
Enumerating Well-Typed Terms Generically

Alexey Rodriguez Yakushev

Johan Jeuring

Technical Report UU-CS-2009-017

July 2009

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Enumerating Well-Typed Terms Generically

Alexey Rodriguez Yakushev1 Johan Jeuring2,3

1Vector Fabrics B.V., Paradijslaan 28, 5611 KN Eindhoven, The Netherlands
2Department of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

3School of Computer Science, Open University of the Netherlands, P.O. Box 2960, 6401 DL Heerlen, The Netherlands

alexey.rodriguez@gmail.com johanj@cs.uu.nl

Abstract
We use generic programming techniques to generate well-typed
lambda terms. We encode well-typed terms by generalized al-
gebraic datatypes (GADTs) and existential types. The Spine ap-
proach (??) to generic programming supports GADTs, but it does
not support the definition of generic producers for existentials. We
describe how to extend the Spine approach to support existentials
and we use the improved Spine to define a generic enumeration
function. We show that the enumeration function can be used to
generate the terms of simply typed lambda calculus.

1. Introduction
This paper discusses the problem of given a type, generate lambda
terms of that type. There exist several algorithms and/or tools for
producing lambda terms given a type (???). The approach dis-
cussed in this paper uses generic programming techniques on Gen-
eralized Algebraic Datatypes (GADTs) and existentials to enumer-
ate well-typed lambda terms. The enumeration function is much
simpler than previous work, and the main problem lies in making
generic programming techniques available for GADTs and existen-
tials in functions that produce values of a particular datatype, such
as an enumeration function.

Since their introduction to Haskell, Generalized Algebraic
Datatypes (GADTs) (???) are often used to improve the relia-
bility of programs. GADTs encode datatype invariants by type
constraints in constructor signatures. With this information, the
compiler rejects values for which such invariants do not hold dur-
ing type-checking. In particular, GADTs can be used to model
sets of well-typed terms such that values representing ill-typed
terms cannot be constructed. Other applications of GADTs include
well-typed program transformations, implementation of dynamic
typing, staged computation, ad-hoc polymorphism and tag-less in-
terpreters.

Given the growing relevance of GADTs, it is important to pro-
vide generic programming support for generalized datatype defi-
nitions. The generation of datatype values using generic program-
ming is of particular interest. Generic value generation has been
used before to produce test data, which can be used to check the
validity of program properties (?). In generic value generation, the

[Copyright notice will appear here once ’preprint’ option is removed.]

datatype definition acts as a specification for test data. However,
this specification is often imprecise, since it gives rise to either val-
ues that do not occur in practice, or, worse, ill-formed values (for
example, a program fragment with unbound variables). For this rea-
son, QuickCheck (?) allows the definition of custom generators.

GADT definitions may specify types more precisely than nor-
mal datatypes. In the case of well-typed terms, the constraints in
the datatype definition describe the formation rules of a well-typed
value. It follows that a generic producer function on a GADT might
produce values that are better suited for testing program properties.
For example, it should be possible to use a generic value genera-
tion function with a GADT encoding lambda calculus, in order to
produce a well-typed lambda term with which a tag-less interpreter
can be tested.

The spine view (??), which is based on “Scrap Your Boiler-
plate” (?), is the only approach to generic programming in Haskell
that supports GADTs. The main idea behind the spine view is to
make the application of a data constructor to its arguments explicit.
The spine view represents a datatype value by means of two cases:
the representation of a datatype constructor, and the representation
of the application to constructor arguments. A generic function can
then be defined by case analysis on the spine view. ? describe how
to use the spine view to represent GADT values and define generic
functions to consume and produce such values.

Besides GADT definitions, our definition of well-typed terms
uses existentially quantified type variables. In particular, the type
of expression application is that of the function return type. The ar-
gument type is hidden from the application type and is therefore ex-
istentially quantified. Under certain conditions, the spine view sup-
ports the definition of generic functions that consume existentially
typed values. Unfortunately, it cannot be used to define a generic
function that produces them. It follows that the spine view can-
not in general be used to define generic enumerators for well-typed
terms.

This paper extends the spine view to allow the use of producer
functions on existential types. We make the following contribu-
tions:

• We show how to support existential types systematically within
the spine view. We extend the spine view to encode existentially
quantified type variables explicitly. This enables the definition
of generic functions that perform case analysis on such types.
As a consequence, the extended spine view supports the defi-
nition of generic producers that work on existential types. We
demonstrate the increased generality by defining generic serial-
ization and deserialization for existential types and GADTs.

• We define a generic enumeration function that can be used with
GADTs and existential types. This function can be used to enu-
merate the well-typed terms represented by a GADT. Consider

1 2009/8/17

a GADT that represents terms in the simply typed lambda cal-
culus. The enumeration of terms with type Expr ((b→ c)→
(a→ b)→ a→ c) yields the term that corresponds to function
composition. The enumeration function requires explicit sup-
port for existential types in producers. For that reason it cannot
be defined in approaches such as that of ?.

This paper is organized as follows. Section 2 introduces the
spine view and gives several examples illustrating why this view
is not suitable to define producers for existential types. Section 3
describes our extensions to the spine view, which enable producer
support for existential types. Section 4 uses the extended spine view
to define a generic enumeration function. The enumeration function
is then used to produce well-typed lambda calculus terms. Section 5
discusses related work, and section 6 concludes.

2. The spine view
The spine view was introduced by ?. This view supports the def-
inition of generic functions that consume (such as show or eq) or
transform (such as map) datatype values. We introduce the spine
view using the generic show function as an example. This function
prints the textual representation of a value based on the type struc-
ture encoded by the view. To implement this function, we need case
analysis on types to implement type-dependent behavior.

2.1 Case analysis on types
The spine view uses GADTs to implement case analysis on types.
We define a type representation datatype where each constructor
represents a specific type:

data Type ::∗→ ∗ where
Int ::Type Int
Maybe ::Type a→ Type (Maybe a)
Either ::Type a→ Type b→ Type (Either a b)
List ::Type a→ Type [a]
(:→) ::Type a→ Type b→ Type (a→ b)

An overloaded function can be implemented by performing case
analysis on types. To perform case analysis on types we pattern
match on the type representation values. The GADT pattern match-
ing semantics (?) ensures that the type variable a is refined to the
target type of the matched constructor:

show ::Type a→ a→ String
show Int n = showInt n
show (Maybe a) (Just x) = paren ("Just" • show a x)
show (Maybe a) Nothing = "Nothing"
show (Either a b) (Left x) = paren ("Left" • show a x)
show (Either a b) (Right y) = paren ("Right" • show b y)
show (List a) ((:) x xs) = paren ("(:)"

• show a x
• show (List a) xs)

show (List a) [] = "[]"

This function prints a textual representation of a datatype value.
Note that we choose to print lists in prefix syntax rather than the
usual Haskell notation. The operator (•) separates two strings
with a white space, and paren prints parentheses around a string
argument.

2.2 The spine representation of values
Type representations can be used to implement overloaded func-
tions, but such functions are not generic. The user needs to define
new show cases for every datatype added to the program. To define
generic functions, we make use of the spine view.

