
Conditional Lower Bounds on the Complexity
of Probabilistic Inference

Johan Kwisthout

Hans L. Bodlaender

Technical Report UU-CS-2009-018

August 2009

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht

The Netherlands

Conditional Lower Bounds on the Complexity of

Probabilistic Inference

Johan Kwisthout and Hans L. Bodlaender
Department of Information and Computer Sciences, University of Utrecht,

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.
email: johank@cs.uu.nl, hansb@cs.uu.nl

August 2009

Abstract

The Inference problem in probabilistic networks (given a stochastic variable V ,
what is the posterior probability that V = v given evidence e?) has been proven to be
intractable; in fact, has a PP-complete decision variant [17]. The currently most efficient
algorithms for this problem are all exponential in the treewidth of the moralised graph of
the network. We prove, using a recent result of Marx [18], that these algorithms are in

some sense optimal: we prove a lower bound of f(G)ω(
tw(G)

log tw(G)) for any algorithm solving
arbitrary instances of Inference with graph G, unless the ETH fails. To obtain this
lower bound we introduce treewidth-preserving reductions which may be of independent
interest.

1 Introduction

Probabilistic networks [20, 13], also called Bayesian or belief networks, are one of the for-
malisms that can be used to represent and reason about uncertain information. A proba-
bilistic network, denoted as B = (G,Γ), represents a joint probability distribution on a set of
stochastic variables, and is described by a directed acyclic graph G and a set of conditional
probabilities Γ. The nodes of the graph represent the stochastic variables, the arcs (or lack of
them) represent (in)dependencies in the joint probability distribution. The structure of the
graph and the conditional probabilities in the network can be either elicited from domain ex-
perts, or learned from data. Probabilistic networks are often used in decision support systems,
mainly—but not exclusively—in medical diagnosis systems, see, e.g., the networks described
in [23],[24],[9], or [11]. In such systems, the network typically consists of classification (or
output), observable (or evidence), and intermediate nodes.

Arguably the most important computational problem related to probabilistic networks, is
determining the posterior probability distribution Pr(Vi |e) of some variable Vi, given evidence
e for other variables in the network. This problem, known as the Inference problem, occurs
if we want to compute the probability distribution on a particular classification variable,
given knowledge of the values of some observable variables. But the problem also arises if
we want to compute the likeliness of a set of observable variables, given the values of the
classification nodes in the network. The posterior probability distribution of any node (or
set of nodes) can be calculated using well known properties in probability theory, however,

1

this calculation can take time, exponential in the size of the network. Typical algorithms
for probabilistic inference are the loop cutset conditioning [20], variable elimination [22], and
clique tree propagation [15] approaches (also called join tree propagation or clustering). When
the network structure is restricted to be a polytree (or singly connected graph), inference can
be done in polynomial time, for example using the message passing algorithm [20]. However,
for multiply connected graphs, no polynomial time algorithm exists.

In general, no polynomial time algorithms are known for the inference problem in proba-
bilistic networks, and indeed the Inference problem has a PP-complete decision variant [17].
Nevertheless, for probabilistic networks whose moralised graphs1 have bounded treewidth, the
algorithms discussed above are exponential only in the treewidth of the moralised graph. In
this paper, we show that a low treewidth of the moralised graph is actually a necessary condi-
tion for the network2 to make inference efficient in an algorithm accepting arbitrary inference
instances, under the assumption that the so-called Exponential Time Hypothesis (ETH) holds.
In other words, we show that no algorithm can exist that solves arbitrary inference instances
with unbounded treewidth in sub-exponential time, unless the ETH fails. Nevertheless, there
might be some specific structure (that we are unaware of), for example in the arc orientation,
that may be exploited by an algorithm to solve particular instances in polynomial time.

