction is made between
the strategic ability update of the players who made a certain choice φ and all the other
players. After coalition C has made a choice φ, all the coalitions involving agents belonging to
C are given (φM )sup as a choice set. This view maintains that a coalition comprising players
that have moved cannot further in�uence the outcome of the game. The models of reference
are strategic games, in which strategies are decided in the beginning once and for all [10]. The
other (nonempty) coalitions instead truly update their choice set having it restricted by the
choice of C. Restriction is implemented in this case by intersecting the e�ectivity function
with the move that has been carried out. If for instance C chooses ψ and C was able to choose
ξ, given the choice by C, C is able to choose ξ∧ψ. The coalitional relation at worlds di�erent
from the one where the choice is made remains instead unchanged. This means that the update
is local. Again, the references are strategic games, where the sequential structure of strategies
is substantially ignored. Notice that by the last condition the empty coalition never gains
power. In sum the strategic ability update is governed by three principles: the irrelevance
of hybrid coalitions, that does not allow members of the coalition that moved to further
in�uence the interaction, the restriction of opponents' choices, that truly updates the
e�ectivity function of the coalitions opposing the one that moved, and the locality of the

update, that leaves the coalitional power at di�erent worlds untouched.
The following relevant fact can be easily veri�ed:

Proposition 1 For every C,w, ψM ∈ E(w)(C), we have that E ↓(C,ψM ,w) is outcome mono-

tonic, regular and closed-world.

The proposition represents the basis for our reduction results. Whatever update is carried
out a model is obtained that obeys the properties that have been assumed for coalition models.

Even though the interpretation of the update operator may look complex, its structural
behaviour is rather simple. The validities in Table 2 allow us to translate every sentence
where the operator is occurring to a sentence where the operator is not occurring, provided
an appropriate law for substitution of equivalent formulas (as R5 in the proof system). The
resemblance to Public Announcement Logic is no coincidence. The axioms in fact reduce the
update operator to the global modality and the coalition logic operator 2. So the operator adds
no expressivity to the language and completeness of the language with the update operator
follows from the completeness of the language without it. A completeness proof for Closed-
World coalition logic, where the global modality interacts with the coalition logic modality by
means of the axiom [∅]φ↔ Aφ is provided in [5].

3.1 Back to the game

With the new operator it becomes possible to formalize the conditional aspect of strategic rea-
soning. In the structure PD we have that PD,w |= [{i} ↓ i defects ]([{j}]( j defects and i defects )∧
[{j}]( j cooperates and i defects )). Nothing changes at the level of grand coalition, since
PD |= [∅ ↓ φ][Agt]ψ ↔ [Agt]ψ.

2Axiom A11 shows that the same holds when a preference operator is added to the language, as needed in
the coming sections.
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Axioms

Regularity

A1 [C]φ→ ¬[C]¬φ
Closed-Worldness

A2 [∅]φ↔ Aφ

Global Modality Axioms

A3 φ→ Eφ
A4 EEφ→ Eφ
A5 φ→ AEφ
A6 A(φ→ ψ)→ (Aφ→ Aψ)

Strategic Ability Update Axioms

A7 [C ↓ ξ]p↔ ([C]ξ → p)
A8 [C ↓ ξ]¬φ↔ ([C]ξ → ¬[C ↓ ξ]φ)
A9 [C ↓ ξ](φ ∧ ψ)↔ ([C ↓ ξ]φ ∧ [C ↓ ξ]ψ)
A10 [C ↓ ξ]Aφ↔ ([C]ξ → Aφ)
A11 [C ↓ ξ]�≤i φ↔ ([C]ξ → �≤i φ)
A12 [C ↓ ξ][D]φ↔ ([C]ξ → [D](ξ → φ)) (for D ∩ C = ∅ and D 6= ∅)
A13 [C ↓ ξ][D]φ↔ A(ξ → φ) (for D ∩ C 6= ∅)
A14 [C ↓ ξ][D]φ↔ ([C]ξ → [D]φ) (for D = ∅)