The spine view represents all datatype values by means of two
cases: a constructor and the application of a (partially applied)
constructor to an argument. This is embodied in the Spine datatype:

data Spine ::∗→ ∗ where
Con ::ConInfo a→ Spine a
(:�:) ::Spine (a→ b)→ Typed a→ Spine b

infixl 0 :�:

The Con case of the spine view stores a value constructor of type
a together with additional information including the constructor
name, the fixity, and the constructor tag. This additional informa-
tion is stored in the datatype ConInfo. The application case (:�:)
consists of a functional value Spine that consumes a-values, and
the argument a paired with its type representation in the datatype
Typed. We show Typed, and a simplified ConInfo containing only
the constructor name below:

data ConInfo a = ConInfo{conName ::String,conVal ::a}
data Typed a = (:.:) {val ::a,rep ::Type a}

To write a generic function, we first convert a value to its Spine
representation. We show how to perform this conversion using the
type-indexed function toSpine:

toSpine ::Type a→ a→ Spine a
toSpine Int x = Con (conint x x)
toSpine (Maybe a) (Just x) = Con (conjust Just) :�: x :.: a
toSpine (Maybe a) Nothing = Con (connothing Nothing)
toSpine (Either a b) (Left x) = Con (conleft Left) :�: x :.: a
toSpine (Either a b) (Right y) = Con (conright Right) :�: y :.: b
toSpine (List a) ((:) x xs) = Con (concons (:))

:�: x :.: a :�: xs :.: List a
toSpine (List a) [] = Con (connil [])

Because we reuse the constructor information in later sections of
the paper, we define ConInfo values separately. We give some
examples below:

conint :: Int→ a→ ConInfo a
conint i = ConInfo (showInt i)
connothing,conjust ::a→ ConInfo a
connothing = ConInfo "Nothing"
conjust = ConInfo "Just"

In summary, to enable generic programming using the spine
view, we define a GADT for type representations, the Spine
datatype, and conversions from datatype values to their spine rep-
resentations. The conversions for datatypes are written only once,
and then the same conversion can be reused for different generic
functions. The conversion to the spine representation is regular
enough that it can be automatically generated from the syntax trees
of datatype declarations1

Equipped with the spine representation, we can write a number
of generic functions. For example, this is the definition of generic
show:

show ::Type a→ a→ String
show rep x = paren (gshow (toSpine rep x))
gshow ::Spine a→ String
gshow (Con con) = conName con
gshow (con :�: arg) = gshow con • show (rep arg) (val arg)

This function is a simplified variant of the show function defined
in the Haskell prelude. All datatype values are printed uniformly:
constructors are separated from the arguments by means of the •
operator, and parentheses are printed around fully applied construc-
tors.

1 At the time of writing, Template Haskell cannot handle GADT declara-
tions. Our prototype generates the spine representation for a GADT using a
manually constructed declaration syntax tree instead of parsing the GADT
declaration and processing it via Template Haskell.

2 2009/8/17

2.3 Transformer functions
The spine view also supports the definition of generic transformer
functions. Examples of such functions include incrementing all Int
values in a tree, and applying a function to all nodes of a specific
type in a tree.

To write such a function, we need to convert the spine represen-
tation back to the represented value after it has been traversed and
transformed. This is achieved by the fromSpine function:

fromSpine ::Spine a→ a
fromSpine (Con con) = conVal con
fromSpine (con :�: arg) = fromSpine con (val arg)

See ? for examples of transformer functions using the spine view.

2.4 A view for producers
It is impossible to write read, the inverse to show using the current
Spine datatype. We could for example use the following type for
read:

read ::Type a→ String→ [(a,String)]

This function produces all possible parses of type a (paired with un-
used input) from a representation for the type a and an input string.
To write such a generic function, we would need a spine represen-
tation to guide the parsing process. Unfortunately, a representation
Spine a cannot be used for this purpose. A value of Spine a rep-
resents a particular value of type a (for example, a singleton list)
rather than the full datatype structure (a description of the cons and
nil constructors and their arguments). To enable a generic definition
of generic read and other producer generic functions, ? introduce
the type spine view. This view describes all values of a rather than
a particular one.

type TypeSpine a = [Signature a]
data Signature ::∗→ ∗ where

Sig ::ConInfo a→ Signature a
(:⊕:) ::Signature (a→ b)→ Type a→ Signature b

infixl 0 :⊕:

Here we again have two cases, one for encoding a constructor and
another for the application of a (partially) applied constructor to an
argument. The application case contains only a type representation
and no argument value anymore. A value of TypeSpine a is a list
of constructor signatures representing all constructors of the repre-
sented datatype. The type-indexed function typeSpine produces the
type spine representations of all datatypes on which generic pro-
gramming is to be used.

typeSpine ::Type a→ TypeSpine a
typeSpine Int = [Sig (conint i i)

| i← [minBound . .maxBound]]
typeSpine (Maybe a) = [Sig (connothing Nothing)

,Sig (conjust Just) :⊕: a]
typeSpine (Either a b) = [Sig (conleft Left) :⊕: a

,Sig (conright Right) :⊕: b]
typeSpine (List a) = [Sig (connil [])

,Sig (concons (:)) :⊕: a :⊕: List a]

The generic parsing function, read, builds a parser that deseri-
alizes a value of type a:

read ::Type a→ Parser a

For the purposes of this paper, we assume that Parser is an
abstract parser type with a monadic interface, with some standard
derived functions:

return ::a→ Parser a
(>>=) ::Parser a→ (a→ Parser b)→ Parser b

ap ::Parser (a→ b)→ Parser a→ Parser b
(>>) ::Parser a→ Parser b→ Parser b

noparse ::Parser a
alternatives :: [Parser a]→ Parser a

readInt ::Parser Int
lex ::Parser String

token ::String→ Parser ()
readParen ::Parser a→ Parser a

The definition of generic read uses readInt to read an integer
value. For other datatypes, we make parsers for each of the con-
structor representations and merge all the alternatives in a single
parser.

read ::Type a→ Parser a
read Int = readInt
read rep = alternatives [readParen (gread conrep)

| conrep← typeSpine rep]

The generic parser of a constructor is built by induction on its
signature representation. The base case (Sig) tries to recognize the
constructor name and returns the constructor value. The application
case parses the function and argument parts recursively and the
results are combined using monadic application:

gread ::Signature a→ Parser a
gread (Sig c) = token (conName c)>> return (conVal c)
gread (con :⊕: arg) = gread con ‘ap‘ read arg

In the definition of generic read, we could also have used parser
combinators based on an applicative interface (?) instead of a
monadic one. For an example of parser combinators with an ap-
plicative interface see ?. In Section 3.1 we show that existentially
typed values cannot be parsed using purely applicative parser com-
binators, because generic read on existentials makes essential use
of bind (>>=).

2.5 Generalized algebraic datatypes
Recall that generalized algebraic datatypes are datatypes to which
type-level constraints are added. Such constraints can be used to
encode invariants that datatype values must satisfy. For example,
we can define a well-typed abstract syntax tree by having the
syntactic categories of constructs in the target type of constructors:

data Expr ::∗→ ∗ where
EZero ::Expr Int
EFalse ::Expr Bool
ESuc ::Expr Int → Expr Int
ENot ::Expr Bool→ Expr Bool
EIsZero ::Expr Int → Expr Bool

We have constants for integer and boolean values, and operators
that act on them.

GADTs can easily be represented in the spine view. For in-
stance, the definition of toSpine for this datatype is as follows:

toSpine ::Type a→ a→ Spine a
. . .
toSpine (Expr Int) EZero = Con (conezero EZero)
toSpine (Expr Bool) EFalse = Con (conefalse EFalse)
toSpine (Expr Int) (ESuc e) = Con (conesuc ESuc)

:�: e :.: Expr Int
toSpine (Expr Bool) (ENot e) = Con (conenot ENot)

:�: e :.: Expr Bool
toSpine (Expr Bool) (EIsZero e) = Con (coneiszero EIsZero)

:�: e :.: Expr Int

3 2009/8/17

This definition requires the extension of Type with the representa-
tion constructors Expr and Bool. Generic functions defined on the
spine view, such as generic show, can now be used on Expr.