Whether or not low treewidth is a necessary condition for algorithms to run in polyno-
mial time has also been investigated recently for binary constraint satisfaction and graph
homomorphism problems [10] and for inference in undirected graphical models [6]. Using
the assumption that FPT 6= W[1], respectively that NP 6⊆ P/poly, they showed that these
problems have no algorithm solving instances with unbounded treewidth in polynomial time.
Marx [18] proved a sub-exponential lower bound (up to a logarithmic factor in the exponent)
for the constraint satisfaction and graph homomorphism problems with unbounded treewidth,
assuming that the ETH holds. A related result by Chen et al. [7] proved a sub-exponential
lower bound for K-Clique, even without logarithmic factor, assuming that not all problems
in SNP have subexponential algorithms3 These known results are summarised in Table 1.

We will take Marx’ result [18] as a starting point. In this paper, we introduce treewidth
preserving reductions, and we show that a polynomial-time treewidth preserving reduction
from Constraint Satisfaction to Inference exists. This proves, that if an algorithm for
Inference exists that can solve arbitrary instances with high treewidth in sub-exponential
time, then this algorithm can also solve such instances of Constraint Satisfaction in
sub-exponential time, which in turn would contradict the ETH according to Marx’ result [18].
Treewidth preserving reductions, as a means to prove conditional lower bounds, may be of
independent interest.

We conclude from our result, that Marx’ conditional lower bound [18] of f(G)ω(
tw(G)

log tw(G)
) for

the constraint satisfaction problem also holds for inference on probabilistic networks, showing
that the algorithms discussed above are optimal, up to a logarithmic factor in the exponent,
for arbitrary networks. After introducing some preliminaries and notation in Section 2, we
will sketch our approach in Section 3, and we present our main results in Section 4. The

1A moralised graph is the undirected graph obtained from a directed graph by connecting nodes that have
a common child, and then dropping the arc directions.

2Note that we are interested in properties of the graph, rather than the probability distribution. There
exists a trivial probability distribution (the uniform distribution where the probability distribution of each
variable is independent of the values of its parents) in every network in which inference is trivial.

3Observe that a graph with a k-clique necessarily also has a treewidth of at least k, but that the opposite
does not hold.

2

Study Topic Assumptions Reduction Result

Grohe [10]
CSP, graph
homomor-
phism

FPT 6= W[1],
unbounded
variable cardinality

k-Clique
no polyn. algorithms
for instances with
unbounded treewidth

Marx [18]
CSP, graph
homomor-
phism

ETH, unbounded
variable cardinality

n-variable
3Sat

f(G)
ω(

tw(G)
log tw(G))

lower
bound for instances with
unbounded treewidth

Chandrasekaran
[6]

inference in
graphical
models

NP 6= P/poly,
Graph Minor
Hypothesis

non-
uniform
Max2Sat

no polyn. algorithms for
instances with
unbounded treewidth

Chen et al. [7] K-Clique
Not all problems in
SNP have subexp.
algorithms

weighted
antitone
2CNFSat

f(G)ω(k) lower bound for
k-clique

current study
inference in
probabilistic
networks

ETH, unbounded
variable cardinality

treewidth-
preserving
reduction
from CSP

f(G)
ω(

tw(G)
log tw(G))

lower
bound for algorithm
solving arbitrary in-
stances with unbounded
treewidth

Table 1: Comparison between various lower bound results

paper will be concluded in Section 5.

2 Preliminaries

A probabilistic network models a set of stochastic variables, the (in-)dependencies among
these variables, and a joint probability distribution over these variables. The variables and
dependences in the network are modelled by a directed acyclic graph G = (V,A). A node
X ∈ V is called a parent of Y ∈ V, and Y is called a child of X, if (X, Y) ∈ A. The set
of all parents of Y is denoted as π(Y), the set of all children of X is denoted as σ(X). A
probabilistic network is formally defined as follows.