Preference Axioms

A15 φ→ ♦≤i φ
A16 ♦≤i ♦

≤
i φ→ ♦

≤
i φ

A17 ♦≤i φ→ Eφ

A18 (φ ∧�≤i ψ)→ A(ψ ∨ φ ∨ ♦≤i φ)
Rules

R1 φ ∧ (φ→ ψ)⇒ ψ
R2 φ→ ψ ⇒ [C]φ→ [C]ψ
R3 φ⇒ Aφ
R4 φ⇒ [C ↓ ξ]φ
R5 φ↔ ψ ⇒ [C ↓ ξ]χ↔ [C ↓ ξ]χ[φ/ψ]

Table 2: Proof System
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4 Characterizing Undomination

Recall that in the Prisoner Dilemma, D is an undominated choice for each agent because,
whatever its opponent does, D remains the best possible choice. In the previous part of the
paper we have given an explicit representation of the expression whatever the opponent does

by introducing the subgame operator. However to fully model undominated choices we need
as well to give a precise semantics to the notion of best possible choice.

In line with a well established gametheoretical framework [10], we will assume a preference
ordering (≥i)i∈Agt to be a weak linear order (re�exive, transitive, trichotomous) 3 ≥i⊆W ×W
for each i ∈ Agt. When two states v, w are in the relation v ≥i w we say that v is `at least as
nice' as w for agent i. The corresponding strict order is de�ned as usual: v >i w if, and only
if, v ≥i w and not w ≥i v. The duals w ≤i v, w <i v are de�ned in the expected way.

Preferences can be dealt with in modal logic. The standard operator (for a discussion see
for instance [9]) is interpreted as follows:

M,w |= ♦≤i φ i� M,w′ |= φ, for some w′ with w ≤i w′

The dual �≤i φ is an abbreviation for ¬♦≤i ¬φ. ♦
≤
i φ tells that from a given situation there

is a world that is at least as nice as the present one for agent i and that makes φ true.
Even though preferences are de�ned as an ordering on states, in interactive situations

agents are confronted with choices, that are here modelled as sets of states. Preferences over
choices can be retrieved from the preference over states. To this purpose, we lift the ordering
on states to an ordering on sets of states by means of the following principle:

X ≥i Y i� for all x ∈ X, y ∈ Y, x ≥i y

For the strict ordering >i we obtain the lifting substituting every occurrence of ≥i in the
previous de�nition with >i. The idea is that if an agent were ever confronted with two choices
X,Y he would not choose X over Y whenever Y >i X.

In our example both {(i defects and j cooperates)}PD, i.e. all the worlds in which i de-
fects and j cooperates, and {(i defects and j defects)}PD, i.e. all the worlds in which i and
j defect, belong to E ↓(i,{(i defects)}PD,w) (w)(j), the alternatives left to j once i decides

to defect. Because of the preferences of j, we have that {(i defects and j defects)}PD >j
{(i defects and j cooperates)}PD, that is given the defective move by i, j strictly prefers a
defective move to a cooperative move. However {(j defects)}PD >j {(j cooperates)}PD (ab-
breviated as D(j) >j C(j)) is not true in general.

In Game Theory, to talk about situations that are preferable to any other situation, the
notion of Pareto Optimality is often used. Pareto Optimality selects the maxima in a given
ordering of states. A state x is Pareto Optimal i� for no state y, y >i x for all agents i 4. In
the same spirit of the lifting from states to sets of states, we generalize this de�nition to what
we call Pareto Optimal Choice (in short POC), that selects the maxima in a given ordering
of choices.

3A relation R is trichotomous (or weakly connected) if for all elements x, y it holds that (xRy∨yRx∨y = x).
Notice that if R is re�exive and trichotomous then R is connected, that is for all elements x, y it holds that
xRy ∨ yRx. Trichotomy is de�nable by a global modality, that we denote with A as usual [4] by means of the
schema (p ∧�q)→ A(q ∨ p ∨ ♦p).

