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ABSTRACT
Programming exercise assessment tools alleviate the task of
teachers, and increase consistency of markings. Many pro-
gramming exercise assessment tools are based on testing. A
test-based assessment tool for programming exercises can-
not ensure that a solution is correct. Moreover, it is difficult
to test if a student has used good programming practices.
This is unfortunate, because teachers want students to ad-
opt good programming techniques. We propose to use stra-
tegies, in combination with program transformations, as a
foundation for functional programming exercise assessment.
Expert knowledge, in the form of model solutions, can be
expressed as programming strategies. Using these strategies
we can guarantee that a student program is equivalent to a
model solution, and we can report which solution strategy
has been used to solve the programming problem.

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Computer-assisted
instruction (CAI); K.3.2 [Computer and Information
Science Education]: Computer science education

General Terms
Languages, Human Factors, Measurement

Keywords
Automatic assessment, functional programming, Haskell,
strategies

1. INTRODUCTION
Every computer science curriculum offers courses in which

beginners learn to program, and every year, thousands of
students take such courses. To support learning program-
ming, it is important to assess the students’ progress and
provide timely feedback. Traditionally, a teacher or an as-
sistant assesses a student’s abilities and progress. However,
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in the case of large class sizes, providing timely feedback is
not always possible. Furthermore, repeatedly assessing stu-
dent exercises is tedious, time consuming, and error prone.
It is difficult to keep judgements consistent and fair. To as-
sist teachers in assessing programming assignments, many
assessment tools have been developed.

Most automated assessment tools for programming lan-
guages are based on some form of testing [1]. Test-based
assessment tools try to determine correctness by compar-
ing the output of a student program to the expected results
on test data. Using testing for assessment has a number of
problems. First, an inherent problem of testing is coverage:
how do you know you have tested enough? Testing does
not ensure that the student program is correct. Second, as-
sessing design features, such as the use of good programming
techniques or the absence of imperfections, is hard if not im-
possible with testing. Consider the following function that
solves the problem of converting a list of binary numbers to
its decimal representation:

fromBin :: [Int ] → Int
fromBin = fromBin ′ 2
fromBin ′ n [ ] = 0
fromBin ′ n (x : xs) = x ∗ n∧(length (x : xs)− 1)

+ fromBin ′ n xs

This function returns correct results, hence test-based as-
sessment tools will most likely accept this as a good solu-
tion. However, this implementation contains at least one
imperfection: the length calculation is inefficient (an ele-
ment is added to the list and then the length of the list is
subtracted by one). We found this imperfection frequently
in a set of student solutions. It would certainly help if we
had means to report and explain such inefficient or imperfect
solutions. Third, testing cannot reveal which algorithm has
been used. For instance, when asked to implement quick-
sort, it is difficult to discriminate between bubblesort and
quicksort. Fourth, testing is a dynamic process and is there-
fore vulnerable to bugs, and even malicious features, that
may be present in solutions.

strategy language [3]. We use this language to capture ex-
pert knowledge about how to solve an exercise. The frame-
work can handle exercises from multiple domains, such as
proposition logic, linear algebra, etc. Recently, we have ex-
tended our framework with the ability to reason about pro-
gramming exercises [2]. We use this framework, in combin-
ation with program transformations, based on the lambda
calculus, to assess functional programming exercises. Our
approach is rather different from testing: we can guaran-



tee that the submitted student program is equivalent to a
model program. We can recognise many different equivalent
solutions from a model solution. For example, the following
student solution:

fromBin = fromBaseN 2
fromBaseN b n = fromBaseN ′ b (reverse n)

where
fromBaseN ′ [ ] = 0
fromBaseN ′ b′ (c : cs) = c + b′ ∗ (fromBaseN ′ b′ cs)

is recognised from this model solution:

fromBin = foldl ((+) ◦ (2∗)) 0

Despite the fact that this solution appears very different
from the model solution, it will be recognised as equival-
ent. The two solutions are essentially the same. The foldl
function can be defined as a foldr :

foldl op b = foldr (flip op) b ◦ reverse

The first solution makes use of this equivalence. It uses,
however, the the explicit recursive definition of foldr .