Definition 2.1 (probabilistic network). A probabilistic network, denoted by B, is a tuple
(G,Γ), where G = (V,A) is a directed acyclic graph, and Γ denotes the set of conditional
probability distributions on V, coded into conditional probability tables or CPTs. The network
models a joint probability distribution Pr(V) =

∏n
i=1 Pr(xi |π(Xi)) over its variables.

We will use upper case letters to denote individual variables in the network, upper case
bold letters to denote sets of variables, lower case letters to denote value assignments to
variables, and lower case bold letters to denote joint value assignments to sets of variables. If
not specified otherwise, we will use indexed lower case variables x1, x2, . . . , xn to denote the
values of a variable X, and assume that the set of values of a variable is ordered such that
xi < xj whenever i < j. We will use the notation X = x, respectively X = x to denote an
unspecified (joint) value assignment to X and X, respectively. If no ambiguity can occur, we
will write Pr(x) as a shorthand for Pr(X = x).

The Inference problem in probabilistic networks, discussed above, is formally defined
as follows.

Inference

3

Instance: Let B = (G,Γ) be a probabilistic network, and let Pr be its joint probability
distribution. Let X ∈ V, with x ∈ Ω(X), furthermore let 0 ≤ q ≤ 1.
Question: Is Pr(X = x) ≥ q?

Throughout this paper, we assume that the reader is familiar with basic notions of com-
putational complexity and hardness proofs. We refer to classical textbooks like [8] and [19]
for a thorough introduction to these subjects.

A tree-decomposition [21] of an undirected graph is defined as follows.

Definition 2.2 (tree decomposition). A tree decomposition of a graph G = (V,E) is a
pair 〈X , T 〉, where T = (I, F) is a tree, and X = {Xi | i ∈ I} is a family of subsets (or bags)
of V, one for each node of T , such that

•
⋃

i∈I Xi = V,

• for every edge (V,W) ∈ E there exists an i ∈ I with V ∈ Xi and W ∈ Xi, and

• for every i, j, k ∈ I: if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj.

The width of a tree decomposition ((I, F), {Xi | i ∈ I}) is max
i∈I

| Xi | −1. The treewidth of

G, denoted by tw(G) is the minimum width over all tree decompositions of G.

For every fixed W , there is an algorithm using O(n) time, that, given a graph G with n
vertices, decides if the treewidth of G is at most W and, if so, constructs a tree decomposition
of G with width W [2]. While this linear algorithm is not very practical due to its very large
constants, efficient heuristics and exact algorithms for small values of W are known; see e.g.
[4].

A so-called nice tree decomposition is a tree decomposition with a particularly simple
structure. In particular, the tree is rooted and every node in a nice tree decomposition has at
most two children. A node in a nice tree decomposition is either a leaf node, introduce
node, forget node, or join node.

• A leaf node i is a leaf of T with | Xi |= 1.

• An insert node i has one child j with Xi = Xj ∪ {Y } for some vertex Y ∈ V, and
| Xi |=| Xj | +1.

• A forget node i has one child j with Xi = Xj \ {Y } for some vertex Y ∈ V, and
| Xi |=| Xj | −1.

• A join node i has two children j, k where Xi = Xj = Xk.

Every tree decomposition T with treewidth W and m nodes can be converted to a nice
tree-decomposition of the same width and O(m) nodes in time O(f(W) ·m) for a polynomial
function f [3, 14].

The complexity of a probabilistic network is normally measured by the minimal treewidth
of a triangulation of the moral graph of the network. Let B = (G,Γ) be a probabilistic
network, where G = (V,A) is a directed acyclic graph with set of vertices V = {V1, . . . , Vn}
and set of arcs A. The moralisation GM of G is the undirected graph obtained from G
by adding arcs connecting all parents of a variable, and then dropping all arc directions. A
triangulation of GM is any graph GT, such that E(GM) ⊆ E(GT) and GT is chordal, i.e.