What about generic producer functions? These can be used on
Expr too, because it is also possible to construct datatype represen-
tations for GADTs in the type spine view:

typeSpine ::Type a→ TypeSpine a
. . .
typeSpine (Expr Int) = [Sig (conezero EZero)

,Sig (conesuc ESuc) :⊕: Expr Int]
typeSpine (Expr Bool) = [Sig (conefalse EFalse)

,Sig (conenot ENot) :⊕: Expr Bool
,Sig (coneiszero EIsZero) :⊕: Expr Int]

To parse boolean expressions, we invoke the generic read func-
tion as follows:

readBoolExpr ::Parser (Expr Bool)
readBoolExpr = read (Expr Bool)

The parser for integer expressions would use a different argument
for Expr. In this example, we are assuming that the expression to be
parsed is always of a fixed type. A more interesting scenario would
be to leave the type of the GADT unspecified and let it be dynami-
cally determined from the parsed value. This would be useful if the
programmer wants to parse some well-typed expression regardless
of the type that the expression has.

A possible solution to parsing a GADT without specifying its
type argument would be to existentially quantify over that argument
in the result of the parsing function. Next, we discuss how the spine
view deals with existential types.

2.6 Existential types and consumer functions
In Haskell, existential types are introduced in constructor declara-
tions. A type variable is existentially quantified if it is mentioned in
the argument type declarations but omitted in the target type. For
example, consider dynamically typed values:

data Dynamic ::∗ where
DynVal ::Type a→ a→Dynamic

The type variable a in the declaration is existentially quantified. It
is used to hide the type of the a-argument used when building a
Dynamic value. The type a is kept abstract when pattern matching
a Dynamic value, but by case analyzing the type representation
it is possible to dynamically recover the type a. Thus, statically,
Dynamic values all have the same type, but, dynamically, the type
distinction can be recovered and acted upon.

To represent dynamic values in Spine, we add type representa-
tions for Type itself and Dynamic. Hence, we add the following
two constructors to Type:

data Type ::∗→ ∗ where
. . .
Type ::Type a→ Type (Type a)
Dynamic ::Type Dynamic

Now, Dynamic values may be represented as follows by the
spine view:

toSpine ::Type a→ a→ Spine a
. . .
toSpine Dynamic (DynVal rep val) = Con (condynval DynVal)

:�: rep :.: Type rep
:�: val :.: rep

While Dynamic values may be easily represented, this is not
the case for all datatypes having existential types. Recall that in a
spine representation, every constructor argument is paired with its

type representation in the datatype Typed. In general, in construc-
tors having existential types, it may not be possible to build such a
pair because the representation of the existential type may be miss-
ing. The constructor DynVal is a special case, because it carries the
representation type of the existential a. For an example where the
representation of a constructor with existential types is not possi-
ble, consider adding an application constructor to the expression
datatype:

data Expr ::∗→ ∗ where
. . .
EApp ::Expr (a→ b)→ Expr a→ Expr b

and consider the corresponding toSpine alternative:

toSpine ::Type a→ a→ Spine a
. . .
toSpine (Expr b) (EApp fun arg) = Con (coneapp EApp)

:�: fun :.: Expr (a :→ b)
:�: arg :.: Expr a

This code is incorrect due to the unbound variable a which stands
for the existential representation. The conclusion here is that the
spine view can be used on an existential type, as long as the
constructor in which it occurs carries a type representation for it.

2.7 Existential types and producer functions
The view for producer functions, the type spine view, cannot repre-
sent existential types equally well as the spine view. For instance,
consider how to generate such a representation for dynamic values:

typeSpine ::Type a→ [Signature a]
. . .
typeSpine Dynamic = [Sig (condynval DynVal) :⊕: Type a :⊕: a]

What should the representation a be? There are two options, we
either fix it to a single type representation or we range over all
possible type representations. Choosing one type representation
would be too restrictive, because read would only parse dynamic
values of that type and fail on any other type. We try the second
option:

typeSpine Dynamic = [Sig (condynval DynVal) :⊕: Type a :⊕: a
| a← types]

This code does not yet have the behavior we desire. For typeSpine
to be type-correct, types must return a list of representations all
having the same type. Because Type is a singleton type (each type
has only one value), types returns a single type representation. We
would like types to generate a list of all possible type representa-
tions, but different type representations have different types. There-
fore, types should return representations whose represented type is
existentially quantified. To this end, we define the type of boxed
type representations:

data BType = ∀a.Boxed (Type a)
applyBType :: (∀a.Type a→ c)→ BType→ c
applyBType f (Boxed a) = f a

Now we can define the type spine of dynamic values, for which we
assume a list of boxed representations (types):

types :: [BType]
typeSpine Dynamic = [Sig (condynval DynVal) :⊕: Type a :⊕: a

| Boxed a← types]

The boxed representations are used to construct a list of construc-
tor signatures that represent a dynamic value of the correspond-
ing type. There are infinitely many type instances of polymorphic
types, therefore there are infinitely many Dynamic constructor rep-
resentations. An infinite type spine is not a desirable representation

4 2009/8/17

to work with. The read function would try to parse the input us-
ing every Dynamic constructor representation. If there is a correct
parse, parsing would eventually succeed with one of the represen-
tations. However, if there is no correct parse, parsing would not
terminate. Moreover, this representation precludes implementing
more efficient variants of parsing.

Infinite type spine representations for datatypes with existen-
tials make the use of generic producers on such datatypes unprac-
tical. Before describing a modified type spine view that solves this
problem, we explore a couple of non-generic examples to motivate
our design decisions.

We start with the parser definition for Dynamic values. In the
code above, we are able to parse any possible dynamic value be-
cause there are DynVal constructor signatures for all possible types.
For each signature, we build a parser that parses the corresponding
type representation and a value having that type.

Now, rather than parsing the two arguments of the constructor
DynVal independently, we introduce a dependency on representa-
tions. First, we parse the type representation for the existential.
Then, we use it to build a parser of the corresponding type and
parse the second argument. In this way, we no longer need to have
an infinite representation of types because we obtain the represen-
tation of the existential during the parsing process:

read ::Type a→ Parser a
. . .
read Dynamic = do

Boxed a← readType
value ← read a
return (DynVal a value)

To this end, we use a function that parses type representations.
Because the result may be of an arbitrary type, readType produces
a representation that is boxed:

readType ::Parser BType

We defer the presentation of readType to Section 3.4.
The same technique can be used to parse any constructor having

an existential type. For example, the definition for parsing expres-
sion applications is as follows:

read (Expr b) = do
Boxed a← readType
fun ← read (Expr (a :→ b))
arg ← read (Expr a)
return (EApp fun arg)

In this example, the type representation that is parsed is used to
build the type representations for the two remaining arguments.

These two examples show that constructors with existential
types must be handled differently from other constructors. In such
constructors, the constructor argument representations depend on
the type representation of the existential type. In our examples, this
dependency is witnessed by the dynamic construction of parsers
based on the type representation that was previously parsed.

3. An improved Spine view: support for
existential types

We start this section by showing how to extend the spine view for
producers to represent existential types explicitly. Then, we show
why this extension is also necessary for the consumer spine view.

3.1 The existential case for producer functions
We have learned two things from the read examples for construc-
tors with existential types. First, we need a way to represent ex-
istential variables explicitly, so that generic functions can handle

existential type variables specifically. And second, there is a de-
pendency from constructor arguments on the existential variable.
For example, we can only parse the function and argument parts
of an expression application, if we have already parsed the existen-
tial type representation. We modify the type spine view to accom-
modate these two aspects. We extend the constructor signatures in
this view with a constructor to represent existential quantification:
AllEx. The dependency of type b on an existential type a is made
explicit by means of a function from type representations of type a
to representations of b.

data Signature ::∗→ ∗ where
Sig ::a→ Signature a
(:⊕:) ::Signature (a→ b)→ Type a→ Signature b

AllEx :: (∀a.Type a→ Signature b)→ Signature b

Interestingly, the type variable a is universally rather than existen-
tially quantified. Why is this the case? The type spine view rep-
resents all possible values of a datatype, therefore the existential
variable must range over all possible types. This also explains the
name of the constructor AllEx, which stands for all existential type
representations.