In this paper we show how programming strategies and
program transformations can be used to assess functional
programming exercises. Using strategies for assessing stu-
dent programs solves the four problems of using testing for
assessment described above: if a program is determined to
be equivalent, it is guaranteed to be correct; we can re-
cognise and report imperfections; we can determine which
algorithm has been implemented; and strategy-based assess-
ment is carried out statically. In contrast with our approach,
test-based assessment tools can give a judgement of all pro-
grams including incorrect ones. Test-based assessment tools
can prove a program to be incorrect by providing a counter-
example. However, finding a counter-example also suffers
from the coverage problem.

We use the functional programming language Haskell as
our object language. We have integrated the Haskell com-
piler Helium [4] into our assessment tool. We believe, how-
ever, that our approach is equally well applicable to other
programming languages and programming paradigms.

This paper has the following contributions:

• We automatically assess student programs based on a
set of model solutions using programming strategies,
and program transformations (sections 2 and 3).

• We show the results of applying our assessment tool to
94 student solutions of a typical functional program-
ming exercise (Section 4).

2. STRATEGY BASED ASSESSMENT
The most important features we want to assess in a stu-

dent program are:

• Correctness: does the program implement the require-
ments?

• Design: has the program been implemented following
good programming practices?

A model solution is a preferred way to solve a problem.
Model solutions use good programming techniques, and we
want our students to use these techniques. Model solutions
can be transformed to model strategies automatically. These

programming strategies are defined in the strategy language
mentioned above.

We propose to use programming strategies as a foundation
for assessment of programming exercises. We generate a set
of solutions equivalent to the model solution(s) described by
a programming strategy. A student solution is correct if it is
an element of the generated set. Usually, however, strategies
do not generate all solutions that are in essence equivalent to
the model solution described. For example, a student should
be free in choosing the identifiers in a program, and for this
we incorporate α-renaming in our framework. To increase
the number of accepted correct student programs, we nor-
malise the generated set of model solutions and the student
program using meaning preserving program transformations
from the lambda calculus, such as β- and η-reduction. After
normalising we syntactically check if the program is an ele-
ment of the set of normalised model solutions.

A strategy is a well-defined plan or a sequence of steps for
solving a particular problem. It represents expert knowledge
for problem solving. Strategies are also known as proced-
ural skills. We have implemented a programming strategy
as a context free grammar with refinement rules as sym-
bols. A refinement rule refines an undefined part (a hole)
of an incomplete program. Examples of refinement rules
are: introducing a variable, and distinguishing the empty
list case from the non-empty list case. A programming stra-
tegy describes a sequence of refinement steps necessary for
constructing a program.

We have developed a library with an embedded domain-
specific language for specifying strategies for exercises. The
language can be used for many domains, provided that the
domains are based upon rewrite rules or refinement rules.
The strategy language consists of a set of strategy combin-
ators. These combinators are very similar to parser com-
binators [6] and are used to define strategies that consist of
several substrategies. Examples of strategy combinators are:
a sequence combinator that applies its argument strategies
one after another, and a choice combinator that offers the
possibility to choose between two strategies.

Strategies can also be used to detect common mistakes.
These are called buggy strategies. For example, a common
mistake we detected in a set of student solutions is the inef-
ficient way of calculating the length of a list described in the
introduction of this paper. Using buggy strategies we can
report to the student that a common mistake was detected,
and provide detailed feedback by explaining what is wrong,
and how this should be corrected.

Programming strategies can be automatically derived from
model solutions. To use our assessment tool, a teacher
merely needs to specify one or more model solution. A
teacher does not have to learn a formalism for specifying
strategies.

2.1 Standard strategies
Using strategy combinators we have defined a set of stand-

ard programming strategies. These standard strategies are
strategies for the functions in the standard library, and for
the basic language constructs of Haskell. The standard lib-
rary (the Haskell Prelude) defines common basic functions,
such as addition and concatenation. Examples of Haskell
language constructs are lambda expressions and where clau-
ses. The standard strategies generate many syntactically dif-
ferent solutions from a single model solution. The automat-



ically derived programming strategies are defined in terms of
these standard strategies. For example, using the strategy
for function composition (f ◦ g = λx → f (g x )), we can re-
cognise both composition itself, and composition expressed
in terms of the lambda expression from its definition. This
is used, amongst others, to check that the following two pro-
grams are equivalent:

fromBin = foldl ((+) ◦ (2∗)) 0
fromBin = foldl (λx y → 2 ∗ x + y) 0

3. PROGRAM TRANSFORMATIONS
One of the advantages of assessing programming exercises

using strategies is that an accepted program is guaranteed to
be equivalent to a model solution. However, most basic stra-
tegies are rather strict, and might reject programs that are
equivalent but have some differences. Not all of these differ-
ences can or should be captured in a strategy, because they
are standard transformations of a program, independent of a
particular strategy. For example, inlining a helper-function
should be considered correct in any strategy. We use pro-
gram transformations to transform a program to a normal
form1. We are not so much interested in the exact normal
form, as long as it can be used to efficiently compare two
terms for equality.