4

every cycle in GT of more than three nodes has an edge connecting two non-adjacent nodes in
the cycle. The treewidth of this chordal graph, denoted as tw(GT), is the size of the largest
clique in GT minus one.

Many computational problems can be formulated as constraint satisfaction problems (CSPs).
A CSP I is defined as a 3-tuple 〈V,D,C〉, where V denotes a set of variables, D denotes a
domain of variables, and C denotes a set of constraints, which are defined as tuples 〈t,R〉.
In these tuples, t denotes a tuple of variables and R denotes a set of tuples of values defining
relations between variables. A solution to I is a function f from V to D such that for each
constraint 〈t,R〉, with t = 〈v1, . . . , vm〉, 〈f(v1), . . . , f(vm)〉 ∈ R. The primal graph G of I
is an undirected graph G = (V,E), where (V1, V2) ∈ E if and only if there is a constraint
〈t,R〉 ∈ C with V1, V2 ∈ t.

3 Approach

In Marx’ paper [18], the following result was proven.

Theorem 3.1 (CSP Lower Bound). If there is a recursively enumerable class G of graphs
with unbounded treewidth tw(G) and a computable function f such that CSP(G) can be decided

by an algorithm running in time f(G)‖I ·‖o(
tw(G)

log tw(G)
) for instances I with primal graph G ∈ G,

then the ETH fails.

This result also holds for CSPs with binary relations; in the remainder, we assume that
all CSP instances are binary.

The Exponential Time Hypothesis (ETH), introduced by Impagliazzo et al. [12], states that
there exists a constant c > 1 such that deciding any 3Sat instance with n variables takes
at least Ω(cn) time. Note that the ETH is a stronger assumption than the assumption that
P 6= NP. A sub-exponential, but not polynomial-time, algorithm for 3Sat (comparable with
the General Number Field Sieve algorithm for Integer Factorisation, see [16]) contradicts
the ETH, but not P 6= NP.

In the remainder of this paper, we will build on Marx’ result. We will reduce Constraint
Satisfaction to Inference, using a polynomial-time, treewidth preserving reduction, i.e.,
given an instance I of Constraint Satisfaction, we construct in polynomial time an
instance (B, V, v, q) of Inference with the same treewidth (up to a constant) such that a
solution to (B, V, v, q) yields also a solution to I. This means intuitively that, if an algorithm
A exists that solves arbitrary instances of Inference with high treewidth in sub-exponential
time, then we can construct an algorithm B solving instances of Constraint Satisfaction
with high treewidth in sub-exponential time, thus contradicting the ETH. We formalise our
result in the following main theorem, which we will prove in Section 4.

Theorem 3.2 (Inference Lower Bound). If there is a computable function f such that
an arbitrary instance (B, V, v, q) with moralised graph GM of the Inference problem on

probabilistic networks can be decided by an algorithm running in time f(GM)·‖B‖o(
tw(GM)

log tw(GM)
),

then the ETH fails.

5

4 Complexity of Inference

It is often desired that a reduction between decision problems also preserves some other
property. For example, parsimonious reductions [8] preserve the number of solutions, and
approximation-preserving reductions [1] preserve approximation results. We introduce a re-
duction on graphical structures that preserves a structural property of a problem instance,
namely the treewidth of the instance. Since high treewidth is often an indicator of intractabil-
ity of a problem, it is desirable that a reduction preserves this property.

Definition 4.1 (Polynomial-time treewidth-preserving reductions). Let A and B
be problems such that treewidth is defined on instances of A and B. A is polynomial-time
treewidth-preserving reducible to B (denoted A ≤p

tw B), if there exists a polynomial time
computable function f and a constant L such that for all instances x : x ∈ A ⇐⇒ f(x) ∈ B
and tw(f(x)) ≤ L · tw(x). We will call such a reduction (f, l) a tw-reduction.

We show that Constraint Satisfaction is tw-reducible to Inference, using a poly-
nomial time treewidth-preserving reduction. We will first formally define the Constraint
Satisfaction problem, which was introduced in Section 2.