4For the sake of precision, the present de�nition is known in the literature as Weak Pareto Optimality [10],
whilst the Strong Pareto Optimality holds i� for no state y, y >i x for all agents i, and y ≥i x for some. We
make only use of the weak version and we call it Pareto Optimality for simplicity.
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De�nition 2 (Pareto Optimal Choice) Given a choice set E(w)(C), X ∈ E(w)(C) is

Pareto Optimal for coalition C (abbr. POCC) in w if, and only if, for no Y ∈ E(w)(C),
Y >i X for all i ∈ C.

Pareto Optimal Choices can be characterized combining the coalition logic and the pref-
erence operator.

Proposition 2 φM is Pareto Optimal Choice for C in w i� M,w |= [C]φ ∧ 〈C〉
∨
i∈C ♦

≤
i φ

(⇒) φM is Pareto Optimal Choice for C in w whenever for no X ∈ E(w)(C), X >i φ
M

for all i ∈ C and that φM ∈ E(w)(C). X >i φ
M means that for all x ∈ X and y ∈ φM

we have that x ≥i y and not y ≥i x for all i ∈ Agt. The whole sentence means that
∃x ∈ X,∃y ∈ φM such that it is not the case that x ≥i y or it is the case that x ≤i y. As we
pointed out before, trichotomy and re�exivity imply connectedness. So we can safely conclude
that x ≤i y. That is no set X ∈ E(w)(C) is such that X ⊆ ¬♦≤i φ for some agent i ∈ C. So
M,w |= [C]φ ∧ 〈C〉

∨
i∈C ♦

≤
i φ.

(⇐) M,w |= [C]φ ∧ 〈C〉
∨
i∈C ♦

≤
i φ means that φM ∈ E(w)(C) and (¬

∨
i∈C ♦

≤
i φ)M 6∈

E(w)(C). So, by outcome monotonicity, every X ∈ E(w)(C) has a world x such that x |=∨
i∈C ♦

≤
i φ, so that x ≤i y for some y ∈ φM and i ∈ C. So for no X ∈ E(w)(C), X >i φ

M for
all i ∈ C. Q.E.D.

Pareto Optimal Choices always exist. Trivially, being W ∈ E(w)(C), for every w,C, we
can never have that X >i W , for i ∈ C and X ⊆ W . Nevertheless, often there are various
Pareto Optimal Choices, apart from W . In the Prisoner Dilemma, both D(k) and C(k) are
Pareto Optimal Choices for each player k ∈ {i, j}. This suggests that the mere use of such
concept cannot provide a good characterization of undominated choice. A further reason is
that Pareto Optimal Choice does not make reference to the preferences or the abilities of the
opponents. In this sense it lacks a strategic dimension. However the combination of subgame
operator and POC can de�ne the notion of undomination.

4.1 Undomination

We call a choice undominated if it is Pareto Optimal no matter what the others decide to do.
This is the formal de�nition:

De�nition 3 (Undomination) Given an e�ectivity function E, φM is undominated for C
in w (abbr. φMBC,w) i� φM ∈ E(w)(C) and for all ψM ∈ E(w)(C), (φM ∩ ψM ) is Pareto

Optimal in Eψ
M

(w)(C) for C.

Eψ
M

(w)(C) is an abbreviation for E(w)(C) u ψM . Pareto Optimality in Eψ
M

(w)(C) is
de�ned in the expected way.

As emphasized before, {(i defects and j defects)}PD is Pareto Optimal for i in ED(j)(w)(i)
and {(i defects and j cooperates)}PD is Pareto Optimal for i in EC(j)(w)(i). This means that
D is an undominated choice for i in w. This is not true for C, since {(i cooperates and j defects)}PD
is not Pareto Optimal for i in ED(j)(w)(i).