There is another modification to the type spine view. The Sig
constructor no longer carries constructor information. Instead, this
information is stored at the top-level of the representation:

type TypeSpine a = [ConInfo (Signature a)]

This change is not strictly necessary but it is convenient. Suppose
that the constructor information is still stored in Sig. Now, appli-
cations that need to perform a pre-processing pass using construc-
tor information (for example, for more efficient parsing) would be
forced to apply the function in AllEx only to obtain the constructor
information. Having this information at the top-level, rather than at
the Sig constructor, avoids the trouble of dealing with AllEx unnec-
essarily.

The function typeSpine has to be modified to deal with the new
representation:

typeSpine ::Type a→ TypeSpine a
typeSpine Int = [conint i (Sig i)

| i← [minBound . .maxBound]]
typeSpine (Maybe a) = [connothing (Sig Nothing)

,conjust (Sig Just :⊕: a)]
typeSpine (Either a b) = [conleft (Sig Left :⊕: a)

,conright (Sig Right :⊕: b)]
typeSpine (List a) = [connil (Sig [])

,concons (Sig (:) :⊕: a :⊕: List a)]
typeSpine Dynamic =

[condynval (AllEx (λa→ Sig (DynVal a) :⊕: a))]

Now let us rewrite the read function using the new type spine
view. First of all, the constructor is parsed in read, because the
constructor information is now at the top-level:

read ::Type a→ Parser a
read Int = readInt
read rep = alternatives [readParen (conParser conrep)

| conrep← typeSpine rep]
where conParser conrep = token (conName conrep)

>>gread (conVal conrep)

The function that performs generic parsing is not very different for
the first two Signature constructors:

gread ::Signature a→ Parser a
gread (Sig c) = return c
gread (con :⊕: arg) = gread con ‘ap‘ read arg

5 2009/8/17

The existential case is the most interesting one. We first parse the
type representation, and then continue with parsing the remaining
part of the constructor.

gread (AllEx f) = readType>>=applyBType (gread◦ f)

This example effectively captures the read examples for dynami-
cally typed values and for expression applications. The type repre-
sentation is used to build the parser for the remaining constructor
arguments. This dependency is expressed using the bind operation
on parsers (>>=). This means that the definition of generic read for
existential types must be based on monadic parser combinators, and
therefore applicative parser combinators cannot be used.

There is one function that we use to read type representations:

readType ::Parser BType

Because type representations are somewhat special, we deal with
them separately in Section 3.4.

3.2 Choice in the representation of existentials
There a choice in the representation of existential quantification.
Consider the representation of DynVal given above. The function
argument of AllEx receives a type representation and uses it to build
the partially applied constructor value Sig (DynVal a). This value
requires only one more argument which is represented by a.

An alternative way to encode DynVal is to make all of the
constructor arguments explicit:

typeSpine ::Type a→ TypeSpine a
. . .
typeSpine Dynamic =

[condynval (AllEx (λa→ Sig DynVal :⊕: Type a :⊕: a))]

The two approaches differ in whether a generic function has access
to the type representation in the application case (:⊕:). It would
seem that the second representation of DynVal is more flexible
because it would allow the production of values different than a
for the first argument. However, Type is a singleton type, so the
only value (excluding ⊥) that inhabits the type represented by
Type a is a itself. It follows that the second representation of DynVal
is not an improvement over the first. For this reason, we always
choose to expose the representation of an existential by means of
the existential case only (AllEx).

3.3 The existential case for consumer functions
Producer functions need a modified type spine view (TypeSpine)
to handle existential types. Do we need to modify the spine view
(Spine) for consumers too? After all, we were able to define toSpine
for Dynamic using the existing view. There is a good reason why
we still need to modify the spine view to handle existentials in an
appropriate way. Consider the read and show functions for exam-
ple. There is a clear dependency on the representation of existential
types during parsing. It is not possible (or at least very impracti-
cal) to parse a dynamic value without first having the type repre-
sentation for it. Therefore, existential type representations should
appear earlier than the constructor arguments that depend on it in
the text input used for parsing. This means that show must pretty
print the type representation for the existential before the dependent
constructor arguments. However, the current spine view makes this
difficult because the representation for the existential may appear
in any position.

We solve the problem above making the dependence between
existential types and constructor arguments explicit. Like the type
spine view, the new constructor encodes the dependency on exis-
tentials using a function. The type variable is existentially quanti-
fied because in this case we are representing a specific constructor
value:

data Spine ::∗→ ∗ where
Con ::a→ Spine a
(:�:) ::Spine (a→ b)→ Typed a→ Spine b

Ex ::Type a→ (Type a→ Spine b)→ Spine b

As in the type spine view, the constructor information is lifted out
of the Con constructor onto the top-level. The new function toSpine
is as follows:

toSpine ::Type a→ a→ ConInfo (Spine a)
toSpine Int x = conint x (Con x)
toSpine (Maybe a) (Just x) = conjust (Con Just

:�: x :.: a)
toSpine (Maybe a) Nothing = connothing (Con Nothing)
toSpine (Either a b) (Left x) = conleft (Con Left

:�: x :.: a)
toSpine (Either a b) (Right y) = conright (Con Right

:�: y :.: b)
toSpine (List a) (x : xs) =

concons (Con (:) :�: x :.: a :�: xs :.: List a)
toSpine (List a) [] = connil (Con [])
toSpine Dynamic (DynVal a x) = condynval (Ex a dynSig)

where dynSig a = Con (DynVal a) :�: x :.: a

The show function is modified as follows to use the constructor
information that appears at the top-level:

show ::Type a→ a→ String
show rep x = paren (conName spinecon

• gshow (conVal spinecon))
where spinecon = toSpine rep x

Generic show does not change much for the two first spine cases:

gshow ::Spine a→ String
gshow (Con con) = ""
gshow (con :�: arg) = gshow con • show (rep arg) (val arg)

For the existential case, generic show prints the type representation
first and continues printing the remaining constructor values:

gshow (Ex a f) = showType a • gshow (f a)

The function for printing type representations is explained next:

showType ::Type a→ String

3.4 Handling type representations
In the example above, we have used the function readType to parse
a type representation. The function readType returns a boxed rep-
resentation since the represented type is dynamically determined
during parsing. Unfortunately, it is not easy to define producers that
return boxed representations using generic programming. If special
care is not taken, such functions may loop when invoked. In the
following we describe the problem in more detail and we propose
a solution.

3.4.1 Parsing type representations
The obvious way to parse a type representation is to do it generi-
cally by using the read function. To this end, we use generic read
to parse boxed type representations:

readType ::Parser BType
readType = read BType

Unfortunately, the function given above is non-terminating. First,
remember that BType uses existential quantification, and hence its
type spine is:

typeSpine BType = [conboxed (AllEx (λa→ Sig (Boxed a)))]

Since the type spine uses an existential case, gread would try
to parse a BType-value calling readType recursively. Therefore,

6 2009/8/17

trying to parse a boxed type representation would lead to parsing an
existential type, which leads to parsing a boxed type representation
and so on.