Constraint Satisfaction
Instance: 〈V,D,C〉, where V denotes a set of variables, D a domain of values, and C a
set of constraints; every constraint is a tuple 〈 t,R〉, where t is a tuple of variables from V
and R is a binary relation over D.
Question: Is there an function f from the set of variables V to the domain D that satisfies
all constraints in C?

Given a Constraint Satisfaction instance I = 〈V,D,C〉, there is a straightforward
way to construct a probabilistic network BI = (GI,Γ) that simulates I. However, care must
be taken to ensure that the construction preserves treewidth. We will first show how to
construct a network BI that captures the information from the Constraint Satisfaction
instance I, and then show how the tree decomposition of BI can be used to construct a
network B′

I with the same treewidth as the primal graph of I, with a designated variable Am

with values true and false. We will then show that in this network B′
I , Pr(Am = true) > 0

if and only if I has a solution.
We will illustrate this construction for the example problem Iex = 〈V,D,C〉, with V =

{X1, X2, X3, X4},D = {a, b, c}, and C = { 〈(X1, X2), {(a, a), (b, a)}〉, 〈(X1, X3), {(a, b), (a, c), (b, b), (b, c)}〉,
〈(X1, X4), {(a, a), (a, b), (b, a), (c, a)}〉,
〈(X2, X3), {(a, b), (b, c)}〉, 〈(X3, X4), {(b, a), (b, b)}〉 }. Note that Iex is satisfiable; an example
solution fex sets X1 to b, X2 to a, X3 to b, and X4 to a. The primal graph of Iex is given in
Figure 2(a) and the resulting tree-decomposition in Figure 2(b).

For every variable Xi ∈ V in I, we add a root node Xi to BI with the domain D as
values, with a uniform distribution. For every relation Rj ∈ R in I, we add a node Rj in BI ,
with the variables that occur in the relation as parents, and values true and false. We set
Pr(Rj = true |x) = 1 for any combination of values x for its parents such that x is a tuple in
Rj , and we set Pr(Rj = true |x) = 0 if x is not a tuple in Rj . See Figure 3 for the network
BIex , constructed from the example Iex.

With respect to the treewidth of the thus constructed graph BI we observe the following.
Standard arguments from the theory of treewidth show that the treewidth of the moralised

6

X2

X1

X4

X3

(a) Primal graph

{X1, X2, X3} {X1, X3, X4}

X1 X2

(b) Tree-decomposition

Figure 2: The primal graph (a) and resulting tree-decomposition (b) of CSP instance Iex

R1

X2

R2

X3

X1

X4

R4

R3

Figure 3: Graph Gex constructed from CSP instance Iex

graph of BI equals min(2, tw(I)): the nodes of the form Rj are simplicial in the moralised
graph, i.e., they are adjacent to a complete set of nodes, and for any simplicial node V with
degree d in a graph G, the treewidth of G equals the maximum of d and the treewidth of
G \ V (see e.g. [5]).

To combine the information from the nodes representing the various relations, we add
extra variables that mimic the function of an ‘and’-operator. This has to been done with care
to avoid an exponential blow-up of the treewidth of the moralised graph GM of BI . Such a
blow-up might appear if we just add one designated node Am with all Rj ∈ R as its parents,
or if we construct a log-deep binary tree to connect the relations in R with Am. We use the
structure of the tree-decomposition of GM to construct B′

I from BI .
Let GM be the moralised graph of BI , and let TG be a tree-decomposition of GM in

which every node has at most two children. This is, e.g., the case if TG is a nice tree-
decomposition. As we have seen in Section 2, every graph has a nice tree-decomposition;
moreover a nice tree-decomposition can be computed in time O(f(tw(GM)) · ‖GM‖) for a
particular computable function f [3, 14]. While we assume in the proof of Theorem 4.2 that the
tree-decomposition is nice, we use a non-nice tree-decomposition in our example. The reason
for this is straightforward: since niceness imposes more constraints on a tree-decomposition
than needed in our construction, a nice tree-decomposition of GM would simply be too large
to fit as an example.

