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Abstract

The measure and conquer approach has proven to be a powerful tool to analyse exact

algorithms for combinatorial problems, like Dominating Set and Independent Set. In

this paper, we propose to use measure and conquer also as a tool in the design of algorithms.

In an iterative process, we obtain a series of branch and reduce algorithms. A mathematical

analysis of an algorithm in the series with measure and conquer results in a quasiconvex

programming problem. The solution by computer to this problem not only gives a bound on

the running time, but can also give a new reduction rule, thus giving a new, possibly faster

algorithm. This makes design by measure and conquer a form of computer aided algorithm

design.

We apply the methodology to a set cover modelling of the Dominating Set problem and

obtain the currently fastest known exact algorithm for Dominating Set: an algorithm that

uses O(1.4969n) time and only polynomial space, while the previous fastest algorithm uses

exponential space.

1 Introduction

Although the design of fast exponential time algorithms for finding exact solutions to NP-hard
problems such as Independent Set and Travelling Salesman dates back to the sixties and
seventies, there has been a renewed interest in them over the last decade. See for example the
results on Independent Set in the 1970s by Tarjan and Trojanowski [22, 23] and the more recent
results by Robson [19, 20]. A number of different techniques have been developed to design and
analyse these and other exponential time algorithms. Many examples of these can be found in a
series of surveys on the topic [6, 15, 21, 28, 29].

An important paradigm for the design of exact algorithms is branch and reduce, pioneered
in 1960 by Davis and Putnam [2]. Typically, in a branch and reduce algorithm, a collection of
reduction rules and branching rules are given. Each reduction rule simplifies the instance to an
equivalent, simpler instance. If no reduction rule applies, the branching rules generate a collection
of two or more instances, on which the algorithm recurses.

A recent breakthrough in the analysis of branch and reduce algorithms is measure and conquer,
which has been introduced by Fomin, Grandoni and Kratsch [5]. The measure and conquer ap-
proach helps to obtain good upper bounds on the running time of branch and reduce algorithms,
often improving upon the currently best known bounds for exact algorithms. It has been used

∗This paper is the first full description of our work from which a preliminary version appeared at the Symposium
on Theoretical Aspects of Computer Science (STACS) 2008 [25]. In this paper, all running times are improved
compared to this preliminary version by choosing a slightly better measure, similar to [8]. This leads to new and
improved running times for the Dominating Set problem. Also, for the first time, we give full proofs of the running
times of the algorithms obtained in the improvement series of the design by measure and conquer process.
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successfully on Dominating Set [5], Independent Set [1, 5], Dominating Clique [17], Con-

nected Dominating Set [7], Independent Dominating Set [11], Edge Dominating Set

[26], the number of minimal dominating sets [8], and many others.
In this paper, we show that the measure and conquer approach can not only be used for the

analysis of exact algorithms, but also for the design of such algorithms. More specifically, measure
and conquer uses a non-standard size measure for instances. This measure is based on weight
vectors which are computed by solving a numerical problem: a quasiconvex program. Analysis of
the solution of this quasiconvex program yields not only an upper bound to the running time of
the algorithm, but also shows where we could possibly improve the algorithm. This can lead to a
new rule, which we add to the branch and reduce algorithm.

We apply this design by measure and conquer methodology to a Set Cover modelling of
the Dominating Set problem, identical to the setting in which measure and conquer was first
introduced. If we start with the trivial algorithm, then we can obtain in a number of steps the
original algorithm of Fomin et al. [5]. With additional steps, we obtain a faster algorithm: this
results in Theorem 1. This algorithm is optimal in some sense; we show that it cannot be improved
straightforwardly by a similar improvement as used to obtain the algorithm.

Theorem 1 Algorithm 4 solves the dominating set problem in O(1.4969n) time while using only
polynomial space.

While for several classic combinatorial problems the first non-trivial exact algorithms date from
many years ago, the first algorithms with running time faster than O∗(2n) for the Dominating

Set problem are from 2004. In this year, there were three independent papers: one by Fomin,
Kratsch and Woeginger [9], one by Randerath and Schiermeyer [18], and one by Grandoni [13].
Before our work, the fastest algorithm for Dominating Set is by Fomin, Grandoni, and Kratsch
[5]: this algorithm uses O(1.5260n) time and polynomial space, or O(1.5137n) time and exponential
space. See Table 1 for an overview of recent results on this problem.

This paper is organised in the following way. In Section 2, we start by giving some preliminaries
and an introduction on measure and conquer. Then, we give a detailed step by step overview of
how we design an algorithm for Dominating Set using measure and conquer in Section 3. In
this section, we also prove Theorem 1. Hereafter, we give evidence for the fact that it is hard to
improve our algorithm significantly using the same method in Section 4. We conclude in Section 5
by giving some remarks on our method and the associated numerical problems.

2 Preliminaries

Let G = (V,E) be an n-vertex simple graph. For any v ∈ V , let N(v) = {u ∈ V ∣ (v, u) ∈ E} be
the open neighbourhood of v, and let N [v] = N(v) ∪ {v} be the closed neighbourhood of v.

Authors Polynomial space Exponential space
F. Fomin, D. Kratsch, G. Woeginger [9] O(1.9379n)
I. Schiermeyer [18] O(1.8899n)
F. Grandoni [13] O(1.9053n) O(1.8021n)
F. Fomin, F. Grandoni, D. Kratsch [6] O(1.5263n) O(1.5137n)
J. M. M. van Rooij [24]∗ O(1.5134n) O(1.5086n)
J. M. M. van Rooij, H. L. Bodlaender [25]∗ O(1.5134n) O(1.5063n)
J. M. M. van Rooij, J. Nederlof, T. C. van Dijk [27] O(1.5048n)
This paper∗ O(1.4969n) ⇐=

∗This paper is an improved and complete version of [24] and [25]. The difference between [24] and [25] is not the

algorithm but the methodology and an improved memorisation proof. This methodology is also presented here.

Table 1: Known exact algorithms for dominating set and their running times.
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A subset D ⊆ V of the vertices is called a dominating set if every vertex v ∈ V is either in D

or adjacent to some vertex in D. I.e., a dominating set D is a set of vertices from G such that
∪

v∈D N [v] = V . In the Dominating Set problem, we are given a graph G and are asked to
compute a dominating set in G of minimum cardinality.

This problem is long known to be NP-complete [10], thus we cannot expect to find a polynomial
time algorithm for this problem. Moreover, there exists no subexponential time algorithm for this
problem unless the Exponential Time Hypothesis fails. A proof of this can be found in [9].

Exponential Time Hypothesis [14]: There exists an � > 0 such that there is no algorithm solving
3-SAT on n variables in O(�n) time.
Consequence [9]: There exists an � > 0 such that there is no algorithm solving Dominating Set

on n vertices in O(�n) time.

Given a multiset sets S, a set cover C of S is a subset C ⊆ S such that every element in any of the
sets in S occurs in some set in C. I.e., a set cover C of S is a set of sets such that

∪

S∈C S =
∪

S∈S S.
The universe U(S) of S is the set of all elements in any set in S: U(S) =

∪

S∈S S. In the Set

Cover problem, we are given a multiset of sets S over a universe U and are asked to compute a set
cover of minimum cardinality. We often denote a set cover instance by the tuple (S,U) omitting
the dependency of U on S.

We can reduce the Dominating Set to the Set Cover by introducing a set for each vertex of
G containing the closed neighbourhood of this vertex, i.e., S := {N [v] ∣ v ∈ V }, U := V . Hence, we
can solve an instance of Dominating Set on an n-vertex graph by a using a set cover algorithm
running on an instance with n sets and a universe of size n. This idea was first introduced by
Grandoni in [13] and is the basis of most exact exponential time algorithms for Dominating Set

(all except the first two in Table 1).
Given a set cover instance (S,U), let ∣S∣ be the size or cardinality of a set S ∈ S. Further, let

S(e) = {S ∈ S ∣ e ∈ S} be the set of sets in S in which the element e occurs, and let the frequency
f(e) of an element e ∈ U be the number of sets in S in which this element occurs: f(e) = ∣S(e)∣.

A connected component component C of a graph G is an inclusion minimal, non-empty subset
of the vertices of G such that, for every v ∈ C, all vertices that are reachable from v by a path in
G are contained in C. Similarly, we define a connected component C of a set cover instance (S,U)
in the natural way: an inclusion minimal, non-empty subset C ⊆ S for which all elements in the
sets in C do not occur in S ∖ C.

In this paper, we use the O∗ notation: f(n) is O∗(g(n)) if f(n) is O(g(n)p(n)) for some
polynomial p(n). This notation is often used in exponential time algorithms and suppresses all
polynomial parts of the running time. We will omit the ∗ whenever possible, especially when
considering algorithms running in time O∗(�n) for some numerically obtained value �. In this
case, we round � to � + � for some � > 0 and state that it runs in O((� + �)n): notice that
�np(n) = O((�+ �)n) for any polynomial p(n).

Additional notation we use is the following: let [condition] = 1 if the condition is true and
[condition] = 0 otherwise.

2.1 Measure and Conquer

In the design of exact exponential time algorithms, the branch and reduce paradigm is one of the
most prominently used approaches. A branch and reduce algorithm consists of a series of reduction
rules, a series of branching rules, and a procedure to decide which branching rule to apply on a
given instance. The reduction rules transform an instance with certain specific properties into an
equivalent smaller instance in polynomial time. Such an algorithm first exhaustively applies its
reduction rules. When the instance no longer satisfies any of the properties that fire a reduction
rule, then the algorithm decides what branching rule to apply. The selected branching rule will
then generate a series of smaller problem instances that are solved recursively. A solution to the
current instance is then constructed from the solutions returned from the recursive calls. Some
simple examples of such algorithms for 3-Sat and Independent Set can be found in [28].
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A breakthrough in the analysis of branch and reduce algorithms is the measure and conquer
technique by Fomin, Grandoni, and Kratsch [5]. This follows earlier work by Eppstein on analysing
branch and reduce algorithms by multivariate recurrences [4]. In a measure and conquer analysis,
a carefully chosen non-standard measure of instance or subproblem size is used. This is in contrast
to classic analyses relying on simple, mostly integer measures representing the size of an instance,
e.g., the number of vertices in a graph.