Undomination can be characterized within the structures we have so far de�ned. The �rst
characterization will be carried out assuming that every coalition has only a �nite amount

of choices that are the truth set of some proposition. We will remove this assumption when
studying undomination as a frame condition.
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Proposition 3 Given {ψ1, ..., ψn} = E(w)(C),
φMBC,w ⇔M,w |=

∧
ψi∈{ψ1,...,ψn}[C ↓ ψi]POCC(φ ∧ ψi)

(⇐) Trivial.
(⇒) φMBC,w means that φM ∈ E(w)(C) and for all ψM ∈ E(w)(C), φM ∩ ψM is Pareto

Optimal in Eψ
M

for C in w. Let us now observe that given a subgame EY (w)(C) and
a choice X ∈ EY (w)(C), X is Pareto Optimal in EY (w)(C) i� it is Pareto Optimal in

EY (w)(C) closed under supersets. So φM ∩ ψM is Pareto Optimal in Eψ
M

for C in w closed

under supersets. Notice that Eψ
M

for C in w closed under supersets is equivalent with
E ↓(C,ψM ,w) (w) for C. By assumption we can �nitely enumerate the choices of C that have

a propositional form, that we call ψ1, ..., ψn. We can conclude that φMBC,w means that
for every ψi ∈ {ψ1, ..., ψn}, (φ ∧ ψi)M is Pareto Optimal in E ↓(C,ψM

i ,w) (w). This means

M,w |=
∧
ψi∈{ψ1,...,ψn}[C ↓ ψi]POCC(φ ∧ ψi). Q.E.D.

The following proposition holds when undomination is taken to be a frame condition.

Proposition 4 For the class C of all frames based on the models described above, the axiom

[C]φ → [C ↓ ξ]POCC(φ ∧ ξ) determines the following condition: X ∈ E(w)(C) implies that

X ∩ Y is Pareto Optimal in EY (w)(C).

The proof is in the appendix.
The proposition allows for interesting observations. First of all, since we are characterizing

undomination as a property of the frames, we do not need any restriction on the choices of
coalitions. Another advantage of this characterization is that we can characterize a much �ner
notion of Undomination and Pareto Optimality: we can talk about all sets in an e�ectivity
function, and not only those that are truth set of some proposition.

4.2 Back to the Game

The new language formalizes agents' reasoning in the Prisoner Dilemma. Its structure is a
model PD with

W = {(3, 3), (0, 4), (4, 0), (1, 1)},
E(w)({i}) = ({{(3, 3)(0, 4)}, {(4, 0), (1, 1)}})sup,
E(w)({j}) = ({{(3, 3)(4, 0)}, {(0, 4), (1, 1)}})sup,
E(w)({i, j}) = ({(3, 3), (0, 4), (4, 0), (1, 1)})sup for w ∈ W . With a bit of sloppiness, we

identify a formula with its truth set, not distinguishing {(3, 3), (4, 0)} and φM s.t. φM =
{(3, 3), (4, 0)}. We have for every w ∈W that

PD,w |= [j ↓ {(3, 3)(4, 0)}]POCi{(4, 0), (1, 1)} and
PD,w |= [j ↓ {(0, 4)(1, 1)}]POCi{(4, 0), (1, 1)}. By the previous characterizations we can
conclude that {(4, 0), (1, 1)}B{i},w. For player j the situation is symmetric, while we have
that {3, 3}B{i,j},w: cooperation is socially rational but individually overruled by the incentive
to defect.

5 Discussion: Choices as Announcements

Public Announcement Logic formalizes the e�ect of the announcement of a true formula in
each agent's a epistemic relation R(a), de�ned as a partition on a domain W . The standard
operator [φ]ψ says that ψ holds after φ is announced. Its semantics is given as follows:
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Axioms

Public Announcement Axioms

A1 [φ]p↔ (φ→ p)
A2 [φ]¬ψ ↔ (φ→ ¬[φ]ψ)
A3 [φ](ξ ∧ ψ)↔ ([φ]ξ ∧ [φ]ψ)
A4 [φ]�aψ ↔ (φ→ �a[φ]ψ)