How can we solve this problem? A desperate solution would be
to give up using generic programming in the definition of readType.
This approach is undesirable because every generic producer would
need to have a type representation case. Worse even, every such
case would have to handle all type representation constructors. If
there are n generic functions and m represented types, the program-
mer would need to write n×m cases. Despite this significant prob-
lem, it is worth exploring a non-generic variant of readType and try
to generalize it.

readType = alternatives (map readParen
[do token "Int"

return (Boxed Int)
, do token "Maybe"

Boxed arg← readType
return (Boxed (Maybe arg))

, do token "Either"
Boxed left ← readType
Boxed right← readType
return (Boxed (Either left right))

, do token "List"
Boxed arg← readType
return (Boxed (List arg))

])

This example shows that parsing a type representation is no
different than parsing a normal datatype in that the type argument
of the GADT plays no role here. This example also illustrates
the verbosity of writing such boilerplate without using generic
programming.

The code of readType suggests that we could forget the “GADT-
ness” of type representations during parsing. This is the first step
we take towards being able to define generic producers for boxed
representations, namely, defining the datatype of type codes, a non-
GADT companion to type representations:

data TCode ::∗ where
CInt ::TCode
CMaybe ::TCode→ TCode
CEither ::TCode→ TCode→ TCode
CList ::TCode→ TCode
CArrow ::TCode→ TCode→ TCode
CType ::TCode→ TCode
CDynamic ::TCode
CTCode ::TCode

Besides naming and the absence of a type argument, this datatype
is identical to type representations. To make the relation between
type codes and type representations precise, we introduce two con-
version functions. The first function converts a type representation
to a type code, erasing the type information in the process:

eraseType ::Type a→ TCode
eraseType Int = CInt
eraseType (Maybe a) = CMaybe (eraseType a)
eraseType (Either a b) = CEither (eraseType a) (eraseType b)
eraseType (List a) = CList (eraseType a)
eraseType (a :→ b) = CArrow (eraseType a) (eraseType b)
eraseType (Type a) = CType (eraseType a)
eraseType Dynamic = CDynamic
eraseType TCode = CTCode

Conversely, we want to be able to convert from a type code to
a type representation. Note, however, that the resulting type-index
depends on the value of the type code and hence the result is a
boxed representation:

interpretTCode ::TCode→ BType
interpretTCode CInt = Boxed Int
interpretTCode (CMaybe a) = applyTCode (Boxed ◦Maybe) a
interpretTCode (CEither a b) =

applyTCode (λ r→ applyTCode (Boxed ◦Either r) b) a
interpretTCode (CList a) = applyTCode (Boxed ◦List) a
interpretTCode (CArrow a b) =

applyTCode (λ r→ applyTCode (Boxed ◦ (r :→)) b) a
interpretTCode (CType a) = applyTCode (Boxed ◦Type) a
interpretTCode CDynamic = Boxed Dynamic
interpretTCode CTCode = Boxed TCode

applyTCode ::∀c.(∀a.Type a→ c)→ TCode→ c
applyTCode f code = applyBType f (interpretTCode code)

Using type codes it is now possible to implement parsing of
type representations generically. To implement readType, we parse
a type code value and then we interpret it to obtain a type represen-
tation:

readType ::Parser BType
readType = read TCode>>= return◦ interpretTCode

Here TCode is the type representation for type codes, we do not
show the spine and type spine views for this datatype as they are no
different from that of other datatypes.

Showing a type representation was no problem previously, we
could have written showType as follows:

showType ::Type a→ String
showType a = show (Type a) a

However, to remain compatible with read we use type codes as the
means to pretty print type representations:

showType ::Type a→ String
showType = show TCode◦ eraseType

Summarizing, readType is a special function. It cannot be de-
fined by instantiating read to boxed representations. Such an in-
stantiation leads to non-termination because parsing a boxed repre-
sentation uses the existential case of generic parsing, which in turn
makes the recursive call to readType. To solve this problem, we de-
fined type codes, a non-GADT analogue of type representations.
Non-termination is no longer an issue with type codes. To parse
a type code we no longer need to parse existential types, which
prevents the recursive call to readType. This machinery enables the
definition of readType as a generic program. This machinery can be
reused for other generic producers, for example, see the definition
of enumerateType in Section 4.

3.5 Equality of type representations
In this section, we have introduced machinery to handle type repre-
sentations generically, namely type codes and conversion functions
between type codes and type representations. In Section 4, we show
an advanced GADT example that requires a last piece of machin-
ery: equality on type representations.

Below we show a function which compares two type represen-
tations, if the two representations are equal, it returns a proof that
the two values represent the same type. First, we introduce the type
of type equalities:

data TEq ::∗→ ∗→ ∗ where
Refl ::TEq a a

A value of type TEq a b can be used to convince the type checker
that two types a and b are the same at compile time. Since two type
representations may not be the same, function teq returns the result
in a monad:

7 2009/8/17

teq ::Monad m⇒ Type a→ Type b→m (TEq a b)
teq Int Int = return Refl
teq (Maybe a) (Maybe b) = liftM cong1 (teq a b)
teq (List a) (List b) = liftM cong1 (teq a b)
teq (Either a c) (Either b d) = liftM2 cong2 (teq a b) (teq c d)
teq (Lam a c) (Lam b d) = liftM2 cong2 (teq a b) (teq c d)
teq (a :→ c) (b :→ d) = liftM2 cong2 (teq a b) (teq c d)
teq = fail "Different reprs"

Here, we use liftM and liftM2 to turn congruence functions into
functions on monads. Congruence functions are used to lift equality
proofs of types to arbitrary type constructors. These are defined as
follows:

cong1 ::TEq a b→ TEq (f a) (f b)
cong1 Refl = Refl
cong2 ::TEq a b→ TEq c d→ TEq (f a c) (f b d)
cong2 Refl Refl = Refl

3.6 Type codes and dependently typed programming
In the literature of generic programming based on dependent
types, sets of types having common structure are modelled by
universes (?). Values known as universe codes describe type struc-
ture and an interpretation function makes the relationship between
codes and types explicit.

The generic programming approach that this chapter describes
would greatly benefit from the use of dependent types. Our ap-
proach is slightly redundant due to the necessity of both type rep-
resentations and type codes. If we were to revise our approach to
use dependent types, the generic machinery would be based on type
codes only. Previously, the type representation datatype described
the relationship between types and the values that represent them.
Using dependent types, this relationship would be defined by inter-
pretation on codes and therefore type representations would not be
necessary. Furthermore, producers like readType would no longer
need to generate type representations. It follows that it would not
be possible to accidentally define a non-terminating variant of such
producers.

3.7 On the partiality of parsing typed syntax trees
Parsing is necessarily a partial operation. A parser for lists will
fail to produce a value if the string to parse is not the textual
representation of a list. Generic read is also a partial operation: the
constructor names to be recognized in the input depend on the type
representation argument of gread.

Generalized algebraic datatypes make the behavior of gread
more interesting. When a GADT is used, the set of constructors to
recognize in the input will, in general, be a subset of all constructors
in the GADT. For example, gread (Expr Int) parses all constructors
with target type Expr Int but it fails to recognize the constructors
EFalse and ENot. Note that this behavior is closely related to type-
checking: what would be type-checking errors in a different context
are presented here as parsing errors.

A more interesting case is that of expression application. In this
case, a representation for the function argument type is parsed and
it steers the parsing of the function and the argument expressions.
In this case, a type incompatibility between function and argument
would be revealed as a parsing error.

4. Application: enumeration applied to simply
typed lambda calculus

Generalized algebraic datatypes can encode sophisticated invari-
ants using type-level constraints. We can combine such precise
datatypes with generic producer functions, to generate values that
have interesting properties. The example of this section combines

a datatype representing terms of the simply typed lambda calculus
with a generic function that enumerates all the values of a datatype.
Using this function we can, for example, generate the terms that
have the type of function composition.