The first problem to which the measure and conquer technique has been applied is Dominating

Set [5]. The authors present an algorithm for Set Cover. This algorithm is then applied to
instances obtained by transforming an n-vertex Dominating Set instance into an equivalent Set

Cover instance on n sets over a universe of size n. The algorithm is analysed using the following
measure k, where v and w are weight functions giving an element e of frequency f(e) measure
v(f(e)) and a set S of size ∣S∣ measure w(∣S∣).

k = k(S,U) =
∑

e∈U

v(f(e)) +
∑

S∈S

w(∣S∣) with: v, w : ℕ → ℝ+

The behaviour of the algorithm is analysed using this measure. For each branching rule, a series
of recurrence relations is formulated corresponding to all possible situations the branching rule
can be applied to.

Let N(k) be the number of subproblems generated by branching on an instance of size k, and
let R the set of cases considered by the algorithm covering all possible situations of branching.
For any r ∈ R we denoted by #(r) the number of subproblems generated when branching in case
r, and by Δk(r,i) the measure by which an instance is reduced in subproblem i in case r. We thus
obtain a series of recurrence relations of the form:

∀r ∈ R : N(k) ≤

#(r)
∑

i=1

N
(

k −Δk(r,i)
)

We will often identify R with the set of corresponding recurrences.
A solution to this set of recurrence relations has the form �k, for some � > 1. This gives an

upper bound on the running time of the branch and reduce algorithm expressed in the measure
k(S,U). Assume that vmax = maxn∈ℕ v(n), wmax = maxn∈ℕ w(n) are finite numbers. Then
�(vmax+wmax)n is an upper bound on the running time of the algorithm for Dominating Set since
for every input instance k(S,U) ≤ (vmax + wmax)n and thus �k ≤ �(vmax+wmax)n.

What remains is to choose ideal weight functions: weight functions that minimise the proven
upper bound on the running time of the algorithm, i.e., weight functions that minimise �vmax+wmax .
This forms a large numerical optimisation problem. Actually, under some assumptions on the
weight functions (see Section 3 for more details), this gives a large but finite quasiconvex opti-
misation problem. Such a numerical problem can be solved by computer, see [4]. Details on the
implementation of our solver can be found in Section 5.

In this way, Fomin, Grandoni and Kratsch [5] prove a running time of O(1.5263n) on an
algorithm that is almost identical to the O(1.9053n) time algorithm in [13]. See Section 3 for
examples of measure and conquer analyses.

3 Design by Measure and Conquer

In this paper, we take the measure and conquer technique one small step further. We will use
measure and conquer not only to analyse branch and reduce algorithms, but also use it as a guiding
tool to design these algorithms. This works in the following way.

Suppose we are given a non-standard measure of instance size using weight functions and some
initial branching procedure, i.e. we are given the basic ingredient of a measure and conquer analysis
and some trivial algorithm. Then, in an iterative process, we will formulate a series of branch and
reduce algorithms. In this series, each algorithm is analysed by measure and conquer. Hereafter,
the associated numerical optimisation problem is inspected, and the recurrence relations that
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New reduction rule Section Running Time
Trivial algorithm 3.1 O∗(2n)
Unique element rule 3.2 O(1.7311n)
Stop when all sets have cardinality one 3.3 O(1.6411n)
Subset rule 3.4 O(1.5709n)
Stop when all sets have cardinality two 3.5 O(1.5169n)
Subsumption rule 3.6 O(1.5134n)
Counting rule 3.7 O(1.5055n)
Size two set with only frequency two elements rule 3.8 O(1.4969n)

Table 2: The iterative improvement of the algorithm

bound the current optimum (the best upper bound on the running time involving this measure)
are identified. Each of these bounding recurrence relations corresponds to one or more worst
case instances which can be identified easily. We can use these to formulate new reduction rules,
or change the branching procedure, such that some of these worst case instances are handled
more efficiently by the algorithm. The modification then gives a new, faster algorithm. This
improvement series ends when we have sufficient evidence showing that improving the current
worst cases is hard.

We will demonstrate this approach by example on the first problem measure and conquer
has been applied to: Dominating Set. Doing so, we will design an algorithm for Set Cover

instances obtained from the reduction from Dominating Set as described in Section 2, i.e. Set

Cover instances consisting of n sets and n elements. This process starts with a trivial algorithm:
Algorithm 1.

This section is organised as follows. In the next subsection, we set up the framework used to
analyse our algorithms by measure and conquer and analyse a trivial algorithm. In each subsequent
subsection, we treat the next algorithm from the series: we analyse its running time and apply an
improvement step, as just described. In the last section (Section 3.8), we will prove Theorem 1.
See Table 2 for a nice overview of how the trivial algorithm is improved by adding new reduction
rules and analysing the corresponding algorithms.

3.1 A trivial algorithm

We start with a trivial algorithm for Set Cover: Algorithm 1. This algorithm simply selects
the largest set from our instance and considers two subproblems: one in which we take the set in
the set cover and one in which we discard it. In the branch where S is taken in the set cover, we
remove all elements from S from the universe, and thus we remove for all S′ ∈ S ∖{S} all elements
in S. In the other branch, we just remove S from S. Then, the algorithm recursively solves
both generated subproblems and returns the smallest set cover returned by the recursive calls. It
stops when there is no set left to branch on; then, it checks whether the generated subproblem
corresponds to a set cover.

We analyse this algorithm using measure and conquer. To this end, let v, w : ℕ → ℝ+ be

Algorithm 1 A trivial set cover algorithm.

Input: A set cover instance (S,U)
Output: A minimum set cover of (S,U)

MSC(S,U):
1: if S = ∅ then return ∅ if U = ∅, or No otherwise
2: Let S ∈ S be a set of maximum cardinality
3: Recursively compute C1 = {S}∪MSC({S′ ∖S ∣ S′ ∈ S ∖{S}},U ∖S) and C2 = MSC(S ∖{S},U)
4: return the smallest set cover from C1 and C2, or No if no set covers are returned
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weight functions giving an element e of frequency f(e) measure v(f(e)) and a set S of size ∣S∣
measure w(∣S∣), just like in Section 2.1. Furthermore, let k =

∑

e∈U v(f(e))+
∑

S∈S w(∣S∣) be our
measure.

We start by defining the following very useful quantities:

Δv(i) = v(i)− v(i− 1) Δw(i) = w(i)− w(i− 1) for i ≥ 1

We impose some constraints on these weights. We require the weights to be monotone, and set
the weights of sets and elements that no longer play a role in the algorith to zero:

v(0) = 0 w(0) = 0 ∀i ≥ 1 : Δv(i) ≥ 0 Δw(i) ≥ 0

Intuitively, this corresponds to the idea that larger sets and higher frequency elements contribute
more to the complexity of the problem than smaller sets and lower frequency elements, respectively.
Furthermore, we impose the following non-restricting steepness inequalities, which we will discuss
in a moment:

∀i ≥ 2 : Δw(i− 1) ≥ Δw(i)

Let ri be the number of elements of frequency i in S. In the branch where S is taken in the set
cover, the measure is reduced by w(∣S∣) because we remove S, by

∑∞
i=1 riv(i) because we remove

its elements, and by at least an additional minj≤S{Δw(j)}
∑∞

i=1 ri(i− 1) because the removal of
these elements reduces other sets in size. In the other branch, the measure is reduced by w(∣S∣)
because we remove S, and by an additional

∑∞
i=1 riΔv(i) because the elements in S have their

frequencies reduced by one.
Let Δktake and Δkdiscard be the reduction in the measure in the branch where we take S in the

solution and where we discard S, respectively. Thus, we have derived the following lower bounds
on the reductions of the measure:

Δktake ≥ w(∣S∣) +
∞
∑

i=1

riv(i) + Δw(∣S∣)
∞
∑

i=1

ri(i− 1)

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=1

riΔv(i)

Here, we used the steepness inequalities to replace the term minj≤S{Δw(j)} by Δw(∣S∣). One
can show that these steepness inequalities do not change the optimum solution of the numerical
problem; they only simplify its formulation.

In this way, we find the corresponding set of recurrence relations. Let N(k) be the number of
subproblems generated by branching on an instance of size k.

∀ ∣S∣ ≥ 1, ∀ ri :

∞
∑

i=1

ri = ∣S∣ : N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)

Finally, we compute the optimal weight functions minimising �vmax+wmax where �k is the
solution to the above set of recurrence relations. To make this set of recurrence relations finite,
we first set v(i) = vmax and w(i) = wmax for all i ≥ p for some point p ∈ ℕ. This results in the
fact that all recurrences with ∣S∣ > p + 1 are dominated by those with ∣S∣ = p + 1. Moreover,
we now only need to consider recurrences with ∣S∣ =

∑p
i=1 rp + r>p where r>p =

∑∞
i=p+1 ri and

r>p has the role of rp+1 in the above formulas. Notice that if all weights v(i), w(i) are multiplied
by a positive real number, then a different value � will result from the set of recurrence relations.
However, it is not hard to see that in this case the value �vmax+wmax will remain the same. Hence,
we can set wmax = 1 without loss of generality1. We will omit these details concerning finiteness

1We could equally well have set vmax = 1 giving the same upper bound on the running time for all algorithms
in the improvement series except for this first algorithm. This is the case since in this analysis vmax = 0, therefore
the optimal weights cannot be multiplied by a positive real number such that vmax = 1.
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Algorithm 2 An improved version of Algorithm 1 by adding Reduction Rule 1.