Our program transformations are based on the lambda
calculus. The lambda calculus is at the core of our func-
tional programming language, and its reduction rules form
the heart of the evaluation machinery. In particular, we use
η- and β-reduction, and α-conversion. In general, compar-
ing two lambda terms for equality is undecidable. However,
we can decide equivalence for many terms using program
transformations. Our equivalence checker may reject equi-
valent programs and hence we may have false-negatives. Un-
til now we have not found this to be a problem in practice. If
programs are found to be equivalent, they are semantically
equivalent, so we do not obtain false-positives.

3.1 Preprocessing
In addition to the reduction rules of the lambda calculus,

which we will discuss in the next subsection, we apply a
number of preprocessing transformation steps. These steps
are either for removing syntactic sugar or superficial syntax,
or to trigger other transformations steps. We give a brief
description of the most interesting transformation steps.

Constant arguments. Wherever possible we try to de-
tect constant arguments. A couple of student solutions of
the fromBin problem introduced in Section 1 use a constant
argument:

fromBin = fromBaseN 2
fromBaseN b n = fromBaseN ′ b (reverse n)

where
fromBaseN ′ [ ] = 0
fromBaseN ′ b′ (c : cs) = c + b′ ∗ (fromBaseN ′ b′ cs)

Here the argument b′ is constant. A technique often used in
compilers is to optimise such constant arguments away:

fromBin = fromBaseN 2
fromBaseN b n = fromBaseN ′ b (reverse n)

where

1We consider a program in normal form if it cannot be trans-
formed by any of our rules anymore.

fromBaseN ′ b′ =
let fromBaseN ′′ [ ] = 0

fromBaseN ′′ (c : cs) = c + b′ ∗ (fromBaseN ′′ cs)
in fromBaseN ′′

The reason to transform constant arguments away is to en-
able the inlining and β-reduction steps.

Inlining. Inlining replaces an expression by its defini-
tion. After inlining a lambda expression, we can often per-
form a β-reduction. Inlining is rather tricky: scope and
binding play an important role. Before inlining a few other
preprocessing steps have to be performed, such as rewriting
where clauses to let expressions. The following definition
shows the result of applying these preprocessing steps (in-
cluding inlining) to the fromBin solution given above:

fromBin =
( let fromBaseN ′ b′ =

let fromBaseN ′′ [ ] = 0
fromBaseN ′′ (c : cs) = c + b′ ∗ (fromBaseN ′′ cs)

in fromBaseN ′′

in λb n → fromBaseN ′ b (reverse n)
) 2

Prefix notation. Operators may be used in infix or pre-
fix position both when they are defined and used. For ex-
ample, both f x y = x +y and f x y = (+) x y may be used.
We have chosen to use the prefix notation in our abstract
syntax trees, and transform every infix application to the
equivalent prefix application.

3.2 α-conversion, η,β-reduction
α-conversion renames bound variables. To check that a

program is syntactically equivalent to a model solution, we
need to α-convert both the submitted student program as
well as the model solution. α-conversion ensures that all
variable names are unique, and this simplifies other trans-
formation steps, such as β-reduction. α-conversion is in-
cluded in the preprocessing step.

Previous transformation steps have been illustrated with
a student solution for fromBin, using the names from the
student program. After α-conversion this program looks as
follows:

fromBin =
(let x5 x6 =

let x5 [ ] = 0
x5 (x7 : x8) = (+) x7 ((∗) x6 (x5 x8))

in x5

in λx3 x4 → x5 x3 (reverse x4)
) 2

η-reduction replaces λx.fx by f if x does not appear free
in f . We η-reduce the abstract syntax tree at all possible
locations. Function bindings are η-reduced as well, so f x =
not x is replaced by f = not.