We obtain B′
I by adding additional variables A1, . . . , Am and arcs (Rj , Ak) to BI as follows.

For every node k in TG, we add a node Ak, and for every edge (k, l) (where k < l) in TG, we
add an arc (Al, Ak). Furthermore, we add arcs (Rj , Ak), for every node Rj that is contained
in bag Xk. Every node Ai, 1 ≤ i ≤ m has a CPT that corresponds to a logical ‘and’ of its
parents, i.e., Pr(Ai = true |π(Ai)) = 1 if and only if all parents of Ai have the value true,

7

X2

X3

X4

{X1, X2, R1}

{X1, X2, X3} {X1, X3, X4}

{X1, X4, R4}

{X3, X4, R3}

X1

{X2, X3, R2}

X5

X6

Figure 4: Tree-decomposition of the moralisation of Gex

R1

X2

R2

X3

X1

X4

R4

R3

A1 A2 A3 A4 A5 A6

Figure 5: Adding arcs Ai to Gex to construct G′
ex

and 0 otherwise. If Ai has no parents, then we set Pr(Ai = true) = 1. Note that eventually
all nodes Rj are ‘chained’ together in Am, and Pr(Am = true) > 0 if Pr(∀jRj = true) > 0.
We then make a tree-decomposition T′

G of the moralised graph G′
M of B′

I , by enhancing any
bag Xk in TG with the variable Ak and all variables Al that are contained in the bags of the
children of k.

A tree-decomposition (with at most two children per node) of the moralisation of our
example network BIex is given in Figure 4. We assume that X1 is the root of the tree. This
tree-decomposition has six nodes so we add nodes A1, . . . , A6 to Gex (Figure 5). For the
first bag, we add A1 and A2 and add the arcs (A2, A1) (since X1 is adjacent to X2 in the
tree-decomposition) and (R1, A1) (since R1 is contained in bag X1. For consecutive bags
Xi, we similarly add nodes A3, . . . , A6 and arcs (A3, A2), (A4, A2), (A5, A4), and (A6, A4) and
from the relation nodes Rj in bags Xi to Ai. In the thus constructed fragment, every node Ai

either has a CPT that corresponds to the truth table of a logical ‘and’ operator on its parents,
or Pr(Ai = true) = 1 for nodes without incoming arcs. The resulting tree-decomposition of
BIex is given in Figure 6.

We claim that, for any instance I of Constraint Satisfaction, in the thus constructed
probabilistic network BI , Pr(Am = true) > 0 if and only if I is satisfiable.

Theorem 4.2. Constraint Satisfaction tw-reduces to Inference.

Proof. To show that this construction indeed gives a treewidth-preserving polynomial time

8

X2

{X1, X2, R1,

{X1, X2, X3,
A4, A5, A6}

{X1, X4, R4,

{X3, X4, R3,

X1

{X2, X3, R2,

A1, A2}

A2, A3, A4}

A3}

{X1, X3, X4,

A5}

A6}

X3 X5

X4 X6

Figure 6: Resulting tree-decomposition of the moralisation of G′
ex

reduction from Constraint Satisfaction to Inference, we need to prove that there exists
a function f such that for all x ∈ Constraint Satisfaction, f(x) ∈ Inference, that f
is computable in polynomial time and that f preserves treewidth up to a linear factor, i.e.,
tw(f(x)) = l(tw(x)).