Input: A set cover instance (S,U)
Output: A minimum set cover of (S,U)

MSC(S,U):
1: if S = ∅ then return ∅
2: Let S ∈ S be a set of maximum cardinality
3: if there exist an element e ∈ U of frequency one then

4: return {R} ∪ MSC({R′ ∖R ∣ R′ ∈ S ∖ {R}},U ∖R), where R is the set with e ∈ R

5: Recursively compute C1 = {S}∪MSC({S′ ∖S ∣ S′ ∈ S ∖{S}},U ∖S) and C2 = MSC(S ∖{S},U)
6: return the smallest cover from C1 and C2

of the numerical problem in the analyses of the other algorithms in the improvement series in the
coming subsections.

We solve the corresponding numerical program with continuous variables v(1), v(2), . . . , v(p),
w(1), w(2), . . . , w(p) minimising �vmax+wmax where �k is the solution the the set of recurrence
relations and obtain a solution of N(k) ≤ 2k using the following weights:

i 1 2 3 4 5 6 7 > 7
v(i) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
w(i) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

This gives an upper bound on the running time of Algorithm 1 of O∗
(

2(0+1)n
)

= O∗(2n). All
recurrences considered contribute to the bounding (worst) case in this analysis.

It is no surprise that we prove a running time of O∗(2n) on this trivial algorithm: the algorithm
branches on all n sets considering two subproblems. We only formally used measure and conquer
here, since the optimal weights correspond exactly to the standard measure: the total number of
sets in the instance. The above analysis functions to set up our algorithm design process.

3.2 The first improvement step: unique elements

We will now give the first improvement step. To this end, we consider the bounding cases of
the numerical problem associated with the previous analysis. In this case, all recurrences in the
numerical problem form the set of bounding cases. At each improvement step in the design process
of our algorithm, we will, as a rule of the thumb, consider the “smallest” worst case. With small
we mean involving the smallest sets and lowest frequency elements. Thus, we consider here the
worst case where ∣S∣ = r1 = 1.

This case can be improved easily. Algorithm 1 considers many subsets of the input multiset S
that will never result in a set cover. Namely, when considering a set with unique elements (elements
of frequency one), Algorithm 1 still branches on this set. This, however, is not necessary since any
set cover should include this set.

In the second algorithm in the series, we add a reduction rule dealing with unique elements
improving, among others, the case ∣S∣ = r1 = 1. This reduction rule takes any set containing a
unique element in the computed set cover.

Reduction Rule 1

if there exist an element e ∈ U of frequency one then

return {R} ∪ MSC({R′ ∖R ∣ R′ ∈ S ∖ {R}},U ∖R), where R is the set with e ∈ R

We can change the formulation of the algorithm after adding this reduction rule to it: we no
longer need to check whether every computed cover also covers all of U . In this way, we obtain
Algorithm 2.

Let us analyse Algorithm 2. To this end, we use the same measure as before; we only add
some extra constraints. Since unique elements are directly removed from an instance, they do

7



not contribute to the (exponential) complexity of a problem instance; therefore, we set v(1) = 0.
Notice that this results in Δv(2) = v(2).

Next, we derive new recurrence relations for Algorithm 2. Let Algorithm 2 branch on a set
S containing ri elements of frequency i. Due to Reduction Rule 1, we now only have to consider
cases with ∣S∣ =

∑∞
i=2 ri, i.e., with r1 = 0. In the branch where Algorithm 2 takes S in the

set cover, nothing changes to the reduction in measure. But, in the branch where it discards S,
additional reductions in the measure are obtained when S contains unique elements. If r2 > 0, at
least one extra set is taken in the set cover. Because of the steepness inequalities, the worst case
is the case where the extra set consists exactly of all frequency two elements in S, hence this set
is of size r2. This gives us an additional reduction in the measure of [r2 > 0]w(r2).

Altogether, this gives the following set of recurrences:

∀ ∣S∣ ≥ 1, ∀ ri :

∞
∑

i=2

ri = ∣S∣ : N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)

Δktake ≥ w(∣S∣) +
∞
∑

i=2

riv(i) + Δw(∣S∣)
∞
∑

i=2

ri(i− 1)

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=2

riΔv(i) + [r2 > 0]w(r2)

We solve the associated numerical optimisation problem minimising �vmax+wmax where �k is
the solution the the set of recurrence relations and obtain a solution of N(k) ≤ 1.58143k using the
following set of weights:

i 1 2 3 4 5 6 7 > 7
v(i) 0.000000 0.011524 0.162465 0.192542 0.197195 0.197195 0.197195 0.197195
w(i) 0.750412 0.908050 0.968115 0.992112 1.000000 1.000000 1.000000 1.000000

This leads to an upper bound on the running time of Algorithm 2 of O
(

1.58143(0.197195+1)n
)

=
O(1.73101n). The bounding cases of the numerical problem are:

∣S∣ = r2 = 1 ∣S∣ = r3 = 2 ∣S∣ = r4 = 2 ∣S∣ = r4 = 3 ∣S∣ = r5 = 4 ∣S∣ = r5 = 5
∣S∣ = r6 = 5 ∣S∣ = r6 = 6 ∣S∣ = r>6 = 6

This concludes the first improvement step. By applying this improvement step, we have ob-
tained our first simple algorithm with a non-trivial upper bound on the running time.

3.3 Improvement step two: sets of cardinality one

The next step will be to inspect the case ∣S∣ = r2 = 1 more closely. This case corresponds to
branching on a set S containing only one element of frequency two.

We improve this case by the simple observation that we can stop branching when all sets have
size one. Namely, any solution consists of a series of singleton sets: one for each remaining element.
This gives us the following reduction rule.

Reduction Rule 2

Let S ∈ S be a set of maximum cardinality
if ∣S∣ ≤ 1 then

return {{e} ∣ e ∈ U}

We add Reduction Rule 2 to Algorithm 2 to obtain our new algorithm. For this algorithm,
we derive the following set of recurrence relations; these are exactly the ones used to analyse
Algorithm 2 that correspond to branching on a set of size at least two:

∀ ∣S∣ ≥ 2, ∀ ri :

∞
∑

i=2

ri = ∣S∣ : N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)
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Δktake ≥ w(∣S∣) +
∞
∑

i=2

riv(i) + Δw(∣S∣)
∞
∑

i=2

ri(i− 1)

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=2

riΔv(i) + [r2 > 0]w(r2)

We solve the associated numerical optimisation problem and obtain a solution of N(k) ≤
1.42604k on the recurrence relations using the following set of weights:

i 1 2 3 4 5 6 7 > 7
v(i) 0.000000 0.161668 0.325452 0.387900 0.395390 0.395408 0.395408 0.395408
w(i) 0.407320 0.814639 0.931101 0.981843 0.998998 1.000000 1.000000 1.000000

This leads to an upper bound on the running time of the algorithm of O
(

1.42604(0.395408+1)n
)

=
O(1.64107n). The bounding cases of the numerical problem are:

∣S∣ = r2 = 2 ∣S∣ = r3 = 2 ∣S∣ = r3 = 3 ∣S∣ = r4 = 3 ∣S∣ = r5 = 3 ∣S∣ = r5 = 4
∣S∣ = r5 = 5 ∣S∣ = r6 = 5 ∣S∣ = r6 = 6

3.4 Improvement step three: subsets

Consider the new “smallest” worst case: ∣S∣ = r2 = 2. For this case, the previous section uses
the following values in the corresponding recurrences: Δktake = w(2) + 2v(2) + 2Δw(2) and
Δkdiscard = w(2) + 2Δv(2) + w(2). Notice that the instance tight to these values consists of a
set S containing two frequency two elements which second occurrence is in a set R which is a
copy of S (notice that the final computed weights satisfy 2Δw(2) = w(2) and that by definition
v(2) = Δv(2)).

The observation we use to improve the algorithm of Section 3.3 is that we never take two
identical sets in any minimum set cover. This can be generalised to sets Q and R that are not
identical, but where R is a subset of Q: whenever we take R in the set cover, we could equally
well have taken Q, moreover, any set cover containing both R and Q can be replaced by a smaller
cover by removing R. This leads to the following reduction rule:

Reduction Rule 3

if there exist sets Q,R ∈ S such that R ⊆ Q then

return MSC(S ∖ {R},U)

Reduction Rules 1 and 3 together remove all sets of size one: either the element in a singleton
set S has frequency one and is removed by Reduction Rule 1, or it has higher frequency and
thus S is a subset of another set. Consequently, Reduction Rule 2 becomes obsolete after adding
Reduction Rule 3 to the algorithm.

In the analysis of this new algorithm, we set w(1) = 0 because sets of size one are now removed.
To avoid problems with the steepness inequalities, we now only impose them for i ≥ 3:

∀i ≥ 3 : Δw(i− 1) ≥ Δw(i)

Observe what happens when our new algorithm branches on a set S containing ri elements
of frequency i. In the branch where we take S in the set cover, we still reduce the measure by
w(∣S∣) +

∑∞
i=2 riv(i) for removing S and its elements. Remind that Δw(∣S∣) lower bounds the

reduction in measure for reducing the size of a set by one because of the steepness inequalities.
Even though w(1) = 0 in our new analysis, we can still use Δw(∣S∣)

∑∞
i=2 ri(i− 1) to lower bound

the additional reduction in the measure due to the fact that no other set R containing elements
from S can be a subset of S by Reduction Rule 3; therefore, we reduce R at most ∣R∣ − 1 times in

size, and the steepness inequalities still make sure that
∑∣R∣

i=2 Δw(i) ≥ (∣R∣ − 1)Δw(∣S∣).