In lambda calculus, β-reduction is used when applying a
function. β-reduction is defined using substitution: (λx →
expr) y ⇒β expr[x := y]. The substitution [x := y] replaces
all free occurrences of the variable x by the expression y .
We don’t expect a student to write a program containing a
β-redex, but in practice this happens. The main reason we
need β-reduction is to inline helper-functions.

After applying all transformations, including β-reduction,
the fromBin function looks as follows:



fromBin = λx2 →
let x3 [ ] = 0

x3 (x4 : x5) = (+) ((∗) 2 (x3 x5)) x4

in x3 (reverse x2)

4. USING OUR ASSESSMENT TOOL
We have applied our assessment tool to student solutions

that were obtained from a lab assignment in a first-year func-
tional programming course at Utrecht University (2008). We
were not involved in any aspect of the assignment, and re-
ceived the solutions after they had been graded (‘by hand’)
by the teaching assistants. In total we received 94 student
solutions.

The students had to implement the fromBin function in-
troduced in Section 1. This function should convert a list of
bits to a decimal number. For example, applying fromBin
to [1, 0, 1, 0, 1, 0] should return 42. This is a small exercise,
typical for learning how to program in Haskell. The fromBin
exercise can be solved in various ways, using different kinds
of higher-order functions. There are a number of model solu-
tions, which differ quite a bit from one another. All of them
use recommended programming techniques.

The first of our model solutions uses a foldl , which is a
higher-order function that processes a list from left to right
and constructs a return value.

fromBin = foldl ((+) ◦ (2∗)) 0

Tupling is a well-known programming technique that groups
results in a tuple, which is passed around in a recursive func-
tion. The second model solution uses this technique. The
tuple is passed in the form of multiple function arguments.

fromBin xs = fromBin ′ (length xs − 1) xs
where

fromBin ′ [ ] = 0
fromBin ′ l (x : xs) = x ∗ 2∧l + fromBin ′ (l − 1) xs

The third solution reverses the input list, and then computes
the inner product of this list and a list of powers of two.

fromBin = sum ◦ zipWith (∗) (iterate (∗2) 1) ◦ reverse

The above model solutions are both elegant and efficient.
The fourth (and last) model solution we consider is simple,
but inefficient:

fromBin [ ] = 0
fromBin (x : xs) = x ∗ 2∧length xs + fromBin xs

Because the length of the list is calculated in each recursive
call, this definition takes time quadratic in the size of the
input list to calculate its result. The other model solutions
are all linear. It is up to the teacher to decide to either accept
or reject solutions based on this model. This flexibility is
one of the advantages of our approach. It is also possible
to turn this solution into a buggy strategy and report to
the student why their solution is rejected (or accepted with
reservations).

4.1 Categories
We have partitioned the set of student programs into four

categories by hand:
Good. A good program is a proper solution with respect

to the features we assess (correctness and design). It should
ideally be equivalent to one of the model solutions.

Good with modifications. Some students have aug-
mented their solution with sanity checks. For example, they
check that the input is a list of zeroes and ones. Since the
exercise assumes the input has the correct form, we have
not incorporated such checks in the model solutions. Fur-
thermore, the transformation machinery is not yet capable
of removing these checks. We have removed the checks by
hand.

Imperfect. An imperfect program is a program that is
rejected because we want to report the imperfection. The
solution to fromBin given in Section 1 is an example of an
imperfect solution. Another common imperfection we found
is the use of a superfluous case:

fromBin [ ] = 0
fromBin (x : [ ]) = x
fromBin (x : xs) = (x ∗ 2∧length xs) + fromBin xs

In this student example, the second case is unnecessary.
Incorrect. A few student programs were incorrect. They

all contained the same error: no definition for the empty list.

4.2 Results
From the 94 student programs, 64 programs fall into the

good category and 8 fall into the good with modifications
category. From these, our assessment tool recognises 64 pro-
grams (89%). Another, and perhaps better, way of looking
at these figures is that 64 student solutions are accepted
based on just four model solutions. The acceptance rate can
be increased by adding more model solutions. Using our
tool a teacher merely needs to assess the remaining student
solutions. These remaining student solutions can be either
correct or incorrect, our tool can not tell.