4.1 Representing the simply typed lambda calculus
Terms of the simply typed lambda calculus can be represented as
follows:

data Lam ::∗→ ∗→ ∗ where
Vz ::Lam a (EnvCons a e)
Vs ::Lam a e→ Lam a (EnvCons b e)
Abs ::Lam b (EnvCons a e)→ Lam (a→ b) e
App ::Type a→ Lam (a→ b) e→ Lam a e→ Lam b e

The datatype Lam can be read as the typing relation for the sim-
ply typed lambda calculus. A value of type Lam a e represents the
typing derivation for a term of type a in an environment e. Environ-
ments are encoded by list-like type constructors:

data EnvCons a e
data EnvNil

Each Lam constructor is a rule of the typing relation. The first
constructor (Vz) represents a variable occurrence of type a, which
refers to the first position of the environment (EnvCons a e). We
can build a variable occurrence that refers to a deeper environment
position by means of the weakening constructor Vs. Lambda ab-
stractions are typed by means of the Abs constructor. In this case,
a b-expression that is typeable in an environment containing a in
the first position can be turned into a lambda abstraction of type
a→ b. The application constructor is almost like application in our
previous example, EApp, except that App includes a representation
for the existential type.

The spine representation for this datatype can be defined as
follows:

toSpine (Lam a e) Vz = convz (Con Vz)
toSpine (Lam a (EnvCons b e)) (Vs tm) =

convs (Con Vs :�: tm :.: Lam a e)
toSpine (Lam (a :→ b) e) (Abs tm) = conabs (Con Abs :�: body)

where body = tm :.: Lam b (EnvCons a e)
toSpine (Lam b e) (App a tm1 tm2) = conapp (Ex a app)

where app a = Con (App a) :�: tm1 :.: Lam (a :→ b) e :�: tm2
:.: Lam a e

The type representations are pattern matched in the Vs and Abs
constructors to build the representation in the right hand side. The
App constructor has an existential type, therefore we use Ex in the
spine representation. Using the type representation, we can now
print lambda terms.

For producer functions, we define the type spine view on Lam
as follows:

typeSpine (Lam a e) = concat
[[convz (Sig Vz) | EnvCons a’ e’← [e],Refl← teq a a’]
, [convs (Sig Vs :⊕: Lam a e’) | EnvCons b e’← [e]]
, [conabs (Sig Abs :⊕: Lam b (EnvCons a’ e)) | a’ :→ b← [a]]
, [conapp

(AllEx
(λb→ Sig (App b) :⊕: Lam (b :→ a) e :⊕: Lam b e))]

]

We test whether a constructor signature has the desired target type
by performing pattern matching on type representations. The cases
Vz and Vs are only usable if the environment type argument is not
empty. Additionally, the target type of Vz requires the equality of
the type and the first position in the environment. Therefore, the Vz
case invokes type equality (teq) on the term type (a) and the type
of the first environment position (a’). The abstraction constructor

8 2009/8/17

(Abs) requires an arrow type, which is checked by pattern matching
against an arrow type representation. The application constructor
can always be used, because there is no restriction on the target
type of App.

This type spine representation is more informative and larger
than previous examples. The reason is that the GADT type argu-
ment is more complex because of the use of type-level environ-
ments. Furthermore, the type constraint in Vz requires the use of
type equality (teq). Fortunately, it is possible to generate the type
spine representation by induction on the syntax of the datatype dec-
laration. It would be possible to automate this process using exter-
nal tools such as DrIFT and Template Haskell if these tools sup-
ported GADTs.

4.2 Breadth first search combinators
The generic enumeration function generates all possible values of
a datatype in breadth first search (BFS) order. The order used in the
search corresponds to the search cost of terms generated. The type
BFS is used for the results of a breadth first search procedure:

type BFS a = [[a]]

The type BFS represents a list of multisets sorted by cost. The first
multiset contains terms of cost zero, the second contains terms of
cost one and so on. Using this datatype, a consumer can inspect
the terms up to a certain cost bound and hence the search does
not continue if further terms are not demanded. This is useful
because the enumeration function returns a potentially infinite list
of multisets.

Multiple BFS values can be zipped together by concatenating
multisets having terms of equal cost:

zipbfs :: [BFS a]→ BFS a
zipbfs [] = []
zipbfs xss = if all null xss then [] else

concatMap head xss’ : zipbfs (map tail xss’)
where xss’ = filter (¬◦null) xss

It is more convenient to manipulate BFS results using monadic
notation. Therefore, we define return and bind on BFS:

returnbfs x = [[x]]
(>>=bfs) ::∀a b.BFS a→ (a→ BFS b)→ BFS b
(>>=bfs) xss f =

foldr (λxs xss→ zipbfs (map f xs++[[] : xss])) [] xss

Return creates a search result that contains a value of cost zero.
Bind feeds the terms found in a search xss to a search procedure
f. The cost of the term passed to f is added to the costs of that
search procedure. Consider, for example, the search results aSearch
consisting of the terms λx y→ y and λx y→ x with costs three and
four respectively; and a search procedure that produces a term of
cost one by adding an abstraction to its argument:

aSearch = [[], [], [], [Abs (Abs Vz)], [Abs (Abs (Vs Vz))]]
f tm = [[], [Abs tm]]

Then, the expression (aSearch>>=bfs f) evaluates to the following:

[[], [], [], [], [Abs (Abs (Abs Vz))], [Abs (Abs (Abs (Vs Vz)))]]

The two terms in the initial search result now have an additional
abstraction argument and have costs of four and five respectively.

The cost addition property of bind can be stated more formally
as follows:

propBind ::BFS a→ (a→ BFS b)→ Bool
propBind xss f = all (all costBind) (costs xss f)

where costBind (c,(cxss,cf)) = c≡ cxss + cf

costs ::BFS a→ (a→ BFS b)→ BFS (Int,(Int, Int))
costs xss f = cost (cost xss >>=bfs λ (cxss,x)→

cost (f x)>>=bfs λ (cf,y) →
returnbfs (cxss,cf))

where cost annotates each BFS result value with its cost:
cost ::BFS a→ BFS (Int,a)
cost = zipWith (λ sz→ map ((,) sz)) [0 . .]

Additionally we use a function that increases the cost of the values
found in a search procedure:

spend :: Int→ BFS a→ BFS a
spend n = (!!n)◦ iterate ([]:)

When using a very expensive search procedure, it is useful to
increase the cost of terms exponentially:

raise :: Int→ BFS a→ BFS a
raise base xss = traverse 0 xss where

traverse [] = []
traverse 0 (xs : xss) = [] : xs : traverse 1 xss
traverse exp (xs : xss) = spend (baseexp−baseexp−1−1)

(xs : traverse (exp+1) xss)

For example, spend 2 aSearch and raise 2 aSearch evaluate to:

[[], [], [], [], [], [Abs (Abs Vz)], [Abs (Abs (Vs Vz))]]

and
[[], [], [], [], [], [], [], [], [Abs (Abs Vz)],
[], [], [], [], [], [], [], [Abs (Abs (Vs Vz))]]

respectively.

4.3 Generic enumeration
The generic enumeration function returns values of a datatype,
classified by cost in increasing order. The cost of a term is the
number of datatype constructors used therein (constructors used in
type representations are an exception and we discuss them last in
the definition of enumerateType).

enumerate ::Type a→ BFS a
enumerate a = zipbfs [genumerate (conVal s) | s← typeSpine a]

At the top-level, function genumerate is invoked on each construc-
tor signature and the resulting search results are zipped together.