9



In the branch where we discard S, we still reduce the measure by w(∣S∣) +
∑∞

i=2 riΔv(i) for
removing S and reducing the frequencies of its elements. Observe what happens to frequency two
elements. If r2 = 1, we take at least one more set in the set cover and remove at least one more
element since this set cannot be a subset of S. For every additional frequency two element in S,
the size of the set that is taken in the set cover increases by one in the worst case, unless r2 = ∣S∣.
In the last case, all elements cannot be in the same other set because this would make the set
larger than S which cannot be the case by the branching rule. Since w(2) = Δw(2), this leads

to an additional reduction in the measure of at least [r2 > 0](v(2) +
∑min(r2,∣S∣−1)

i=1 Δw(i + 1)).
Finally, if r2 = ∣S∣, then we remove at least one more set reducing the measure by at least w(2)
more.

The leads to the following set of recurrence relations:

∀ ∣S∣ ≥ 2, ∀ ri :

∞
∑

i=2

ri = ∣S∣ : N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)

Δktake ≥ w(∣S∣) +
∞
∑

i=2

riv(i) + Δw(∣S∣)
∞
∑

i=2

ri(i− 1)

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=2

riΔv(i) + [r2 > 0]

⎛

⎝v(2) +

min(r2,∣S∣−1)
∑

i=1

Δw(i+ 1)

⎞

⎠+ [r2 = ∣S∣]w(2)

We solve the associated numerical optimisation problem and obtain a solution of N(k) ≤
1.37787k on the recurrence relations using the following set of weights:

i 1 2 3 4 5 6 7 > 7
v(i) 0.000000 0.089132 0.304202 0.377794 0.402590 0.408971 0.408971 0.408971
w(i) 0.000000 0.646647 0.853436 0.939970 0.979276 0.995872 1.000000 1.000000

This leads to an upper bound on the running time of the algorithm of O
(

1.37787(0.408971+1)n
)

=
O(1.57087n). The bounding cases of the numerical problem are:

∣S∣ = r2 = 2 ∣S∣ = r3 = 2 ∣S∣ = r3 = 3 ∣S∣ = r4 = 3 ∣S∣ = r4 = 4 ∣S∣ = r5 = 4
∣S∣ = r5 = 5 ∣S∣ = r6 = 5 ∣S∣ = r6 = 6 ∣S∣ = r7 = 6 ∣S∣ = r7 = 7

We notice that this analysis is not tight in the following way. The quantities we use for Δktake

and Δkdiscard can both correspond to a real instance the algorithm branches on, that is, there
are real instances to which the reduction in the measure is bounded tightly. However, for some
considered cases, there is no real instance in which the reduction in the measure is tight to both
Δktake and Δkdiscard. This even happens on the bounding case ∣S∣ = r2 = 2.

We could give a better analysis of the current algorithm. However, this requires a different set
up with either more automatically generated subcases or some manual case analysis. We feel that
it is better to ignore this fact for the moment and continue formulating new reduction rules for
instances tight to any of the individual values of Δktake and Δkdiscard. We will give such a case
analysis for our final algorithm in Section 3.8.

3.5 Improvement step four: all sets have cardinality at most two

The case ∣S∣ = r2 = 2 corresponds to a set S containing two frequency two elements whose second
occurrences are in different sets. In this case, all sets have cardinality at most two since our
algorithms only branch on sets of maximum cardinality. We observe that this case can be solved
in polynomial time by computing a maximum matching.

Notice that if we construct a set cover in this situation, then we can initially pick some sets
that each cover two elements until only sets containing one thus far uncovered element remain.
The maximum number of sets that cover two elements per set are used in a minimum set cover.
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Algorithm 3 The algorithm of Fomin, Grandoni, and Kratsch [5].

Input: A set cover instance (S,U)
Output: A minimum set cover of (S,U)

MSC(S,U):
1: if S = ∅ then return ∅
2: Let S ∈ S be a set of maximum cardinality
3: if there exist an element e ∈ U of frequency one then

4: return {R} ∪ MSC({R′ ∖R ∣ R′ ∈ S ∖ {R}},U ∖R), where R is the set with e ∈ R

5: else if there exist sets Q,R ∈ S such that R ⊆ Q then

6: return MSC(S ∖ {R},U)
7: else if ∣S∣ ≤ 2 then

8: return a minimum set cover computed in polynomial time by using maximum matching
9: Recursively compute C1 = {S}∪MSC({S′ ∖S ∣ S′ ∈ S ∖{S}},U ∖S) and C2 = MSC(S ∖{S},U)

10: return the smallest cover from C1 and C2

We can find such a maximum set of disjoint size two sets by computing a maximum matching in
the following graph G = (V,E): introduce a vertex for every element e ∈ U , and an edge (e1, e2)
for every set of size two {e1, e2} ∈ S. This maximum matching M can be computed in polynomial
time [3]. Given M , we can construct a minimum set cover by taking the sets corresponding to the
edges in M and add an additional set for each vertex that is not incident to an edge in M .

This leads to the following reduction rule.

Reduction Rule 4

Let S ∈ S be a set of maximum cardinality
if ∣S∣ ≤ 2 then

return a minimum set cover computed in polynomial time by using maximum matching

If we add this reduction rule to the algorithm of Section 3.4, we obtain the algorithm of Fomin,
Grandoni, and Kratsch [5]: Algorithm 3.

The numerical problem associated with the computation of an upper bound on the running time
of Algorithm 3 is the same as the numerical problem associated with the algorithm of Section 3.4,
except for the fact that we only consider branching on sets S with ∣S∣ ≥ 3.

∀ ∣S∣ ≥ 3, ∀ ri :

∞
∑

i=2

ri = ∣S∣ : N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)

Δktake ≥ w(∣S∣) +
∞
∑

i=2

riv(i) + Δw(∣S∣)
∞
∑

i=2

ri(i− 1)

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=2

riΔv(i) + [r2 > 0]

⎛

⎝v(2) +

min(r2,∣S∣−1)
∑

i=1

Δw(i+ 1)

⎞

⎠+ [r2 = ∣S∣]w(2)

We again solve the associated numerical optimisation problem. We obtain a solution of N(k) ≤
1.28505k on the recurrence relations using the following set of weights:

i 1 2 3 4 5 6 7 > 7
v(i) 0.000000 0.261245 0.526942 0.620173 0.652549 0.661244 0.661244 0.661244
w(i) 0.000000 0.370314 0.740627 0.892283 0.961123 0.991053 1.000000 1.000000

This leads to an upper bound on the running time of Algorithm 3 of O
(

1.28505(0.661244+1)n
)

=
O(1.51685n). The bounding cases of the numerical problem are:

∣S∣ = r2 = 3 ∣S∣ = r3 = 3 ∣S∣ = r4 = 3 ∣S∣ = r4 = 4 ∣S∣ = r5 = 4 ∣S∣ = r5 = 5
∣S∣ = r6 = 5 ∣S∣ = r6 = 6 ∣S∣ = r7 = 6 ∣S∣ = r7 = 7
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We note that the analysis in [5] gives an upper bound on the running time of Algorithm 3 of
O(1.5263n). The difference with our better upper bound comes from the fact that we allow vmax

to be variable in the associated numerical optimisation problem, while vmax = 1 in [5]2.

3.6 Improvement step five: subsumption

Again, we consider the “smallest” bounding case: ∣S∣ = r2 = 3. The reduction in the measure in
the formula for Δkdiscard in the previous section is tight to the following real instance. We have
a set S of cardinality three containing three elements of frequency two, and these three frequency
two elements together have their second occurrences in two sets, each containing the same extra
frequency two element such that they are not subsets of S. In other words, we have S = {e1, e2, e3}
existing next to {e1, e2, e4}, {e3, e4} with f(e1) = f(e2) = f(e3) = f(e4) = 2.

We can reduce this case by introducing the notion of subsumption. We say that an element
e1 is subsumed by e2 if S(e1) ⊆ S(e2), i.e., if the set of sets containing e1 is a subset of the set
of sets containing e2. Notice that in this case, any set of sets that covers e1 will always cover e2
also, therefore we can safely remove e2 from the instance.

This leads to the following reduction rule.

Reduction Rule 5

if there exist two elements e1 and e2 such that S(e1) ⊆ S(e2) then

return MSC({R ∖ {e2} ∣ R ∈ S},U ∖ {e2})

We will now analyse our first algorithm that improves upon the algorithm by Fomin, Grandoni
and Kratsch: Algorithm 3 augmented with Reduction Rule 5. In the branch where S is taken in
the set cover, nothing changes. In the branch where we discard S, all sets containing the other
occurrence of a frequency two element from S are taken in the set cover. These are at least r2 sets
since no two frequency two elements can have both occurrences in the same two sets by Reduction
Rule 5. Hence, we reduce the measure by at least r2w(2). The measure is further reduced because
these removed sets contain elements that are removed also, moreover, this removal reduces the
cardinality of other sets. We lower bound the total reduction in the measure by only considering
the cases where r2 ∈ {1, 2, 3} in more detail. If r2 ∈ {1, 2}, then at least one extra element is
removed which we lower bound by v(2); this is tight if r2 = 2. If r2 = 3, then the three sets
can either contain the same extra element which gives a reduction of v(3), or these contain more
extra elements giving a reduction of at least 2v(2) and an additional Δw(∣S∣) because these exist
in other sets also.