Rules

R1 ξ ∧ (ξ → ψ)⇒ ψ
R2 ξ ⇒ [φ]ξ

Table 3: Proof System for Public Announcement Logic

M,w |= [φ]ψ ⇔M,w |= φ implies M |φ,w |= ψ

where M |φ = (W ′, R′(a), V ′) takes these values:

• W ′ = φM

• R′(a) = R(a) ∩ (W × φM )

• V ′(p) = V (p) ∩ φM

The model restriction of public announcement consists in restricting the domain of worlds.
Alternatively, as shown for instance in [15], the same e�ect can be achieved by restricting the
epistemic relation. A reduction can be shown in which every sentence from the modal language
with the S5 knowledge relation and the public announcement operator can be translated into
a sentence from the same language without the public announcement operator occurring in
it. We report the reduction axioms in Table 3.

If we compare the public announcement operator to the subgame operator, we can observe
the structure of the two axiom systems is very similar in the atomic and boolean case, but
very di�erent in the modal case. The appendix will make it clear that the similarity applies
to the proof techniques as well, that are at least for the basic cases identical to those of
Public Announcement Logic [16]. The speci�c di�erences are given, once again, by the way
the coalitional relation is updated.

6 Conclusion and future work

We have built a logic for strategic ability update, where we can represent the e�ects of a
coalitional choice on the players' strategic ability, that, combined with a standard logic of
preferences, allows for the characterization of gametheoretical notions like undominated choice.
In the spirit of the well known update operators from Dynamic Epistemic Logic, our framework
explicitly expresses how a coalitional move modi�es the ability of all the players involved in
the interaction. In the same fashion a reduction has been proved from the language with an
update operator to the language without an update operator, providing a useful benchmark for
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the complexity of implementation. Our results are limited to Coalition Logic. Further study is
needed to analyze whether the same characterizations are possible in di�erent frameworks for
strategic ability, for instance the Consequentialist-STIT framework, ATL and the full Game
Logic. Further work can also be done in characterizing within this framework a number of
other gametheoretical concepts like Nash Equilibrium and the Core for Cooperative Games
without transferable utility.
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A Proofs for Reduction Axioms

Atomic and Boolean Cases

[C ↓ ξ]p↔ ([C]ξ → p)

Take arbitrary M,w. M,w |= [C ↓ ξ]p ⇔ M,w |= [C]ξ implies that M ↓(C,ξM ,w), w |=
p⇔M,w |= [C]ξ implies that M,w |= p⇔M,w |= [C]ξ → p. Q.E.D.
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[C ↓ ξ]¬φ↔ ([C]ξ → ¬[C ↓ ξ]φ)

Take arbitrary M,w. M,w |= [C ↓ ξ]¬φ ⇔ M,w |= [C]ξ implies that M ↓(C,ξM ,w)

, w |= ¬φ ⇔ M,w |= [C]ξ implies that (M,w |= [C]ξ and M ↓(C,ξM ,w), w |= ¬φ) ⇔ M,w |=
[C]ξ implies that not(M,w |= [C]ξ implies M ↓(C,ξM ,w), w not |= ¬φ)⇔|= [C]ξ implies that not(M,w |=
[C]ξ implies M ↓(C,ξM ,w), w |= φ) ⇔ M,w |= [C]ξ implies that M,w not |= [C ↓ ξ]φ ⇔
M,w |= [C]ξ → ¬[C ↓ ξ]φ Q.E.D.

[C ↓ ξ](φ ∧ ψ)↔ ([C ↓ ξ]φ ∧ [C ↓ ξ]ψ)

Take arbitrary M,w. M,w |= [C ↓ ξ](φ ∧ ψ) ⇔ M,w |= [C]ξ implies that M ↓(C,ξM ,w)

, w |= φ ∧ ψ ⇔ M,w |= [C]ξ implies that (M ↓(C,ξM ,w), w |= φ and M ↓(C,ξM ,w), w |= ψ) ⇔
(M,w |= [C]ξ implies that M ↓(C,ξM ,w), w |= φ) and (M,w |= [C]ξ implies that M ↓(C,ξM ,w)

, w |= ψ) ⇔ (M,w |= [C ↓ ξ]φ) and (M,w |= [C ↓ ξ]ψ) ⇔ M,w |= ([C ↓ ξ]φ ∧ [C ↓ ξ]ψ)
Q.E.D.