Let I be any instance of Constraint Satisfaction, and let B′
I be the probabilistic

network constructed from I as shown above. If Pr(Am = true) > 0, then the ‘and’ con-
struction modelled with the Ai nodes enforces that Pr(∀jRj = true) > 0. For any node Rj ,
Pr(Rj = true | v) = 1 for a particular joint value assignment v if and only if that value
assignment satisfies the relation Rj . Thus, if Pr(∀jRj = true) > 0 then there must be a
joint value assignment to all variables that satisfies all relations; hence, I is satisfiable. On
the other hand, if there is a satisfying assignment to I then Pr(∀jRj = true) > 0 and hence
Pr(Am = true) > 0.

Clearly, the above reduction can be constructed in polynomial time; what remains is to
show that the reduction preserves treewidth up to a linear factor. The construction using the
Vi and Rj nodes has a treewidth of min(2, tw(I)) and thus increase the treewidth by at most
1. We will show that the Ak nodes and the arcs (Rj , Ak) and (Rk, Al) increase the treewidth
by at most three. To facilitate our proof, we assume that TG is nice, thus every node in TG

is either a leaf node, insert node, forget node, or join node; we show that our claim
holds for all of these nodes.

• leaf nodes: Suppose i is a leaf node. Then i has no children, and only the node Ai

is added to the bag Xi, and the treewidth is increased by at most 1.

• insert/forget nodes: Suppose i is an insert or forget node. Then i has one child
j, and the nodes Ai and Aj are added to the Xi, and the treewidth is increased by at
most 2.

• join nodes: Suppose i is a join node. Then i has two children j and k, and Ai, Aj ,
and Ak are added to Xi, and the treewidth is increased by at most 3.

We conclude that any operation on one of the nodes in the tree-decomposition can increase
the size of the corresponding bag by at most three, and thus that the treewidth is increased
by at most three. Hence, the above reduction preserves treewidth up to a constant term, and
thus Constraint Satisfaction tw-reduces to Inference.

Our main result in Theorem 3.2 now follows from Theorem 4.2 and Marx’ result [18] as
formulated in Theorem 3.1.

9

of Theorem 3.2. Assume that there exists an algorithm A that solves arbitrary instances B
of the Inference problem with unbounded treewidth in time f(GM) · ‖B‖o(

tw(GM)

log tw(GM)
), where

f is a computable function and GM denotes the moralised graph of B. Let I be an instance
of Constraint Satisfaction with sufficiently large treewidth. Following Theorem 4.2, we
can reduce I to B′

I (with moralised graph GI) in polynomial time, where tw(GI) = tw(I)+3.

Since we assumed that A solves B′
I in time f(GM) · ‖B‖o(

tw(GM)

log tw(GM)
), there exists a function g

such that I can be solved in time g(G) · ‖I‖o(
tw(G)

log tw(G)
). From Theorem 3.1 follows, that this

contradicts the ETH.

5 Conclusion

In this paper, we have proven that there can not exist an algorithm solving arbitrary instances
of Inference with high treewidth in polynomial time, unless the ETH fails. In fact, we
show that any algorithm solving arbitrary instances of Inference must have a running

time of f(GM) · ‖B‖ω(
tw(GM)

log tw(GM)
), i.e., exponential in the treewidth of the moralised graph,

up to a logarithmic factor in the exponent. This result is weaker than Marx’ result [18]
for Constraint Satisfaction and Graph Homomorphism, which shows a lower bound
for algorithms solving these problems on any recursively enumerable class of graphs. Our
result still allows algorithms to use specific properties of a network, like a particular arc
direction, or planarity of the moralised graph, to arrive at sub-exponential running times,
whereas Marx’ result holds even for restricted classes of graphs. Nevertheless, our result is
derived in a different way, namely using a treewidth preserving reduction from Constraint
Satisfaction. This technique may be of independent interest. For example, it can be used
to prove (conditional) lower bounds on the running time of other problems (in probabilistic
networks or otherwise) whose instances have treewidth as a structural property.