This leads to the following set of recurrence relations:

∀ ∣S∣ ≥ 3, ∀ ri :
∞
∑

i=2

ri = ∣S∣ : N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)

Δktake ≥ w(∣S∣) +
∞
∑

i=2

riv(i) + Δw(∣S∣)
∞
∑

i=2

ri(i− 1)

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=2

riΔv(i) + r2w(2)

+ [r2 ∈ {1, 2}]v(2) + [r2 = 3]min(v(3), 2v(2) + Δw(∣S∣))

We obtain a solution of N(k) ≤ 1.28886k on the recurrence relations using the following set of
weights:

i 1 2 3 4 5 6 7 > 7
v(i) 0.000000 0.218849 0.492455 0.589295 0.623401 0.632777 0.632777 0.632777
w(i) 0.000000 0.367292 0.734584 0.886729 0.957092 0.988945 1.000000 1.000000

2The constraint vmax = 1 was also included in an earlier version of this paper [25] and in [24]. This is the reason
for the better running times in this paper compared to the running times for the same algorithms in [24, 25].
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This leads to an upper bound on the running time of the algorithm of O
(

1.28886(0.632777+1)n
)

=
O(1.51335n). The bounding cases of the numerical problem are:

∣S∣ = r2 = 3 ∣S∣ = r3 = 3 ∣S∣ = r4 = 3 ∣S∣ = r4 = 4 ∣S∣ = r5 = 4 ∣S∣ = r5 = 5
∣S∣ = r6 = 5 ∣S∣ = r6 = 6 ∣S∣ = r7 = 6 ∣S∣ = r7 = 7

3.7 Improvement step six: counting arguments

The new “smallest” worst case of our algorithm is ∣S∣ = r2 = 3. We look at an instance in which the
formula for Δkdiscard of the previous section is tight. This corresponds to a set S containing three
elements of frequency two that all have their second occurrence in a different set of size two, and,
since the optimal weights in the analysis of Section 3.6 satisfy v(3) < v(2)+Δw(∣S∣), these sets all
contain the same second element which is of frequency three. Thus, we have the following situation:
S = {e1, e2, e3} existing next to {e1, e4}, {e2, e4}, {e3, e4} with f(e1) = f(e2) = f(e3) = 2 and
f(e4) = 3.

We notice that we do not have to branch on this set S. Namely, if we take S in the set cover,
we cover three elements using one set, while if we discard S and thus take all other sets containing
e1, e2 and e3, then we cover four elements using three sets. We can cover the same four elements
with only two sets if we take S and any and any of the three sets containing e4. Therefore, we
can safely take S in the set cover without branching.

This counting argument can be generalised. For any set R with r2 elements of frequency two,
we let q be the number of elements in the sets containing a frequency two element from R that are

not in R themselves, i.e., q =
∣

∣

∣

(

∪

e∈R,f(e)=2,Q∈S(e) Q
)

∖R
∣

∣

∣. In this case, we cover ∣R∣ elements

using one set if we take R in the set cover, and we cover q+ ∣R∣ elements using r2 sets if we discard
R. Thus, if q < r2, taking R is always at least as good as discarding R since then we use r2−1 sets
less while also covering q < r2, i.e., q ≤ r2 − 1, less elements; we can always cover these elements
by picking one additional set per element.

This leads to the following reduction rule:

Reduction Rule 6

if there exist a set R with
∣

∣

∣

(

∪

e∈R,f(e)=2,Q∈S(e) Q
)

∖R
∣

∣

∣
< ∣{e ∈ R ∣ f(e) = 2}∣ then

return {R} ∪ MSC({R′ ∖R ∣ R′ ∈ S ∖ {R}},U ∖R)

We add Reduction Rule 6 to the algorithm of Section 3.6 and analyse its behaviour. If S is
discarded, we now know that at least r2 sets are removed due to Reduction Rule 5 and that, due
to Reduction Rule 6, these sets contain at least r2 elements that are removed also. This gives a re-
duction of at least r2(v(2)+w(2)). Furthermore, additional sets are reduced in cardinality because
of the removal of these elements. The reduction in the measure can not be bounded by r2Δw(∣S∣)
because we can remove a set R completely and the steepness inequalities do not guarantee that this
reduction in measure is bounded by ∣R∣Δw(∣S∣) since w(1) = 0. These inequalities do guarantee
that this reduction is lower bounded by min

(

r2Δw(∣S∣),
⌊

r2
2

⌋

w(2) + (r2 mod 2)Δw(∣S∣)
)

.
This leads to the following set of recurrence relations:

∀ ∣S∣ ≥ 3, ∀ ri :

∞
∑

i=2

ri = ∣S∣ : N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)

Δktake ≥ w(∣S∣) +
∞
∑

i=2

riv(i) + Δw(∣S∣)
∞
∑

i=2

ri(i− 1)

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=2

riΔv(i) + r2(v(2) + w(2)) +

min
(

r2Δw(∣S∣),
⌊r2

2

⌋

w(2) + (r2 mod 2)Δw(∣S∣)
)
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We obtain a solution of N(k) ≤ 1.29001k on the recurrence relations using the following set of
weights:

i 1 2 3 4 5 6 7 > 7
v(i) 0.000000 0.127612 0.432499 0.544653 0.587649 0.602649 0.606354 0.606354
w(i) 0.000000 0.364485 0.728970 0.881959 0.953804 0.987224 0.999820 1.000000

This leads to an upper bound on the running time of the algorithm of O
(

1.29001(0.606354+1)n
)

=
O(1.50541n). The bounding cases of the numerical problem are:

∣S∣ = r2 = 3 ∣S∣ = r3 = 3 ∣S∣ = r4 = 3 ∣S∣ = r4 = 4 ∣S∣ = r5 = 4 ∣S∣ = r5 = 5
∣S∣ = r6 = 5 ∣S∣ = r6 = 6 ∣S∣ = r7 = 6 ∣S∣ = r7 = 7 ∣S∣ = r8 = 7 ∣S∣ = r8 = 8

3.8 The final improvement: frequency two elements in sets of size two

We now present the final improvement step. This will prove Theorem 1 and explicitly give the
associated algorithm: Algorithm 4. We again look at the case ∣S∣ = r2 = 3 and closely inspect
instances that are tight to the formula for Δkdiscard of the previous section. Currently, this
corresponds to a set S = {e1, e2, e3} containing three elements of frequency two whose second
occurrences form one of the following three situations:

1. {e1, e4}, {e2, e5}, {e3, e6} with all elements of frequency two existing next to {e4, e5, e6}.

2. {e1, e4}, {e2, e5}, {e3, e6} with all elements of frequency two existing next to {e4, e5} and
{e6, e7, e8}.

3. {e1, e4}, {e2, e5}, {e3, e4, e6} with all elements of frequency two existing next to {e5, e6}.

Notice that the optimal weights in the analysis of Section 3.7 satisfy 2w(2) = w(3), i.e., w(2) =
Δw(3). Hence, in all three cases, the measure is reduced by the same amount in the branch where
S is discarded: w(3)+3v(2) for removing S plus an additional 3v(2)+5w(2) due to the reduction
rules.

We add the following reduction rule that removes any set of cardinality two containing two
frequency two elements to our algorithm and obtain Algorithm 4.

Reduction Rule 7

if there exits a set R ∈ S of cardinality two R = {e1, e2} with f(e1) = f(e2) = 2 then

Let S(ei) = {R,Ri} (i = 1, 2), Q = (R1 ∪R2) ∖R, C = MSC((S ∖ {R,R1, R2})∪ {Q},U ∖R)
if Q ∈ C then

return (C ∖ {Q}) ∪ {R1, R2}
else

return C ∪ {R}

If there exists a set R of cardinality two containing two frequency two elements e1, e2, such that
ei occurs in R and Ri, then the reduction rule transforms this instance into an instance where R,
R1 and R2 have been replaced by the set Q = (R1 ∪R2) ∖R.

We will now argue that Reduction Rule 7 is correct. Notice that there exist a minimum set
cover of (S,U) that either contains R, or contains both R1 and R2. This is so because if we take
only one set from R, R1 and R2, then this must be R since we must cover e1 and e2; if we take
two, then it is of no use to take R since the other two cover more elements; and, if we take all
three, then the set cover is not minimal. The rule postpones the choice between the first two
possibilities, taking Q in the minimum set cover of the transformed problem if both R1 and R2 are
in a minimum set cover, or taking no set in the minimum set cover of the transformed problem is
R is in a minimum set cover. This works because the transformation preserves the fact that the
difference in the number of sets we take in the set cover between both possibilities is one. Hence,
Reduction Rule 7 is correct.

14



Algorithm 4 Our final algorithm for the set cover modelling of dominating set.

Input: A set cover instance (S,U)
Output: A minimum set cover of (S,U)

MSC(S,U):
1: if S = ∅ then return ∅
2: Let S ∈ S be a set of maximum cardinality
3: if there exist an element e ∈ U of frequency one then

4: return {R} ∪ MSC({R′ ∖R ∣ R′ ∈ S ∖ {R}},U ∖R), where R is the set with e ∈ R

5: else if there exist sets Q,R ∈ S such that R ⊆ Q then

6: return MSC(S ∖ {R},U)
7: else if there exist two elements e1 and e2 such that S(e1) ⊆ S(e2) then

8: return MSC({R ∖ {e2} ∣ R ∈ S},U ∖ {e2})

9: else if there exist a set R with
∣

∣

∣

(

∪

e∈R,f(e)=2,Q∈S(e) Q
)

∖R
∣

∣

∣ < ∣{e ∈ R ∣ f(e) = 2}∣ then

10: return {R} ∪ MSC({R′ ∖R ∣ R′ ∈ S ∖ {R}},U ∖R)
11: else if there exits a set R ∈ S of cardinality two R = {e1, e2} with f(e1) = f(e2) = 2 then

12: Let S(ei) = {R,Ri} (i = 1, 2), Q = (R1∪R2)∖R, C = MSC((S ∖{R,R1, R2})∪{Q},U ∖R)
13: if Q ∈ C then

14: return (C ∖ {Q}) ∪ {R1, R2}
15: else

16: return C ∪ {R}
17: else if ∣S∣ ≤ 2 then

18: return a minimum set cover computed in polynomial time by using maximum matching
19: Recursively compute C1 = {S}∪MSC({S′ ∖S ∣ S′ ∈ S ∖{S}},U ∖S) and C2 = MSC(S ∖{S},U)
20: return the smallest cover from C1 and C2

Before analysing Algorithm 4, we notice that we need additional constraints on the weights
for the analysis to be valid due to Reduction Rule 7. Namely, this reduction rule should never be
allowed to increase the measure of an instance. For the moment, we forget that the elements e1,
e2 and S are removed, and demand that the measure is not increased by merging the two sets S1

and S2. To this end, we impose the following additional constraints:

∀i, j ≥ 2 : w(i) + w(j) ≥ w(i+ j − 2)

For a proper analysis, we further subdivide our cases by differentiating between different kinds
of elements of frequency two depending on the kind of set their second occurrence is in. Let rf3
and rf≥4 be the number of elements of frequency two whose second occurrence is in a set of size
two with a frequency three element and with a higher frequency element, respectively. And, let
rs3 and rs≥4 be the number of elements of frequency two whose second occurrence is in a set of
cardinality three and a set of greater cardinality, respectively.