All of the incorrect and imperfect programs were rejec-
ted in the test. Some of these incorrect programs were not
noticed by the teaching assistants that corrected these pro-
grams.

It might happen that a student solution does not corres-
pond to a model solution, although it is correct. In such a
case a teacher might add the solution to the set of model
solutions. It is likely that some student solutions do not
qualify as a model solution, although they cannot be con-
sidered imperfect or wrong as well. For example, the follow-
ing student solution uses the tupling technique:

fromBin [ ] = 0
fromBin [s ] = s
fromBin (s : t : rest) = fromBin ((2 ∗ s + t) : rest)

Instead of using a tuple or an extra argument, this solution
‘misuses’ the head of the list to store the result.

By checking all model solutions independently, we can tell
which model solution, or strategy, a student has used to solve
the exercise. Our test showed that 18 students used the foldl
model solution, 2 used tupling, 2 the inner product solution,
and 40 solutions were based on the last model solution with
explicit recursion.

It is unlikely that a solution is accepted by more than one
model solution. In our test all solutions were accepted by a
single model solution. If model solutions are very similar, it
is probably possible to adapt one of the standard strategies
to recognise both from a single model solution.

A second assessment shows similar results as the one dis-
cussed in this paper.



5. RELATED AND FUTURE WORK
The survey of automated programming assessment by Ala-

Mutka [1] shows that many assessment tools are based on
dynamic testing. In contrast, our assessment tool statically
checks for correctness. The survey provides many pointers
to related work. We describe the three closest approaches.

The PASS system, developed by Thorburn and Rowe [7],
assesses C programs by evaluating whether a student pro-
gram conforms to a predefined solution plan. A drawback
of the system is that it needs testing for this evaluation.
Moreover, a solution plan is much more strict compared to
a strategy. For example, the system considers the defini-
tion of any helper-function incorrect. Our approach allows
a higher degree of freedom by means of standard strategies
and program transformations.

The approach of Truong et al. [8] is also based on model
solutions and abstract syntax tree inspections. However,
their primary use is to assess software quality and not so
much correctness. In addition to similarity checks, their
system also calculates software metrics, which are used to
give feedback to a student. A drawback of their approach
is that it does not take the different syntactic forms of a
model solution into account. Moreover, the similarity check
considers only the outline of a solution and not its details.

Xu and Chee [10] show how to diagnose Smalltalk pro-
grams using program transformations. Our work is quite
similar to theirs. For a functional programming language
the set of transformations is much smaller and simpler. We
would like to implement their advanced method for locating
errors in student programs.

Program verification tools are used to prove programs cor-
rect with respect to some specification [5]. Automatic pro-
gram verification tools provide as much support as possible
in constructing this proof. However, users will always have
to give hints or proof steps to complete proofs for non-trivial
programs, such as fromBin. We expect it is easier both for
teachers and students, to check student solutions against
model solutions.

Future work. In addition to assessing programming ex-
ercises, we also want to use programming strategies to gen-
erate semantically rich feedback when a student develops a
program step-wise. However, as soon as we use program
transformations it is hard to relate the student program to
a model solution: the program transformations changes the
student program in an unrecognisable way. Therefore, we
would like to investigate how we can retain the relation with
the student steps as long as possible.

The approach we presented in this paper is focussed on
functional programming languages, in particular Haskell.
We believe that our approach is also applicable to other pro-
gramming languages and to other programming paradigms.
Our method is not tied to a particular programming lan-
guage. The concepts on which our approach is based, such as
strategies, refinement rules, and program transformations,
are applicable to every programming language. We plan to
investigate how well our approach works for developing pro-
grams in a programming language such as Java.

Our approach can guarantee that a program is correct.
Test-based approaches can guarantee that a program is in-
correct. We plan to investigate how we can extend our ap-
proach with testing, property checking, or static contract
checking [9].

6. CONCLUSIONS
We have shown that strategies can be successfully used

for programming exercise assessment. Our approach differs
from test based assessment tools in that we can guarantee a
student solution to be equivalent to a model solution. Strate-
gies in combination with programming transformations are
able to recognise many different student programs from a
limited set of model solutions. In a test we performed on
almost 100 student programs we managed to recognise and
characterise 89% of the correct solutions, and we found sev-
eral programs that had been incorrectly graded as correct by
student assistants. Programming strategies can be specified
in a convenient way and are very flexible.
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