Interaction with Global Modality

[C ↓ ξ]Aφ↔ ([C]ξ → Aφ)

Take an arbitrary M,w. M,w |= [C ↓ ξ]Aφ ⇔ M,w |= [C]ξ implies that M ↓(C,ξM ,w)

, w |= Aφ⇔M,w |= [C]ξ implies that M ↓(C,ξM ,w), w |= [∅]φ⇔M,w |= [C]ξ implies that M,w |=
[∅]φ⇔M,w |= [C]ξ implies that M,w |= Aφ⇔M,w |= [C]ξ → Aφ. Q.E.D.

Interaction with Preference Modality

[C ↓ ξ]�≤i φ↔ ([C]ξ → �≤i φ)

Take an arbitrary M,w. M,w |= [C ↓ ξ]�≤i φ ⇔ M,w |= [C]ξ implies that M ↓(C,ξM ,w)

, w |= �≤i φ ⇔ M,w |= [C]ξ implies that M ↓(C,ξM ,w), v |= φ for every v such that w ≤i∈C
v ⇔M,w |= [C]ξ implies that M,v |= φ for every v such that w ≤i v ⇔M,w |= [C]ξ implies that M,w |=
�≤i φ⇔M,w |= ([C]ξ → �≤i φ). Q.E.D.

Interaction with Coalition Modality

[C ↓ ξ][D]φ↔ ([C]ξ → [D](ξ → φ))( for D ∩ C = ∅ and D 6= ∅)

Proof by contraposition.
⇐: Suppose, for some D 6= ∅, that M,w |= [C]ξ → [D](ξ → φ) and M,w not |=

[C ↓ ξ][D]φ for some C such that (C ∩ D) = ∅. The semantic clauses then tell us that if
ξM ∈ E(w)(C) then (ξ → φ)M ∈ E(w)(D) and that ξM ∈ E(w)(C) and φM 6∈ E′(w)(D).
[We write E′ for E ↓(C,ξM ,w).] By modus ponens we have that φM 6∈ E′(w)(D).

By the de�nition of update, E′(w)(D) = (E(w)(D) u ξM )sup. So, ((ξ → φ)M ∩ ξM ) ∈
E′(w)(D). By elementary set theory this just says that φM ∈ E′(w)(D). Contradiction.

⇒: Suppose, for some D 6= ∅, that M,w |= [C ↓ ξ][D]φ and M,w not |= [C]ξ → [D](ξ →
φ) for some C such that (C ∩D) = ∅. The semantic clauses then tell us that if ξM ∈ E(w)(C)
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then φM ∈ E′(w)(D), and that ξM ∈ E(w)(C) and (ξ → φ)M 6∈ E(w)(D). By modus ponens
we have that φM ∈ E′(w)(D).

By the de�nition of update, E′(w)(D) = (E(w)(D) u ξM )sup. Because φM ∈ E′(w)(D),
there must be some X ∈ E(w)(D), such that (X ∩ ξM ) ⊆ φM . By elementary set theory we
have that (X ∩ ξM )∪ (X ∩ (¬ξ)M ) ⊆ φM ∪ (X ∩ (¬ξ)M ) ⊆ φM ∪ (X ∩ (¬ξ)M )∪ (X ∩ (¬ξ)M ) =
(φ ∨ ¬ξ)M = (ξ → φ)M .

As (X ∩ξM )∪ (X ∩ (¬ξ)M ) = X, we have by outcome monotonicity of E that (ξ → φ)M ∈
E(w)(D). Contradiction. Q.E.D.