We consider branching on a set S with ri elements of frequency i, for all ∣S∣ ≥ 3, all ∣S∣ =
∑∞

i=2 ri, and all r2 = rf3 + rf≥4 + rs3 + rs≥4. Because S is of maximal cardinality, we only
consider subcases with rs4 > 0 if ∣S∣ ≥ 4. For these cases, we will first derive lower bounds on the
reductions in the measure. In order to keep the bounding cases of the associated numerical problem
corresponding to real instances the algorithm can branch on, we perform a subcase analysis dealing
with the more subtle details later. Let ℛ be the set of sets containing a frequency two element
from S, excluding S itself: the algorithm takes the sets in ℛ in the set cover if we discard S.

In the branch where S is taken in the solution, we again start with a reduction in the measure
of w(∣S∣) +

∑∞
i=2 riv(i) + Δw(∣S∣)

∑∞
i=2 ri(i − 1) due the the removal of S, its elements, and the

reduction in size of the sets containing elements from S. Additionally, for each element of frequency
two occurring in a size two set, the measure is not reduced by Δw(∣S∣) for reducing this set in
size, but by w(2) since the set will be removed by Reduction Rule 3. Similarly, for each element of
frequency two occurring in a size three set, the reduction is Δw(3) instead of Δw(∣S∣) if ∣S∣ ≥ 4.
Together, this gives an extra reduction of (rf3+ rf≥4)(w(2)−Δw(∣S∣))+ rs3(Δw(∣3∣)−Δw(∣S∣)).

15



Finally, if S contains elements of frequency two whose second occurrence is in a set of size two
containing an elements of frequency three, then these frequency three elements are reduced in
frequency because these sets have become singleton subsets; these elements can also be removed
completely if they occur in multiple such sets. This leads to an additional reduction of the measure
of at least [rf3 > 0]min(v(3), rf3Δv(3)).

In the branch where S is discarded, we reduce the measure by w(∣S∣) +
∑∞

i=2 riΔv(i) because
of removing S. The sets in ℛ are taken in the set cover; this reduces the measure by at least
r2(v(2)+w(2)) because we have at least r2 sets and they together contain at least r2 other elements
by Reduction Rule 6. Additionally, the rs3 sets of size three and the rs≥4 sets of size at least four
reduce the measure by at least an extra rs3Δw(3) + rs≥4(w(4) − w(2)). And, if these sets are of
size two but contain elements of frequency at least three, we can add [rf3 > 0]Δv(3)+ [rf≥4 > 0]
(v(4)− v(2)); notice that we cannot add rf3Δv(3) as one element may be in multiple sets in ℛ.

Furthermore, other sets are reduced in size because of the removal of all elements in
∪

ℛ.
Let qr⃗ be the number element occurrences outside S and ℛ that are removed after taking all
sets in ℛ in the set cover in the subcase corresponding to r⃗, i.e., for this subcase, this is the
number of times a set is reduced in cardinality by one. By using the steepness inequalities
in the same way as in the previous section, we reduce the measure by at least an additional:
min

(

qr⃗Δw(∣S∣),
⌊

qr⃗
2

⌋

w(2) + (qr⃗ mod 2)Δw(∣S∣)
)

.
We now give a lower bound on qr⃗. There are at least r2 additional elements that are removed;

these are all of frequency at least two, hence at least r2 additional element occurrences are removed.
These occurrences do not all need to be outside of ℛ: for every set in ℛ of size three, there is
one empty slot that could be filled by an occurrence of these elements. Similarly, for every set
in ℛ of size at least four, there are ∣S∣ − 2 empty slots that can be filled with these elements.
Furthermore, if the sets in ℛ contain elements of frequency three or at least four, then the number
of removed element occurrences increases by 1 or 2, respectively. Altogether, we find that qr⃗ ≥
max (0, r2 + [rf3 > 0] + 2[rf≥4 > 0]− rs3 − (∣S∣ − 2)rs≥4).

Finally, we split some recurrences based on Reduction Rule 7. If rs3 > 0, and a corresponding
set of size three only contains elements of frequency two, then this set is removed when taking S

in the set cover: this can either be done by Reduction Rule 7, or by the old Reduction Rules 1
and 3. We split the recurrence relations with rs3 > 0 into two separate cases. We identify these
case by introducing yet another identifier: rrule7. One subcase has rrule7 = True, and one has
rrule7 = False. If rrule7 = True, we add an additional 2v(2) + w(2) to the formula of Δktake

representing the additional set and elements that are removed. Notice that we can do this because
we did not take these two frequency two elements an this cardinality two set into account in the
new restrictions on the weights we imposed before starting the above analysis.

This leads to the following set of recurrence relations:

∀ ∣S∣ ≥ 3, ∀ ri :

∞
∑

i=2

ri = ∣S∣, ∀ r2 = rf3 + rf≥4 + rs3 + rs≥4, ∀ rrule7 ∈ {True, False}

with rs≥4 = 0 if ∣S∣ = 3, and rrule7 = False if rs3 = 0 :

N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)

Δktake ≥ w(∣S∣) +
∞
∑

i=2

riv(i) + Δw(∣S∣)
∞
∑

i=2

ri(i− 1) + (rf3 + rf≥4)(w(2)−Δw(∣S∣))

+rs3(Δw(∣3∣)−Δw(∣S∣)) + [rf3 > 0]min(v(3), rf3Δv(3))

+[rrule7](2v(2) + w(2))

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=2

riΔv(i) + r2(v(2) + w(2)) + rs3Δw(3) + rs≥4(w(4)−w(2))

+[rf3 > 0]Δv(3) + [rf≥4 > 0](v(4)− v(2))

+min
(

qr⃗Δw(∣S∣),
⌊qr⃗

2

⌋

w(2) + (qr⃗ mod 2)Δw(∣S∣)
)
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Here, we let qr⃗ be tight the above lower bound.
Unfortunately, this does not yet complete the description of the new numerical problem. For

some specific cases, we will prove that we can increase the corresponding Δktake and Δkdiscard. We
do this not only to improve the proven running time of the algorithm, but also to make sure that
the recurrences representing bounding cases of this numerical problem represent actual instances
that can be branched on. In other words, the bounding cases should not be based on non-tight
lower bounds on the reductions of the measure. For one subcase, we not only increase Δktake and
Δkdiscard, but also split the corresponding recurrence into two separate recurrence relations.

Consider the following cases where S = {e1, e2, e3} or S = {e1, e2, e3, e4}:

1. ∣S∣ = 3, r2 = rs3 = 3 (qr⃗ = 0).

(a) rrule7 = False.

Remind that this means that none of the sets in ℛ can consist solely of frequency two
elements, i.e., ℛ contains one element of frequency at least three existing in all three
sets in ℛ, or ℛ contains at least two elements of frequency at least three. In both cases,
we consider what happens in the branch where the algorithm discards S and takes the
sets in ℛ in the set cover.

In the first case, no frequency two element may occur in two sets in ℛ by Reduction
Rule 5. Thus, we need at least one more element than the three counted in the above
analyses: we reduce the measure by at least an additional Δv(3) + v(2). Furthermore,
by taking the sets in ℛ in the set cover, there are at least three element occurrences
outside S and ℛ removed. No two of these elements may exist together in a set of size
two by Reduction Rule 7. Hence, this gives an at least additional 3Δw(3).

In the second case, the measure is reduced by at least an additional 2Δv(3). Moreover,
sum of the frequencies of the elements in (

∪

ℛ)∖S is at least eight, while there are only
six open slots in ℛ, i.e., there are at least two element outside of S and ℛ removed. If
there are exactly two extra element occurrences removed which occur together in a size
two set, then this set is a subset of a set in ℛ because the two frequency three elements
must be in some set together: this is not possible due to Reduction Rule 3. In any
other case, the reduction in measure due to the removal of these element occurrences
is at least 2Δw(3).

Altogether, we add the minimum of both quantities to Δkdiscard by setting Δkdiscard+=
min (Δv(3) + v(2) + 3Δw(3), 2Δv(3) + 2Δw(3)).

(b) rrule7 = True.

Notice that subcase (a) dominates every case where there exist one element of frequency
at least three and one extra element in ℛ, or where there exist at least two elements of
frequency at least three in ℛ. Furthermore, we can disregard the case with one element
of frequency at least three and two frequency two elements because of Reduction Rule 5.
Hence, we can restrict ourselves to the case where (

∪

ℛ) ∖ S consists of at least three
frequency two elements.