Acknowledgements

The authors wish to thank Linda van der Gaag, Jan van Leeuwen, and Gerard Tel for fruitful
discussions on this subject and useful comments on earlier drafts of this paper.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti Spaccamela, and M. Pro-
tasi. Complexity and Approximation. Berlin: Springer, 1998.

[2] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

[3] H. L. Bodlaender. Treewidth: Algorithmic techniques and results. In Twenty-second
International Symposium on Mathematical Foundations of Computer Science, volume
LNCS 1295, pages 19–36. Springer-Verlag, 1997.

[4] H. L. Bodlaender. Treewidth: characterizations, applications, and computations. In Pro-
ceedings of the 32nd International Workshop on Graph-Theoretic Concepts in Computer
Science, pages 1–14, 2006.

10

[5] Hans L. Bodlaender, Arie M. C. A. Koster, and Frank van den Eijkhof. Pre-processing
rules for triangulation of probabilistic networks. Computational Intelligence, 21(3):286–
305, 2005.

[6] V. Chandrasekaran, N. Srebro, and P. Harsha. Complexity of inference in graphical
models. In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence
(UAI’08), pages 70–78. AUAI Press, 2008.

[7] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Linear FPT reductions and computational
lower bounds. In Proceedings of the thirty-sixth annual ACM Symposium on Theory of
Computing, pages 212–221, 2004.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., San Francisco, 1979.

[9] P. L. Geenen, A. R. W. Elbers, L. C. van der Gaag, and W. L. A. van der Loeffen.
Development of a probabilistic network for clinical detection of classical swine fever.
In Proceedings of the Eleventh Symposium of the International Society for Veterinary
Epidemiology and Economics, pages 667–669, 2006.

[10] Martin Grohe. The complexity of homomorphism and constraint satisfaction problems
seen from the other side. Journal of the ACM, 54(1):1–24, 2007.

[11] H. J. Henriksen, P. Rasmussen, G. Brandt, D. von Bülow, and F. V. Jensen. Public
participation modelling using Bayesian networks in management of groundwater con-
tamination. Environmental Modelling and Software, 22(8):1101–1113, 2007.

[12] R. Impagliazzo and R. Paturi. On the complexity of k-sat. Journal of Computer and
System Sciences, 62(2):367 – 375, 2001.

[13] F. V. Jensen. Bayesian Networks and Decision Graphs. Berlin: Springer Verlag, second
edition, 2007.

[14] T. Kloks. Treewidth. LNCS 842. Springer-Verlag, Berlin, 1994.

[15] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graph-
ical structures and their application to expert systems. Journal of the Royal Statistical
Society, 50(2):157–224, 1988.

[16] A. K. Lenstra, H. W. Lenstra Jr., M. S. Manasse, and J. M. Pollard. The number field
sieve. In Proceedings of the 22nd Annual ACM Conference on Theory of Computing,
pages 564–572, 1990.

[17] M. L. Littman, S. M. Majercik, and T. Pitassi. Stochastic boolean satisfiability. Journal
of Automated Reasoning, 27(3):251–296, 2001.

[18] D. Marx. Can you beat treewidth? In Proceedings of the 48th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’07), pages 169–179, 2007.

[19] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[20] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, Palo Alto, 1988.

11

[21] N. Robertson and P.D. Seymour. Graph minors II: Algorithmic aspects of tree-width.
Journal of Algorithms, 7:309–322, 1986.

[22] R. D. Schachter. Evaluating influence diagrams. Operations Research, 34(6):871–882,
1986.

[23] L. C. van der Gaag, S. Renooij, C. L. M. Witteman, B. M. P. Aleman, and B. G. Taal.
Probabilities for a probabilistic network: a case study in oesophageal cancer. Artificial
Intelligence in Medicine, 25:123–148, 2002.

[24] C. Zhang, S. Sun, and G. Yu. A Bayesian networks approach to time series forecasting
of short-term traffic flows. In Seventh International IEEE Conference on Intelligent
Transportation Systems, pages 216–221, 2004.

12