The first case of genumerate returns the constructor value as the
search result assigning it a cost of one. The second case performs
search recursively on the function and argument parts and combines
the results using BFS monadic application apbfs ::BFS (a→ b)→
BFS a→ BFS b.

genumerate ::Signature a → BFS a
genumerate (Sig c) = spend 1 (returnbfs c)
genumerate (fun :⊕: arg) =

genumerate fun ‘apbfs‘ enumerate arg

The third case deals with existential types and hence in our partic-
ular application it deals with expression application. This case first
enumerates all possible types, and then constructs a constructor sig-
nature using f, for each type, and enumeration is called recursively:

genumerate (AllEx f) = enumerateType
>>=bfs genumerate◦applyBType f

As usual with producer functions, enumerateType returns a boxed
representation. The enumeration of types is performed on type
codes, which interpretTCode converts to boxed representations.

9 2009/8/17

enumerateType ::BFS BType
enumerateType = raise 4 (enumerate TCode)

>>=bfs returnbfs ◦ interpretTCode

For the examples in this paper, we are not interested in values that
have very complex existential types. Therefore, we keep their size
small by assigning an exponential cost to existentials. This also has
the effect of reducing the search space, which makes the generation
of interesting terms within small cost upperbounds more likely.

4.4 Term enumeration in action
For convenience, we define a wrapper function to perform enumer-
ation of lambda terms:

enumerateLam ::Type a→ Int→ BFS (Lam a EnvNil)
enumerateLam a cost = take (cost+1)

(enumerate (Lam a EnvNil))

Our term datatype can perfectly deal with open terms. But the user
interface becomes simpler if only closed terms are provided. There-
fore, the wrapper function only generates closed lambda terms.

A direct invocation of the enumeration function will result in an
attempt to generate an infinite number of terms. For convenience,
our wrapper function takes a cost upperbound that limits the cost
of terms that are reported. Because of lazy evaluation, the search
procedure stops when all terms within the cost bound are reported.
The user may choose to increase the cost upperbound in subsequent
invocations if the desired term is not found.

The language that the Lam datatype represents is very simple.
There are no datatypes, recursion, and arithmetic operations. For
example, we cannot expect the enumeration function to generate
the successor or predecessor functions for naturals if functions of
the type Int→ Int are requested. In principle, it is not difficult to
extend the language by adding the appropriate constants to Lam.
For example, we could add naturals and arithmetic operations on
them. We could also add list constructors and elimination functions
and even recursion operators such as catamorphisms and paramor-
phisms.

However, we can keep our language simple and still gener-
ate many interesting terms. We focus our attention to parametri-
cally polymorphic functions. Although we do not model paramet-
ric polymorphism explicitly in Lam, such functions are naturally
generated when the requested type is an instance of the polymor-
phic type. For instance, a request with type Int→ Int generates the
identity function.

To make the intent of generating polymorphic functions more
explicit, we define a few types that are uninhabited in the Lam lan-
guage. These types play the role of type variables in polymorphic
type signatures:

data A
data B
data C
data D

Of course, we also introduce the corresponding type representation
constructors:

data Type ::∗→ ∗ where
. . .
A :: Type A
B :: Type B
C :: Type C
D ::Type D

In our first example, we generate the code for the identity function.
The type of the identity function is ∀a.a→ a, which in our notation
translates to A :→ A. The function we expect to generate is λx→ x,
which in Lam is written as Abs Vz. This term consists of two

constructors, therefore a cost upperbound of two should suffice to
generate it. The application enumerateLam (A :→ A) 2 results in:

[[], [], [Abs Vz]]

It is instructive to sketch the search procedure as it looks for the
identity function. First, enumerate is called on the identity type
with a closed environment. This function calls genumerate on all
constructor signatures that match the desired type. The two variable
cases Vz and Vs are not considered, because they cannot be used
with an empty environment. Application can always be used but
recall that it requires an existential type representation, so the cost
is at least 5, which is more expensive than the function that we
are looking for. The abstraction case matches the identity type so
enumeration is called recursively to generate the abstraction body.
Now, a term of type A is requested with a type A in the first position
in the environment. The case Vz matches perfectly with this request
so the term Abs Vz is returned with cost two.

There are infinitely many lambda calculus terms of a given
type when that type is inhabited. A simple way to way to obtain
a new term is by creating a redex that reduces to the term that we
currently have. For example, we can obtain a new identity function
by adding a redex in the function body: λx→ (λx→ x) x. Can this
term be found by our enumeration function? Yes, provided that we
increase the cost upperbound to include that of our new term. The
new term is essentially two identity functions plus an application
constructor, which makes a cost upperbound of nine. We evaluate
enumerateLam (A :→ A) 9 which yields:

[[], [], [Abs Vz], [], [], [], [], [], [], [Abs (App A (Abs Vz) Vz)]]

This example shows that the search space is somewhat redundant.
A way to speed up term search would be to avoid the generation
of redundant terms by adding constraints to Lam. For example, we
could avoid redeces by preventing the generation of abstractions in
the left part of applications.

Another interesting example is the generation of the application
function. This function has type ∀a b.(a → b) → a → b, which
in our notation is written ((A :→ B) :→ A :→ B). We evaluate
enumerateLam ((A :→ B) :→ A :→ B) 10 to generate an application
function, which results in:

[[], [], [Abs Vz], [], [], [], [], [], [], [],
[Abs (Abs (App A (Vs Vz) Vz))]]

These are the encodings for the functions λx → x and λx y →
x y. The careful reader may wonder why the other identity term
λx→ (λx→ x) x, which has cost 8 in the previous example, is not
generated. The answer is that the cost of the term includes that of
the type representation used in the application constructor. Since
this example has a different type, the type representation would be
A :→ B rather than A. It follows that the term λx→ (λx→ x) x is
not generated because it has a cost of 14.

Our last example is function composition. The type of this
function is ∀a b c.(b → c) → (a → b) → a → c. To generate
composition, we evaluate

last (enumerateLam ((B :→ C) :→ (A :→ B) :→ (A :→ C)) 19)

which yields to the encoding of λx y z→ x (y z):

[Abs (Abs (Abs (App B (Vs (Vs Vz)) (App A (Vs Vz) Vz))))]

5. Related work
To the best of our knowledge, only the spine approach (??) en-
ables generic programming on generalized algebraic datatypes in
Haskell. This is the approach on which the work in this chapter is
based. Because both the spine and the type spine view can encode
GADTs, both consumer and producer functions can be defined on

10 2009/8/17

such datatypes. Interestingly, to properly support GADTs for pro-
ducer functions, the approach should also support existential types.
For example, when reading a GADT from disk, we may want the
GADT type argument to be dynamically determined from the disk
contents. Therefore, we would existentially quantify over that ar-
gument. However, the spine approach supports existential types for
consumers but not for producers.

Generalized algebraic datatypes are inspired by inductive fam-
ilies in the dependent types community. We are aware of two ap-
proaches (??) that support definitions by induction on the structure
of inductive families. Both approaches make essential use of eval-
uation on the type level to express the constraints over inductive
families. Examples of type families on which generic program-
ming is applied include trees (indexed by their lower and upper
size bounds), finite sets, vectors and telescopes. Neither approach
gives examples for the support of existential types so it is not clear
whether these are supported.

? proposes a language that provides a construct to perform
runtime case analysis on types. In order to support universal and
existential quantification, the language includes analyzable type
constants for both quantifiers. This approach supports the definition
of consumers and producers. Moreover, if the language is extended
with polymorphic kinds it supports quantification over arbitrarily
kinded types.

Our approach to defining breadth-first search combinators is
not novel. ? defines a set of breadth-first search combinators such
as monadic join and composition, and proves desirable properties
for them. There are many similarities between our work and that
of Spivey. It would be interesting to see whether our combinators
satisfy the same properties as the combinators proposed by Spivey.