Consider the branch where the algorithm takes S in the set cover. If there are only three
frequency two elements, i.e, ℛ = {{e1, e4, e5}, {e2, e4, e6}, {e3, e5, e6}}, then Reduction
Rules 7 and 1 remove all sets and elements from ℛ. This gives an additional reduction
of v(2)+ 2w(2) to Δktake besides the 2v(2)+w(2) we counted already because rrule7 =
True. If there are four or more frequency two elements in (

∪

ℛ) ∖ S, then Reduction
Rule 7 can be applied at least twice reducing the measure by the same amount. We set
Δktake+= v(2) + 2w(2).

2. ∣S∣ = 3, r2 = rs3 = 2, r3 = 1 (qr⃗ = 0).

(a) rrule7 = False.
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ℛ contains one element of frequency at least three existing in both sets in ℛ, or ℛ
contains at least two elements of frequency at least three. We consider the branch
where S is discarded and the sets in ℛ are taken in the set cover.

In the first case, ℛ = {{e1, e4, e5}, {e2, e4, e6}} with f(e4) ≥ 3 and all other elements
of frequency two. We have an extra reduction in the measure of Δv(3) + v(2) because
e4 has higher frequency and we have an extra element. Additionally, we look at the
number of element occurrences outside of S and ℛ that are removed: there are at least
three of these. Hence, we get an additional reduction of min(3Δw(3), w(2) + Δw(3))
equivalent to setting qr⃗ = 3.

In the second case, we reduce the measure by at least an additional 2Δv(3) because of
the higher frequency elements. Moreover, there are at least two element occurrences
outside S and ℛ removed: this gives an additional reduction of min(2Δw(3), w(2))
equivalent to setting qr⃗ = 2.

We add the minimum of both quantities to Δkdiscard by setting Δkdiscard+=min(Δv(3)+
v(2) + min(3Δw(3), w(2) + Δw(3)), 2Δv(3) + min(2Δw(3), w(2))).

(b) rrule7 = True.

Subcase (a) dominates every case with elements of frequency at least three in ℛ. Thus,
we may assume that ℛ contains only elements of frequency two, and there are at least
three of them because of Reduction Rule 5. In the branch where S is discarded and all
sets in ℛ are taken in the set cover, one extra element of frequency two and at least
two element occurrences outside of S and ℛ are removed. Altogether, we add their
contribution to the measure to Δkdiscard by setting Δkdiscard+= v(2) + w(2).

3. ∣S∣ = 3, r2 = rs3 = 1, r3 = 2, rrule7 = False (qr⃗ = 0).

In the branch where S is discarded, there must be two elements in the unique set in ℛ and
one must be of frequency at least three. Hence, we set Δkdiscard+= Δv(3) + v(2).

4. ∣S∣ = 3, r2 = rs3 = 2, r4 = 1, rrule7 = False (qr⃗ = 0).

Analogous to the case where ∣S∣ = 3, r2 = rs3 = 2, r3 = 1, rrule7 = False (case 2a), we set
Δkdiscard+=min(Δv(3)+v(2)+min(3Δw(3), w(2)+Δw(3)), 2Δv(3)+min(2Δw(3), w(2))).

5. ∣S∣ = 3, r2 = 3, rf3 = 1, rs3 = 2, rrule7 = False (qr⃗ = 2).

Since rf3 = 1, we have a set R1 of size two in ℛ with an element of frequency three. If this
element is also in the other two sets in ℛ, then technically we are in this case because none
of the re3 sets of size three consist solely of frequency two elements. However, after taking S

in the solution, R1 disappears because it has become a singleton singleton set and Reduction
Rule 7 fires on the remaining sets in ℛ. The recurrence relation for the corresponding case
with rrule7 = True correctly represents this case. Therefore, we only have to consider the
case where there is another higher frequency element that prevents the rs3 sets of size three
from having only frequency two elements.

For this case, consider the branch where S is discarded and the sets in ℛ are taken in the
set cover. Since there is another element of frequency at least three, we reduce the measure
by at least an additional Δv(3). Furthermore, there are at least eight element occurrences
of the elements in (

∪

ℛ) ∖ S, while ℛ has only five available slots. Thus, qr⃗ should be 3
instead of 2. This allows us to set Δkdiscard+= Δv(3) + Δw(3).

6. ∣S∣ = 3, r2 = 3, rf≥4 = 1, rs3 = 2, rrule7 = False (qr⃗ = 3).

In contrast to the previous case, the element of frequency at least four in the size two set
in ℛ can cause all other sets in ℛ not to consist of frequency two elements only. We split
this case into two separate recurrences: one where this element has frequency four, and one
where it has higher frequency.
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In the first case, we can set Δktake+= Δv(4), because after taking S in the set cover, this
element exists in a singleton set and hence its frequency is reduced by one. Notice that we
could not bound this reduction before since the frequency of the element was unbounded.

In the second case, we remove at least one extra element occurrence outside ℛ and S. If
all other elements in ℛ have frequency two, this extra element occurrence cannot be in a
set with another removed element occurrence by Reduction Rule 5, and we can add Δw(3)
to the reduction (not needing to increasing qr⃗ by one). If some other element in ℛ has
frequency at least three, then we remove at least two extra element occurrence outside ℛ
and S. Taking the worst case of both, we can set Δkdiscard+= Δw(3).

7. ∣S∣ = 3, rf3 = 2, rs3 = 1, rrule7 = False (qr⃗ = 3).

There are two possible situations: either there are two different elements of frequency three
in the rf3 sets of size two, or both sets contain the same element of frequency three. In
the latter case, this element cannot also be in the third set in ℛ because this would trigger
Reduction Rule 6 on S. Since rrule7 = False, there must be another element of frequency
at least three in this third set in ℛ. In both cases, we have an extra element of frequency at
least three; hence, we can set Δkdiscard+= Δv(3).

8. ∣S∣ = 3, rf≥4 = 2, rs3 = 1 (qr⃗ = 4).

(a) rrule7 = False.

Similar to the previous case, there are two possible situations: either there are two
different elements of frequency at least four in the rf≥4 sets of size two, or both sets
contain the same element of frequency at least four.

In the first case, we have an additional reduction of at least v(4) − v(2) due to this
element. Moreover, at least ten element occurrences of the elements in (

∪

ℛ) ∖ S are
removed while there are only 4 slots available in ℛ and currently qr⃗ = 4. This means
we reduce the measure by an additional min(2Δw(3), w(2)).

In the second case, the element of frequency at least four cannot be in the third set
in ℛ because then Reduction Rule 6 applies to S; hence, there must be an element of
frequency at least three in the third set in ℛ. The gives an additional Δv(3), while
counting the number of removed element occurrences of the elements in (

∪

ℛ)∖S gives
us an additional Δw(3).

Altogether, we add the minimum of both cases to Δkdiscard by setting Δkdiscard+=
min(Δv(3) + Δw(3), v(4)− v(2) + min(2Δw(3), w(2))).

(b) rrule7 = True.

Consider the branch where we take S in the solution. After removing the elements e1, e2
and e3, no sets outside of ℛ are reduced in size. This is true because the two size two sets
in ℛ that are removed contain an element of frequency at least four: after removing their
occurrences in ℛ, they still have frequency at least two. Moreover, ri = 0 for all i ≥ 3, so
no other element occurrences outside of ℛ are removed. As a result, two sets of size two
or three are merged by Reduction Rule 7. Notice that we already counted the reduction
due to removing a set of size two and its elements, but not the reduction due to the fact
that two other sets are replaced by one larger one. This gives an additional reduction
of the measure; we set Δktake+= min(2w(3)−w(4), w(3)+w(2)−w(3), 2w(2)−w(2)).

9. ∣S∣ = 3, rf3 = 3, rrule7 = False (qr⃗ = 4).

Consider the branch where S is discarded and the sets in ℛ are taken in the set cover.
Since all sets in ℛ are of size two, there are three different frequency three elements in ℛ by
Reduction Rule 6 instead of the one we count now. These elements reduce the measure by an
additional 2Δv(3). Moreover, we removed at least nine element occurrences of the elements
in (

∪

ℛ) ∖ S from which only three can be in ℛ and qr⃗ counts only four: at least two more
are removed reducing the measure by an additional min(2Δw(3), w(2)). Altogether, we set
Δkdiscard+= 2Δv(3) + min(2Δw(3), w(2)).
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10. ∣S∣ = 3, rf≥4 = 3, rrule7 = False (qr⃗ = 5).

This case is similar to the above: there must be at least two more elements of frequency at
least four reducing the measure by 2(v(4)− v(2)) in the branch where S is discarded. And,
by a counting removed element occurrences of the elements in (

∪

ℛ) ∖S, we should increase
qr⃗ by four. Hence, we set Δkdiscard+= 2(v(4)− v(2)) + min(4Δw(3), 2w(2)).

11. ∣S∣ = 4, rs≥4 = 4, rrule7 = False (qr⃗ = 0).

In the branch where S is discarded and the sets in ℛ are taken in the solution, we only
count a measure of 4v(2) for the removed elements in (

∪

ℛ)∖S. There must be at least four
elements in (

∪

ℛ) ∖S by Reduction Rule 6 and there are twelve slots to fill. This can either
be done by six elements of frequency two, or by using higher frequency elements. Hence, we
set Δkdiscard+= min(2v(2),Δv(3)).

We solve the numerical problem associated with the described set of recurrence relations and
obtain a solution of N(k) ≤ 1.28935k using the following set of weights:

i 1 2 3 4 5 6 7 > 7
v(i) 0.000000 0.011179 0.379475 0.526084 0.573797 0.591112 0.595723 0.595723
w(i) 0.000000 0.353012 0.706023 0.866888 0.943951 0.981278 0.997062 1.000000

This leads to an upper bound on the running time of the algorithm of O
(

1.28759(0.595723+1)n
)

=
O(1.49684n). The bounding cases of the numerical problem are:

∣S∣ = r3 = 3 ∣S∣ = r4 = 3 ∣S∣ = 4, r2 = re≥4 = 4 ∣S∣ = r5 = 4 ∣S∣ = r5 = 5
∣S∣ = r6 = 5 ∣S∣ = r6 = 6 ∣S∣ = r7 = 6 ∣S∣ = r7 = 7 ∣S∣ = r8 = 7 ∣S∣ = r8 = 8

This proves Theorem 1.