[C ↓ ξ]([D]φ↔ A(ξ → φ))( for D ∩ C 6= ∅)

Proof. Take arbitrary M,w, and arbitrary ξM ∈ E(w)(C). Consider a coalition D with
D ∩ C 6= ∅. We have that E ↓(C,ξM ,w) (w)(D) = (ξM )sup by semantics. This means that

ξM ⊆ φM i� φM ∈ E ↓(C,ξM ,w) (w)(D). We conclude thatM,w |= [C ↓ ξ]([D]φ↔ A(ξ → φ)).
Notice that this also means M,w |= [C ↓ ξ][D]φ↔ A(ξ → φ). Q.E.D.

[C ↓ ξ][D]φ↔ ([C]ξ → [D]φ)( for D = ∅)

It follows directly from the semantics of the update operator for the case of D = ∅. Q.E.D.

B Other Proofs

Proof of Proposition 4.
To prove this proposition we need to introduce the canonical model for the logic.

De�nition 4 (Canonical Model) A Canonical Model for our logic

K = 〈W, E ,�i,R∀, E ↓(C,ψK,ω),V〉

consists of a coalitional relation E, a preference relation �i, a global relation R∀, the strategic

ability update relation E ↓(C,ψK,ω) and a valuation function.

The domain W is made by all maximally consistent sets of formulas ω, where ω is a

collection of formulas of the language, such that for any formula φ of the form p,¬ψ,[C]ψ(for
C ∈ 2Agt), ♦≤iψ (for i ∈ Agt), Aψ, [D ↓ ψ],(for D ∈ 2Agt), either φ or ¬φ belongs to ω. ω
is closed under the proof system depicted in Table 2.

For clarity reasons we explicitly introduce in the canonical model the global relation and
the strategic ability update relation, the latest even if established to be de�nable from the
previous relations. This is constructed associating to every maximal consistent set ω a maximal
consistent set K ↓(C,|φ|K,ω), ω, where the formulas of ω are updated by [C ↓ φ].

For the scope of the proof it is convenient to make use of the smallest canonical model K,
that holds the following constraints

E(ω)(C) = {|φ|K|[C]φ ∈ ω}
E ↓(C,ψK,ω) (ω)(C) = {|φ|K|[C ↓ ψ][C]φ ∈ ω}

where |φ|K is the set of maximally consistent sets that contain φ.
Proof of Proposition 4.
(⇐) Trivial.
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(⇒) Take X ∈ E(ω)(C) for some maximal consistent set ω of the smallest canonical model
K. By de�nition of K, X is the proof set of some formula φ. So |φ|K ∈ E(ω)(C) and by the de�-
nition of the canonical relation [C]φ ∈ ω. By the Truth Lemma for Coalition Logic [6] [11] ω |=
[C]φ. Since ω |= [C]φ → [C ↓ ξ]POCC(φ ∧ ξ), we can infer that ω |= [C ↓ ξ]POCC(φ ∧ ξ).
Notice that this formula captures every choice Y belonging to E(ω)(C), because Y can be
described as the proof set of some proposition. Now given the axioms of the update operator
we can construct a world K ↓(C,|ψ|K,ω), ω such that K ↓(C,|ψ|K,ω), ω |=POCC(φ ∧ ξ). This can
be rewritten as K ↓(C,|ψ|K,ω), ω|= [C](φ ∧ ξ) ∧ 〈C〉

∨
i∈C ♦

≤
i (φ ∧ ξ). Given the axioms of the

preference modality and that the fact that X,Y can be written as X = |φ|K and Y = |ξ|K, we
have that for all |σ|K ∈ E ↓(C,|ψ|K,ω) (ω)(C) there is a world ω′ ∈ |σ|K and a world q ∈ X ∩ Y
such that ω′≤iq for some agent i ∈ C. So X ∩ Y is Pareto Optimal in E ↓(C,|ψ|K,ω) (ω)(C).
Q.E.D.
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