? generate lambda calculus terms by performing systematic
enumeration based on a grammar. To reduce the size of the search
space, the grammar has syntactic restrictions such as that the appli-
cations of certain operands are always saturated, and recursive calls
are always guarded by a conditional. The candidate terms are then
reported to the user based on whether they satisfy an input-output
specification, which is established by evaluation.

Djinn (?) generates lambda calculus terms based on a user-
supplied type. This tool implements the decision procedure for
intuitionistic propositional calculus due to ?. Similarly, the work
of ? makes use of a type inference monad to generate well-typed
terms. Later, the candidate terms are evaluated and checked against
an input-output specification. As in our approach, Djinn and the
approach of Katayama generate only well-typed terms so there is
no need for a type checking phase to discard ill-typed terms.

The main difference between the work of ? and ours is that our
generator is typed-based. It follows that our generator never returns
ill-typed terms because the search space is reduced by means of
type-level constraints in the GADT. Generating ill-typed terms has
advantages. For example, Koopman’s approach can generate the
Y-combinator. On the other hand, ill-typed terms are usually not
desirable, so these have to be discarded through either evaluation
(Koopman), which slows down the generation algorithm. In Koop-
man’s work the generation of ill-typed terms is prevented to some
extent by the syntactic constraints imposed on the grammar.

A type-based generator, such as Djinn, Katayama’s generator
and our approach, is able to synthesize polymorphic functions
without the need for input-output specifications. Koopman’s work,
however, cannot generate polymorphic functions based solely on
type information.

Djinn supports user-defined dataypes. Katayama and Koop-
man’s generators are able to generate recursive programs. Our ap-
proach currently generates programs for a rather spartan language.
However, it should be possible to add introduction and elimination

constants for (recursive) datatypes, and recursion operators such as
catamorphisms and paramorphisms.

Both Djinn and our approach enumerate terms guided by type
information. However, the two approaches are very different. Djinn
has a carefully crafted algorithm that handles the application of
functional values in such a way that it is not necessary to exhaus-
tively enumerate the infinite search space. As a consequence, Djinn
is able to detect that a type is uninhabited in finite time. In contrast,
our approach produces function applications by means of exhaus-
tive enumeration. First, all the possible types of an argument are
enumerated, and, for each of them, function and argument terms
are enumerated to construct an application. The good side of an ex-
haustive approach like ours is that it can generate all possible terms
of a given type. For example, it can generate all Church numerals,
whereas Djinn only generates those corresponding to zero and one.
On the bad side, if unbounded, our approach does not terminate
when trying to generate a term for an uninhabited type.

We have not performed a careful performance comparison but
we believe that our generator may be the slowest of the approaches
considered here. Probably the main culprit for inefficiency is the
implementation of the existential case. Currently this case enumer-
ates all possible types, even if no applications for that argument
type can be constructed. Ill-typed terms are never generated, but re-
sources are nevertheless consumed when attempting to enumerate
terms having possibly uninhabited types. It is difficult to make the
algorithm smarter about generating types because, being generic, it
does not make assumptions about the particularities of lambda cal-
culus. On the other hand, it is possible to reduce the search space by
adjusting the definition of Lam. For example, we could forbid the
formation of redeces to avoid redundancy of terms, or even adopt
the syntactic restrictions used in Koopman’s work.

While our approach may be less efficient, it has the virtue of
simplicity: the core of the generation algorithm consists of roughly
a dozen lines of code and there is no need for an evaluation or a type
checking phase. Furthermore, it has the advantage of an elegant
separation between the grammar constraints and the formulation of
the enumeration algorithm. This allows us to use the enumeration
function to generate other languages, whereas the other generators
are specific to lambda calculus.

6. Conclusions
We have presented an extension of the spine approach to generic
programming, which supports the definition of generic producers
for existential types. This extension allows the definition of, for ex-
ample, generic read for datatypes that use existential quantification.

Our approach opens the way for a new application of generic
programming. By taking the standard enumeration generic function
and extending it with a case for existentials, we obtain a function
that enumerates well-typed terms. For example, we can instantiate
enumeration to the GADT that represents terms of the simply typed
lambda calculus and use the resulting function to search for terms
that have a given type. Such an application was not previously
possible because producers that handle existential types could not
be generically defined.

Acknowledgments
We are grateful to Andres Löh for the productive discussions that
inspired this paper. The ST reading club at Utrecht University gave
detailed feedback on an earlier version of this paper. We thank the
anonymous reviewers for the useful suggestions and comments. We
also thank Lambert Meertens, the careful reader who motivated us
to improve the explanations in Section 4.4.

11 2009/8/17

References
Lennart Augustsson. Announcing Djinn, version 2004-12-11, a coding wiz-

ard. Available from http://permalink.gmane.org/gmane.comp.
lang.haskell.general/12747, 2005.

Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes for generic
programs and proofs in dependent type theory. Nordic Journal of
Computing, 10(4):265–289, 2003.

James Cheney and Ralf Hinze. First-class phantom types. Technical report,
Cornell University, 2003.

Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of the ACM
SIGPLAN International Conference on Functional Programming, ICFP
2000, pages 286–279, 2000.

R Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. The
Journal of Symbolic Logic, 57(3):795–807, 1992.

Ralf Hinze and Andres Löh. “Scrap Your Boilerplate” revolutions. In
Proceedings of the 8th International Conference on Mathematics of
Program Construction, MPC’06, LNCS 4014, pages 180–208, 2006.

Ralf Hinze, Andres Löh, and Bruno C. d. S. Oliveira. “Scrap Your
Boilerplate” reloaded. In Philip Wadler and Masimi Hagiya, editors,
FLOPS’06, LNCS 3945, 2006.

Susumu Katayama. Systematic search for lambda expressions. In M. van
Eekelen, editor, 6th Symposium on Trends in Functional Programming,
TFP 2005. Institute of Cybernetics, Tallinn, 2005. ISBN 9985-894-88-
X.

Pieter Koopman and Rinus Plasmeijer. Systematic synthesis of λ -terms.
In Essays dedicated to Henk Barendregt on the Occasion of his 60th
Birthday, 2007.

Pieter Koopman, Artem Alimarine, Jan Tretmans, and Rinus Plasmeijer.
Gast: Generic automated software testing. In R. Peña and T. Arts,
editors, IFL’02, volume 2670 of LNCS, 2003.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: A practical
design pattern for generic programming. In ACM SIGPLAN Workshop
on Types in Language Design and Implementation, pages 26–37, 2003.

Conor McBride and Ross Paterson. Applicative programming with effects.
Journal of Functional Programming, 18(01):1–13, 2007. doi: 10.1017/
S0956796807006326.

Peter Morris. Constructing Universes for Generic Programming. PhD
thesis, The University of Nottingham, 2007.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In Proceedings of the 11th
ACM SIGPLAN International Conference on Functional Programming,
ICFP’06, pages 50–61, 2006.

Michael Spivey. Combinators for breadth-first search. Journal of Func-
tional Programming, 10(4):397–408, 2000. ISSN 0956-7968. doi:
http://dx.doi.org/10.1017/S0956796800003749.

S. D. Swierstra and L. Duponcheel. Deterministic, error-correcting combi-
nator parsers. In John Launchbury, Erik Meijer, and Tim Sheard, editors,
Advanced Functional Programming, volume 1129 of LNCS-Tutorial,
pages 184–207. Springer-Verlag, 1996.

Stephanie Weirich. Higher-order intensional type analysis. In In Proc. 11th
ESOP, LNCS 2305, pages 98–114. Springer-Verlag, 2002.

Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype
constructors. In Proceedings of the 30th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL’03, pages 224–235, New
Orleans, January 2003.

12 2009/8/17