4 Evidence That Further Improvement Is Hard

We stop with the design by measure and conquer process after obtaining Algorithm 4. We do so
because it is hard to further improve the algorithm significantly by the same method.

We acknowledge that it is possible to improve on the new “smallest” worst case ∣S∣ = 4, r2 =
re≥4 = 4. We tried to do so by introducing the following reduction rule that deals with each
connected component separately.

Reduction Rule 8

if S contains multiple connected components C1, C2, . . . , Cl then

return
∪l

i=1 MSC(Ci,
∪

S∈Ci
S)

However, introducing this new reduction rule will help only marginally in obtaining better
bounds with our current type of analysis. In particular, we analyse the possible gain (with our
current analysis method) in some optimistic scenario where no frequency two elements appear in
a worst case. Even then, the bound obtained is no better than O(1.4952n). In addition, these
frequency two elements cannot be expected to be reduced altogether with reduction rules; see
Proposition 1 below.

We tried to close the gap between the O(1.4969n) algorithm of Section 3.8 and this lower
bound. This required us to perform an extensive case analysis to show the additional effects of
this rule, however, we gave up after having to consider too many subcases.

First of all, it seems to be necessary to consider elements of frequency two: we do not seem
to be able to either remove them completely by reduction rules, nor to solve the instance in
subexponential time if all elements have frequency two. This is for the following reason.

Proposition 1 There is no polynomial time algorithm that solves minimum set cover where all
elements have frequency at most two and all sets have cardinality at most three, unless P =
NP. Moreover, under the exponential time hypothesis, there is no such algorithm running in
subexponential time.
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Proof: Consider an instance G = (V,E) of the minimum vertex cover problem with maximum
degree three. From this instance, we build an equivalent minimum set cover instance: for each
edge introduce an element of frequency two, and for each vertex introduce a set containing the
elements representing the edges it is incident to. Notice that the sets have cardinality at most
three. It is easy to see that a minimum set cover of the constructed instance corresponds to a
minimum vertex cover in G.

Therefore, a polynomial time algorithm as in the statement of the proposition would solve
minimum vertex cover on graphs of maximum degree three in polynomial time, which is im-
possible unless P = NP . And, such an algorithm running in subexponential time would solve
minimum vertex cover restricted to graphs of maximum degree three in subexponential time which
is impossible unless the exponential time hypothesis fails [16]. □

Our second piece of evidence that improving our algorithm further by our method is hard is
the following. Consider what we have been doing in the last few improvement steps. In each of
these steps, the “smallest” worst case involved frequency two elements, and we looked for new
reduction rules dealing with these elements more efficiently. We know by Proposition 1 that we
cannot completely remove these frequency two elements, but what if we could formulate powerful
enough reduction rules such that they never occur in any of the worst cases of the algorithm. We
may not have such an algorithm, but we can analyse such an algorithm in the same way as we did
in Section 3.

Using our measure, the best upper bound on the running time we can prove for such an
algorithm corresponds to the solution of the numerical problem associated to the following set of
recurrence relations:

∀ ∣S∣ ≥ 3, ∀ ri :
∞
∑

i=2

ri = ∣S∣ : N(k) ≤ N(k −Δktake) +N(k −Δkdiscard)

Δktake ≥ w(∣S∣) +
∞
∑

i=2

riv(i) + Δw(∣S∣)
∞
∑

i=2

ri(i− 1) + [r2 > 0]∞

Δkdiscard ≥ w(∣S∣) +
∞
∑

i=2

riΔv(i) + r2(v(2) + w(2)) + [r2 > 0]∞

Where [r2 > 0]∞ = 0 if r2 = 0. These terms exist to make Δktake and Δkdiscard large enough not
to appear as a bounding case whenever r2 > 0.

We obtain a solution of N(k) ≤ 1.26853k on the recurrence relations using the following set of
weights:

i 1 2 3 4 5 6 7 > 7
v(i) 0.000000 0.000000 0.426641 0.607747 0.671526 0.687122 0.690966 0.690966
w(i) 0.000000 0.353283 0.706566 0.866101 0.948043 0.985899 1.000000 1.000000

This leads to an upper bound on the running time of such a hypothetical algorithm proven by
these methods of O

(

1.26853(0.690966+1)n
)

= O(1.49513n). The bounding cases of the numerical
problem are:

∣S∣ = r3 = 3 ∣S∣ = r4 = 3 ∣S∣ = r5 = 4 ∣S∣ = r6 = 4 ∣S∣ = r6 = 5 ∣S∣ = r6 = 6
∣S∣ = r7 = 6 ∣S∣ = r7 = 7 ∣S∣ = r>7 = 7 ∣S∣ = r>7 = 8

Of course, this is not a lower bound on the complexity of dominating set. This is a lower bound
on the upper bounds on running times we can get by using measure and conquer in this way on
algorithms using the set cover formulation of dominating set that only considers to branch on a
single set. It shows that it is not worth the effort to try and improve Algorithm 4 with the purpose
of finding an algorithm with a lower upper bound on its running time by doing an extensive case
analysis since it can only improve the running time marginally.
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5 Conclusion

We have shown that measure and conquer can not only be used for the analysis of exact exponential
time algorithms, but also as a guiding tool in the design of these algorithms. As an example
problem, we applied our method to the set cover modelling of Dominating Set: the same
problem used to introduce measure and conquer. In this way, we have obtained an algorithm for
dominating set running in time O(1.4969n) and using polynomial space.

In another paper [26], we applied the same approach in a slightly different manner to a series of
edge domination problems: Edge Dominating Set, Minimum Maximal Matching, Matrix

Dominating Set, and weighted version of these problems. In this setting, we did not iteratively
introduce new reduction rules, but iteratively changed the branching rule on specific local struc-
tures to improve the worst case behaviour of the algorithm. In this paper, we did not feel the
need to work with modifications to the branching rule. This is because every worst case we tried
to improve could be improved by introducing a new reduction rule. Also, branching on a set S

of maximal cardinality has two advantages: a set of maximal cardinality has maximal impact on
the instance, the maximum number of other sets and elements are removed or reduced, and it
allows us to use the cardinality of S as an upper bound on the cardinality of any other set in the
instance. However, some of our arguments in Section 4 do not apply to algorithms using modified
branching strategies.

Practical issues related to solving the numerical problems. We notice that in order to
apply our method to any problem, it is vital to have an efficient solver for numerical problems
associated with a measure and conquer analysis: having to wait more than an hour for an analysis
to be completed and for the new bounding cases to be known is not an option. Such a solver
can be obtained in many ways, for example by means of random search. However, random search
does not converge to the optimum quickly enough to handle larger problems involving more than
ten variables and hundreds of thousands of subcases, much like the problem associated with
Algorithm 4. For a general treatment of such problems, see [4]. Before going into more details on
our implementation, we note that an alternative way to solve these problems was found by Gaspers
and Sorkin in [12] by rewriting the measure in such a way that a convex program is obtained.

We used a variation of Eppstein’s smooth quasiconvex programming algorithm [4]. We modified
this algorithm in two important ways. Let w⃗ ∈ D be the finite dimensional vector of weights in
the feasible polytope D = {x⃗ ∈ ℝ

d ∣ Ax⃗ ≤ b⃗} defined by the constraints Aw⃗ ≤ b⃗. We denote

row i of A by a⃗i, and the ith component of b⃗ by bi. Let �r(w) be the function mapping the
weight vector w⃗ to the solution to recurrence r ∈ R, where R is the set of recurrence relations; we
are minimising �(r⃗) = maxr∈R �r(w⃗) over all w⃗ ∈ D. For some initial tolerance, and until some
desired tolerance level is obtained, it repeats the following steps.

1. For all �r(w⃗) that are within a tolerance interval from �(w⃗), compute the gradient ∇�r(w⃗).

2. Compute the set of constraints with a⃗i ⋅ w⃗ within a fraction of the tolerance interval from bi.

3. Compute the vector v⃗ such that 
 is maximal and satisfies the following set of constraints:
v⃗ ⋅ ∇�r(w⃗) ≥ 
 for all ∇�r(w⃗) in the computed set; a⃗i ⋅ v⃗ ≤ 0 for all constraints i in the
computed set; v⃗ lies in the unit ball in ℝ

d.

4. If no such vector exists, lower the tolerance, and restart from step 1.

5. Minimise �(w⃗+�v⃗) by a line search using standard one dimensional optimisation techniques.

6. Repeat from step 1 using w⃗ := w⃗ + �v⃗ and lower the tolerance if � is very small.

Compared to Eppstein, we introduced the following two modifications. First of all, we included
the feasible set of weights D in the algorithm instead of incorporating them in the functions
(setting �(w⃗) = ∞ if w ∕∈ D). This allows the algorithm to smoothly follow these boundaries
without getting stuck.
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Second of all, we do not just compute a direction in which we can find a better point, but
we compute the unit length direction v⃗ with the property that its minimum inner product with a
gradient �r(w⃗) of a function which value is within a tolerance interval form �(w⃗) is maximised.
This gives a direction in which a line search is most likely to give a better result. And, if the result
is not satisfactory, then this must be because the tolerance level is still to high, in which case,
we lower it in step 6. We note that the gradients can be found by means of implicit differation,
and that we can compute the vector v⃗ by solving a small quadratically constrained program for
which many solvers are available. Both modifications greatly improve the algorithm in practical
situations.
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